f-stack/dpdk/drivers/net/avp/avp_ethdev.c

2316 lines
62 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2013-2017 Wind River Systems, Inc.
*/
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <rte_ethdev_driver.h>
#include <rte_ethdev_pci.h>
#include <rte_memcpy.h>
#include <rte_string_fns.h>
#include <rte_malloc.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_ether.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_spinlock.h>
#include <rte_byteorder.h>
#include <rte_dev.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_io.h>
#include "rte_avp_common.h"
#include "rte_avp_fifo.h"
#include "avp_logs.h"
int avp_logtype_driver;
static int avp_dev_create(struct rte_pci_device *pci_dev,
struct rte_eth_dev *eth_dev);
static int avp_dev_configure(struct rte_eth_dev *dev);
static int avp_dev_start(struct rte_eth_dev *dev);
static void avp_dev_stop(struct rte_eth_dev *dev);
static void avp_dev_close(struct rte_eth_dev *dev);
static int avp_dev_info_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static int avp_vlan_offload_set(struct rte_eth_dev *dev, int mask);
static int avp_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete);
static int avp_dev_promiscuous_enable(struct rte_eth_dev *dev);
static int avp_dev_promiscuous_disable(struct rte_eth_dev *dev);
static int avp_dev_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t rx_queue_id,
uint16_t nb_rx_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *pool);
static int avp_dev_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t tx_queue_id,
uint16_t nb_tx_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf);
static uint16_t avp_recv_scattered_pkts(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
static uint16_t avp_recv_pkts(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
static uint16_t avp_xmit_scattered_pkts(void *tx_queue,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
static uint16_t avp_xmit_pkts(void *tx_queue,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
static void avp_dev_rx_queue_release(void *rxq);
static void avp_dev_tx_queue_release(void *txq);
static int avp_dev_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats);
static int avp_dev_stats_reset(struct rte_eth_dev *dev);
#define AVP_MAX_RX_BURST 64
#define AVP_MAX_TX_BURST 64
#define AVP_MAX_MAC_ADDRS 1
#define AVP_MIN_RX_BUFSIZE RTE_ETHER_MIN_LEN
/*
* Defines the number of microseconds to wait before checking the response
* queue for completion.
*/
#define AVP_REQUEST_DELAY_USECS (5000)
/*
* Defines the number times to check the response queue for completion before
* declaring a timeout.
*/
#define AVP_MAX_REQUEST_RETRY (100)
/* Defines the current PCI driver version number */
#define AVP_DPDK_DRIVER_VERSION RTE_AVP_CURRENT_GUEST_VERSION
/*
* The set of PCI devices this driver supports
*/
static const struct rte_pci_id pci_id_avp_map[] = {
{ .vendor_id = RTE_AVP_PCI_VENDOR_ID,
.device_id = RTE_AVP_PCI_DEVICE_ID,
.subsystem_vendor_id = RTE_AVP_PCI_SUB_VENDOR_ID,
.subsystem_device_id = RTE_AVP_PCI_SUB_DEVICE_ID,
.class_id = RTE_CLASS_ANY_ID,
},
{ .vendor_id = 0, /* sentinel */
},
};
/*
* dev_ops for avp, bare necessities for basic operation
*/
static const struct eth_dev_ops avp_eth_dev_ops = {
.dev_configure = avp_dev_configure,
.dev_start = avp_dev_start,
.dev_stop = avp_dev_stop,
.dev_close = avp_dev_close,
.dev_infos_get = avp_dev_info_get,
.vlan_offload_set = avp_vlan_offload_set,
.stats_get = avp_dev_stats_get,
.stats_reset = avp_dev_stats_reset,
.link_update = avp_dev_link_update,
.promiscuous_enable = avp_dev_promiscuous_enable,
.promiscuous_disable = avp_dev_promiscuous_disable,
.rx_queue_setup = avp_dev_rx_queue_setup,
.rx_queue_release = avp_dev_rx_queue_release,
.tx_queue_setup = avp_dev_tx_queue_setup,
.tx_queue_release = avp_dev_tx_queue_release,
};
/**@{ AVP device flags */
#define AVP_F_PROMISC (1 << 1)
#define AVP_F_CONFIGURED (1 << 2)
#define AVP_F_LINKUP (1 << 3)
#define AVP_F_DETACHED (1 << 4)
/**@} */
/* Ethernet device validation marker */
#define AVP_ETHDEV_MAGIC 0x92972862
/*
* Defines the AVP device attributes which are attached to an RTE ethernet
* device
*/
struct avp_dev {
uint32_t magic; /**< Memory validation marker */
uint64_t device_id; /**< Unique system identifier */
struct rte_ether_addr ethaddr; /**< Host specified MAC address */
struct rte_eth_dev_data *dev_data;
/**< Back pointer to ethernet device data */
volatile uint32_t flags; /**< Device operational flags */
uint16_t port_id; /**< Ethernet port identifier */
struct rte_mempool *pool; /**< pkt mbuf mempool */
unsigned int guest_mbuf_size; /**< local pool mbuf size */
unsigned int host_mbuf_size; /**< host mbuf size */
unsigned int max_rx_pkt_len; /**< maximum receive unit */
uint32_t host_features; /**< Supported feature bitmap */
uint32_t features; /**< Enabled feature bitmap */
unsigned int num_tx_queues; /**< Negotiated number of transmit queues */
unsigned int max_tx_queues; /**< Maximum number of transmit queues */
unsigned int num_rx_queues; /**< Negotiated number of receive queues */
unsigned int max_rx_queues; /**< Maximum number of receive queues */
struct rte_avp_fifo *tx_q[RTE_AVP_MAX_QUEUES]; /**< TX queue */
struct rte_avp_fifo *rx_q[RTE_AVP_MAX_QUEUES]; /**< RX queue */
struct rte_avp_fifo *alloc_q[RTE_AVP_MAX_QUEUES];
/**< Allocated mbufs queue */
struct rte_avp_fifo *free_q[RTE_AVP_MAX_QUEUES];
/**< To be freed mbufs queue */
/* mutual exclusion over the 'flag' and 'resp_q/req_q' fields */
rte_spinlock_t lock;
/* For request & response */
struct rte_avp_fifo *req_q; /**< Request queue */
struct rte_avp_fifo *resp_q; /**< Response queue */
void *host_sync_addr; /**< (host) Req/Resp Mem address */
void *sync_addr; /**< Req/Resp Mem address */
void *host_mbuf_addr; /**< (host) MBUF pool start address */
void *mbuf_addr; /**< MBUF pool start address */
} __rte_cache_aligned;
/* RTE ethernet private data */
struct avp_adapter {
struct avp_dev avp;
} __rte_cache_aligned;
/* 32-bit MMIO register write */
#define AVP_WRITE32(_value, _addr) rte_write32_relaxed((_value), (_addr))
/* 32-bit MMIO register read */
#define AVP_READ32(_addr) rte_read32_relaxed((_addr))
/* Macro to cast the ethernet device private data to a AVP object */
#define AVP_DEV_PRIVATE_TO_HW(adapter) \
(&((struct avp_adapter *)adapter)->avp)
/*
* Defines the structure of a AVP device queue for the purpose of handling the
* receive and transmit burst callback functions
*/
struct avp_queue {
struct rte_eth_dev_data *dev_data;
/**< Backpointer to ethernet device data */
struct avp_dev *avp; /**< Backpointer to AVP device */
uint16_t queue_id;
/**< Queue identifier used for indexing current queue */
uint16_t queue_base;
/**< Base queue identifier for queue servicing */
uint16_t queue_limit;
/**< Maximum queue identifier for queue servicing */
uint64_t packets;
uint64_t bytes;
uint64_t errors;
};
/* send a request and wait for a response
*
* @warning must be called while holding the avp->lock spinlock.
*/
static int
avp_dev_process_request(struct avp_dev *avp, struct rte_avp_request *request)
{
unsigned int retry = AVP_MAX_REQUEST_RETRY;
void *resp_addr = NULL;
unsigned int count;
int ret;
PMD_DRV_LOG(DEBUG, "Sending request %u to host\n", request->req_id);
request->result = -ENOTSUP;
/* Discard any stale responses before starting a new request */
while (avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1))
PMD_DRV_LOG(DEBUG, "Discarding stale response\n");
rte_memcpy(avp->sync_addr, request, sizeof(*request));
count = avp_fifo_put(avp->req_q, &avp->host_sync_addr, 1);
if (count < 1) {
PMD_DRV_LOG(ERR, "Cannot send request %u to host\n",
request->req_id);
ret = -EBUSY;
goto done;
}
while (retry--) {
/* wait for a response */
usleep(AVP_REQUEST_DELAY_USECS);
count = avp_fifo_count(avp->resp_q);
if (count >= 1) {
/* response received */
break;
}
if ((count < 1) && (retry == 0)) {
PMD_DRV_LOG(ERR, "Timeout while waiting for a response for %u\n",
request->req_id);
ret = -ETIME;
goto done;
}
}
/* retrieve the response */
count = avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1);
if ((count != 1) || (resp_addr != avp->host_sync_addr)) {
PMD_DRV_LOG(ERR, "Invalid response from host, count=%u resp=%p host_sync_addr=%p\n",
count, resp_addr, avp->host_sync_addr);
ret = -ENODATA;
goto done;
}
/* copy to user buffer */
rte_memcpy(request, avp->sync_addr, sizeof(*request));
ret = 0;
PMD_DRV_LOG(DEBUG, "Result %d received for request %u\n",
request->result, request->req_id);
done:
return ret;
}
static int
avp_dev_ctrl_set_link_state(struct rte_eth_dev *eth_dev, unsigned int state)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct rte_avp_request request;
int ret;
/* setup a link state change request */
memset(&request, 0, sizeof(request));
request.req_id = RTE_AVP_REQ_CFG_NETWORK_IF;
request.if_up = state;
ret = avp_dev_process_request(avp, &request);
return ret == 0 ? request.result : ret;
}
static int
avp_dev_ctrl_set_config(struct rte_eth_dev *eth_dev,
struct rte_avp_device_config *config)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct rte_avp_request request;
int ret;
/* setup a configure request */
memset(&request, 0, sizeof(request));
request.req_id = RTE_AVP_REQ_CFG_DEVICE;
memcpy(&request.config, config, sizeof(request.config));
ret = avp_dev_process_request(avp, &request);
return ret == 0 ? request.result : ret;
}
static int
avp_dev_ctrl_shutdown(struct rte_eth_dev *eth_dev)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct rte_avp_request request;
int ret;
/* setup a shutdown request */
memset(&request, 0, sizeof(request));
request.req_id = RTE_AVP_REQ_SHUTDOWN_DEVICE;
ret = avp_dev_process_request(avp, &request);
return ret == 0 ? request.result : ret;
}
/* translate from host mbuf virtual address to guest virtual address */
static inline void *
avp_dev_translate_buffer(struct avp_dev *avp, void *host_mbuf_address)
{
return RTE_PTR_ADD(RTE_PTR_SUB(host_mbuf_address,
(uintptr_t)avp->host_mbuf_addr),
(uintptr_t)avp->mbuf_addr);
}
/* translate from host physical address to guest virtual address */
static void *
avp_dev_translate_address(struct rte_eth_dev *eth_dev,
rte_iova_t host_phys_addr)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
struct rte_mem_resource *resource;
struct rte_avp_memmap_info *info;
struct rte_avp_memmap *map;
off_t offset;
void *addr;
unsigned int i;
addr = pci_dev->mem_resource[RTE_AVP_PCI_MEMORY_BAR].addr;
resource = &pci_dev->mem_resource[RTE_AVP_PCI_MEMMAP_BAR];
info = (struct rte_avp_memmap_info *)resource->addr;
offset = 0;
for (i = 0; i < info->nb_maps; i++) {
/* search all segments looking for a matching address */
map = &info->maps[i];
if ((host_phys_addr >= map->phys_addr) &&
(host_phys_addr < (map->phys_addr + map->length))) {
/* address is within this segment */
offset += (host_phys_addr - map->phys_addr);
addr = RTE_PTR_ADD(addr, (uintptr_t)offset);
PMD_DRV_LOG(DEBUG, "Translating host physical 0x%" PRIx64 " to guest virtual 0x%p\n",
host_phys_addr, addr);
return addr;
}
offset += map->length;
}
return NULL;
}
/* verify that the incoming device version is compatible with our version */
static int
avp_dev_version_check(uint32_t version)
{
uint32_t driver = RTE_AVP_STRIP_MINOR_VERSION(AVP_DPDK_DRIVER_VERSION);
uint32_t device = RTE_AVP_STRIP_MINOR_VERSION(version);
if (device <= driver) {
/* the host driver version is less than or equal to ours */
return 0;
}
return 1;
}
/* verify that memory regions have expected version and validation markers */
static int
avp_dev_check_regions(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
struct rte_avp_memmap_info *memmap;
struct rte_avp_device_info *info;
struct rte_mem_resource *resource;
unsigned int i;
/* Dump resource info for debug */
for (i = 0; i < PCI_MAX_RESOURCE; i++) {
resource = &pci_dev->mem_resource[i];
if ((resource->phys_addr == 0) || (resource->len == 0))
continue;
PMD_DRV_LOG(DEBUG, "resource[%u]: phys=0x%" PRIx64 " len=%" PRIu64 " addr=%p\n",
i, resource->phys_addr,
resource->len, resource->addr);
switch (i) {
case RTE_AVP_PCI_MEMMAP_BAR:
memmap = (struct rte_avp_memmap_info *)resource->addr;
if ((memmap->magic != RTE_AVP_MEMMAP_MAGIC) ||
(memmap->version != RTE_AVP_MEMMAP_VERSION)) {
PMD_DRV_LOG(ERR, "Invalid memmap magic 0x%08x and version %u\n",
memmap->magic, memmap->version);
return -EINVAL;
}
break;
case RTE_AVP_PCI_DEVICE_BAR:
info = (struct rte_avp_device_info *)resource->addr;
if ((info->magic != RTE_AVP_DEVICE_MAGIC) ||
avp_dev_version_check(info->version)) {
PMD_DRV_LOG(ERR, "Invalid device info magic 0x%08x or version 0x%08x > 0x%08x\n",
info->magic, info->version,
AVP_DPDK_DRIVER_VERSION);
return -EINVAL;
}
break;
case RTE_AVP_PCI_MEMORY_BAR:
case RTE_AVP_PCI_MMIO_BAR:
if (resource->addr == NULL) {
PMD_DRV_LOG(ERR, "Missing address space for BAR%u\n",
i);
return -EINVAL;
}
break;
case RTE_AVP_PCI_MSIX_BAR:
default:
/* no validation required */
break;
}
}
return 0;
}
static int
avp_dev_detach(struct rte_eth_dev *eth_dev)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
int ret;
PMD_DRV_LOG(NOTICE, "Detaching port %u from AVP device 0x%" PRIx64 "\n",
eth_dev->data->port_id, avp->device_id);
rte_spinlock_lock(&avp->lock);
if (avp->flags & AVP_F_DETACHED) {
PMD_DRV_LOG(NOTICE, "port %u already detached\n",
eth_dev->data->port_id);
ret = 0;
goto unlock;
}
/* shutdown the device first so the host stops sending us packets. */
ret = avp_dev_ctrl_shutdown(eth_dev);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to send/recv shutdown to host, ret=%d\n",
ret);
avp->flags &= ~AVP_F_DETACHED;
goto unlock;
}
avp->flags |= AVP_F_DETACHED;
rte_wmb();
/* wait for queues to acknowledge the presence of the detach flag */
rte_delay_ms(1);
ret = 0;
unlock:
rte_spinlock_unlock(&avp->lock);
return ret;
}
static void
_avp_set_rx_queue_mappings(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
{
struct avp_dev *avp =
AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct avp_queue *rxq;
uint16_t queue_count;
uint16_t remainder;
rxq = (struct avp_queue *)eth_dev->data->rx_queues[rx_queue_id];
/*
* Must map all AVP fifos as evenly as possible between the configured
* device queues. Each device queue will service a subset of the AVP
* fifos. If there is an odd number of device queues the first set of
* device queues will get the extra AVP fifos.
*/
queue_count = avp->num_rx_queues / eth_dev->data->nb_rx_queues;
remainder = avp->num_rx_queues % eth_dev->data->nb_rx_queues;
if (rx_queue_id < remainder) {
/* these queues must service one extra FIFO */
rxq->queue_base = rx_queue_id * (queue_count + 1);
rxq->queue_limit = rxq->queue_base + (queue_count + 1) - 1;
} else {
/* these queues service the regular number of FIFO */
rxq->queue_base = ((remainder * (queue_count + 1)) +
((rx_queue_id - remainder) * queue_count));
rxq->queue_limit = rxq->queue_base + queue_count - 1;
}
PMD_DRV_LOG(DEBUG, "rxq %u at %p base %u limit %u\n",
rx_queue_id, rxq, rxq->queue_base, rxq->queue_limit);
rxq->queue_id = rxq->queue_base;
}
static void
_avp_set_queue_counts(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct rte_avp_device_info *host_info;
void *addr;
addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
host_info = (struct rte_avp_device_info *)addr;
/*
* the transmit direction is not negotiated beyond respecting the max
* number of queues because the host can handle arbitrary guest tx
* queues (host rx queues).
*/
avp->num_tx_queues = eth_dev->data->nb_tx_queues;
/*
* the receive direction is more restrictive. The host requires a
* minimum number of guest rx queues (host tx queues) therefore
* negotiate a value that is at least as large as the host minimum
* requirement. If the host and guest values are not identical then a
* mapping will be established in the receive_queue_setup function.
*/
avp->num_rx_queues = RTE_MAX(host_info->min_rx_queues,
eth_dev->data->nb_rx_queues);
PMD_DRV_LOG(DEBUG, "Requesting %u Tx and %u Rx queues from host\n",
avp->num_tx_queues, avp->num_rx_queues);
}
static int
avp_dev_attach(struct rte_eth_dev *eth_dev)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct rte_avp_device_config config;
unsigned int i;
int ret;
PMD_DRV_LOG(NOTICE, "Attaching port %u to AVP device 0x%" PRIx64 "\n",
eth_dev->data->port_id, avp->device_id);
rte_spinlock_lock(&avp->lock);
if (!(avp->flags & AVP_F_DETACHED)) {
PMD_DRV_LOG(NOTICE, "port %u already attached\n",
eth_dev->data->port_id);
ret = 0;
goto unlock;
}
/*
* make sure that the detached flag is set prior to reconfiguring the
* queues.
*/
avp->flags |= AVP_F_DETACHED;
rte_wmb();
/*
* re-run the device create utility which will parse the new host info
* and setup the AVP device queue pointers.
*/
ret = avp_dev_create(RTE_ETH_DEV_TO_PCI(eth_dev), eth_dev);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to re-create AVP device, ret=%d\n",
ret);
goto unlock;
}
if (avp->flags & AVP_F_CONFIGURED) {
/*
* Update the receive queue mapping to handle cases where the
* source and destination hosts have different queue
* requirements. As long as the DETACHED flag is asserted the
* queue table should not be referenced so it should be safe to
* update it.
*/
_avp_set_queue_counts(eth_dev);
for (i = 0; i < eth_dev->data->nb_rx_queues; i++)
_avp_set_rx_queue_mappings(eth_dev, i);
/*
* Update the host with our config details so that it knows the
* device is active.
*/
memset(&config, 0, sizeof(config));
config.device_id = avp->device_id;
config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
config.driver_version = AVP_DPDK_DRIVER_VERSION;
config.features = avp->features;
config.num_tx_queues = avp->num_tx_queues;
config.num_rx_queues = avp->num_rx_queues;
config.if_up = !!(avp->flags & AVP_F_LINKUP);
ret = avp_dev_ctrl_set_config(eth_dev, &config);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
ret);
goto unlock;
}
}
rte_wmb();
avp->flags &= ~AVP_F_DETACHED;
ret = 0;
unlock:
rte_spinlock_unlock(&avp->lock);
return ret;
}
static void
avp_dev_interrupt_handler(void *data)
{
struct rte_eth_dev *eth_dev = data;
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
uint32_t status, value;
int ret;
if (registers == NULL)
rte_panic("no mapped MMIO register space\n");
/* read the interrupt status register
* note: this register clears on read so all raised interrupts must be
* handled or remembered for later processing
*/
status = AVP_READ32(
RTE_PTR_ADD(registers,
RTE_AVP_INTERRUPT_STATUS_OFFSET));
if (status & RTE_AVP_MIGRATION_INTERRUPT_MASK) {
/* handle interrupt based on current status */
value = AVP_READ32(
RTE_PTR_ADD(registers,
RTE_AVP_MIGRATION_STATUS_OFFSET));
switch (value) {
case RTE_AVP_MIGRATION_DETACHED:
ret = avp_dev_detach(eth_dev);
break;
case RTE_AVP_MIGRATION_ATTACHED:
ret = avp_dev_attach(eth_dev);
break;
default:
PMD_DRV_LOG(ERR, "unexpected migration status, status=%u\n",
value);
ret = -EINVAL;
}
/* acknowledge the request by writing out our current status */
value = (ret == 0 ? value : RTE_AVP_MIGRATION_ERROR);
AVP_WRITE32(value,
RTE_PTR_ADD(registers,
RTE_AVP_MIGRATION_ACK_OFFSET));
PMD_DRV_LOG(NOTICE, "AVP migration interrupt handled\n");
}
if (status & ~RTE_AVP_MIGRATION_INTERRUPT_MASK)
PMD_DRV_LOG(WARNING, "AVP unexpected interrupt, status=0x%08x\n",
status);
/* re-enable UIO interrupt handling */
ret = rte_intr_ack(&pci_dev->intr_handle);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to re-enable UIO interrupts, ret=%d\n",
ret);
/* continue */
}
}
static int
avp_dev_enable_interrupts(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
int ret;
if (registers == NULL)
return -EINVAL;
/* enable UIO interrupt handling */
ret = rte_intr_enable(&pci_dev->intr_handle);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to enable UIO interrupts, ret=%d\n",
ret);
return ret;
}
/* inform the device that all interrupts are enabled */
AVP_WRITE32(RTE_AVP_APP_INTERRUPTS_MASK,
RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));
return 0;
}
static int
avp_dev_disable_interrupts(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
int ret;
if (registers == NULL)
return 0;
/* inform the device that all interrupts are disabled */
AVP_WRITE32(RTE_AVP_NO_INTERRUPTS_MASK,
RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));
/* enable UIO interrupt handling */
ret = rte_intr_disable(&pci_dev->intr_handle);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to disable UIO interrupts, ret=%d\n",
ret);
return ret;
}
return 0;
}
static int
avp_dev_setup_interrupts(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
int ret;
/* register a callback handler with UIO for interrupt notifications */
ret = rte_intr_callback_register(&pci_dev->intr_handle,
avp_dev_interrupt_handler,
(void *)eth_dev);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to register UIO interrupt callback, ret=%d\n",
ret);
return ret;
}
/* enable interrupt processing */
return avp_dev_enable_interrupts(eth_dev);
}
static int
avp_dev_migration_pending(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
uint32_t value;
if (registers == NULL)
return 0;
value = AVP_READ32(RTE_PTR_ADD(registers,
RTE_AVP_MIGRATION_STATUS_OFFSET));
if (value == RTE_AVP_MIGRATION_DETACHED) {
/* migration is in progress; ack it if we have not already */
AVP_WRITE32(value,
RTE_PTR_ADD(registers,
RTE_AVP_MIGRATION_ACK_OFFSET));
return 1;
}
return 0;
}
/*
* create a AVP device using the supplied device info by first translating it
* to guest address space(s).
*/
static int
avp_dev_create(struct rte_pci_device *pci_dev,
struct rte_eth_dev *eth_dev)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct rte_avp_device_info *host_info;
struct rte_mem_resource *resource;
unsigned int i;
resource = &pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR];
if (resource->addr == NULL) {
PMD_DRV_LOG(ERR, "BAR%u is not mapped\n",
RTE_AVP_PCI_DEVICE_BAR);
return -EFAULT;
}
host_info = (struct rte_avp_device_info *)resource->addr;
if ((host_info->magic != RTE_AVP_DEVICE_MAGIC) ||
avp_dev_version_check(host_info->version)) {
PMD_DRV_LOG(ERR, "Invalid AVP PCI device, magic 0x%08x version 0x%08x > 0x%08x\n",
host_info->magic, host_info->version,
AVP_DPDK_DRIVER_VERSION);
return -EINVAL;
}
PMD_DRV_LOG(DEBUG, "AVP host device is v%u.%u.%u\n",
RTE_AVP_GET_RELEASE_VERSION(host_info->version),
RTE_AVP_GET_MAJOR_VERSION(host_info->version),
RTE_AVP_GET_MINOR_VERSION(host_info->version));
PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u TX queue(s)\n",
host_info->min_tx_queues, host_info->max_tx_queues);
PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u RX queue(s)\n",
host_info->min_rx_queues, host_info->max_rx_queues);
PMD_DRV_LOG(DEBUG, "AVP host supports features 0x%08x\n",
host_info->features);
if (avp->magic != AVP_ETHDEV_MAGIC) {
/*
* First time initialization (i.e., not during a VM
* migration)
*/
memset(avp, 0, sizeof(*avp));
avp->magic = AVP_ETHDEV_MAGIC;
avp->dev_data = eth_dev->data;
avp->port_id = eth_dev->data->port_id;
avp->host_mbuf_size = host_info->mbuf_size;
avp->host_features = host_info->features;
rte_spinlock_init(&avp->lock);
memcpy(&avp->ethaddr.addr_bytes[0],
host_info->ethaddr, RTE_ETHER_ADDR_LEN);
/* adjust max values to not exceed our max */
avp->max_tx_queues =
RTE_MIN(host_info->max_tx_queues, RTE_AVP_MAX_QUEUES);
avp->max_rx_queues =
RTE_MIN(host_info->max_rx_queues, RTE_AVP_MAX_QUEUES);
} else {
/* Re-attaching during migration */
/* TODO... requires validation of host values */
if ((host_info->features & avp->features) != avp->features) {
PMD_DRV_LOG(ERR, "AVP host features mismatched; 0x%08x, host=0x%08x\n",
avp->features, host_info->features);
/* this should not be possible; continue for now */
}
}
/* the device id is allowed to change over migrations */
avp->device_id = host_info->device_id;
/* translate incoming host addresses to guest address space */
PMD_DRV_LOG(DEBUG, "AVP first host tx queue at 0x%" PRIx64 "\n",
host_info->tx_phys);
PMD_DRV_LOG(DEBUG, "AVP first host alloc queue at 0x%" PRIx64 "\n",
host_info->alloc_phys);
for (i = 0; i < avp->max_tx_queues; i++) {
avp->tx_q[i] = avp_dev_translate_address(eth_dev,
host_info->tx_phys + (i * host_info->tx_size));
avp->alloc_q[i] = avp_dev_translate_address(eth_dev,
host_info->alloc_phys + (i * host_info->alloc_size));
}
PMD_DRV_LOG(DEBUG, "AVP first host rx queue at 0x%" PRIx64 "\n",
host_info->rx_phys);
PMD_DRV_LOG(DEBUG, "AVP first host free queue at 0x%" PRIx64 "\n",
host_info->free_phys);
for (i = 0; i < avp->max_rx_queues; i++) {
avp->rx_q[i] = avp_dev_translate_address(eth_dev,
host_info->rx_phys + (i * host_info->rx_size));
avp->free_q[i] = avp_dev_translate_address(eth_dev,
host_info->free_phys + (i * host_info->free_size));
}
PMD_DRV_LOG(DEBUG, "AVP host request queue at 0x%" PRIx64 "\n",
host_info->req_phys);
PMD_DRV_LOG(DEBUG, "AVP host response queue at 0x%" PRIx64 "\n",
host_info->resp_phys);
PMD_DRV_LOG(DEBUG, "AVP host sync address at 0x%" PRIx64 "\n",
host_info->sync_phys);
PMD_DRV_LOG(DEBUG, "AVP host mbuf address at 0x%" PRIx64 "\n",
host_info->mbuf_phys);
avp->req_q = avp_dev_translate_address(eth_dev, host_info->req_phys);
avp->resp_q = avp_dev_translate_address(eth_dev, host_info->resp_phys);
avp->sync_addr =
avp_dev_translate_address(eth_dev, host_info->sync_phys);
avp->mbuf_addr =
avp_dev_translate_address(eth_dev, host_info->mbuf_phys);
/*
* store the host mbuf virtual address so that we can calculate
* relative offsets for each mbuf as they are processed
*/
avp->host_mbuf_addr = host_info->mbuf_va;
avp->host_sync_addr = host_info->sync_va;
/*
* store the maximum packet length that is supported by the host.
*/
avp->max_rx_pkt_len = host_info->max_rx_pkt_len;
PMD_DRV_LOG(DEBUG, "AVP host max receive packet length is %u\n",
host_info->max_rx_pkt_len);
return 0;
}
/*
* This function is based on probe() function in avp_pci.c
* It returns 0 on success.
*/
static int
eth_avp_dev_init(struct rte_eth_dev *eth_dev)
{
struct avp_dev *avp =
AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct rte_pci_device *pci_dev;
int ret;
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
eth_dev->dev_ops = &avp_eth_dev_ops;
eth_dev->rx_pkt_burst = &avp_recv_pkts;
eth_dev->tx_pkt_burst = &avp_xmit_pkts;
/* Let rte_eth_dev_close() release the port resources */
eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
/*
* no setup required on secondary processes. All data is saved
* in dev_private by the primary process. All resource should
* be mapped to the same virtual address so all pointers should
* be valid.
*/
if (eth_dev->data->scattered_rx) {
PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
}
return 0;
}
rte_eth_copy_pci_info(eth_dev, pci_dev);
/* Check current migration status */
if (avp_dev_migration_pending(eth_dev)) {
PMD_DRV_LOG(ERR, "VM live migration operation in progress\n");
return -EBUSY;
}
/* Check BAR resources */
ret = avp_dev_check_regions(eth_dev);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to validate BAR resources, ret=%d\n",
ret);
return ret;
}
/* Enable interrupts */
ret = avp_dev_setup_interrupts(eth_dev);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to enable interrupts, ret=%d\n", ret);
return ret;
}
/* Handle each subtype */
ret = avp_dev_create(pci_dev, eth_dev);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to create device, ret=%d\n", ret);
return ret;
}
/* Allocate memory for storing MAC addresses */
eth_dev->data->mac_addrs = rte_zmalloc("avp_ethdev",
RTE_ETHER_ADDR_LEN, 0);
if (eth_dev->data->mac_addrs == NULL) {
PMD_DRV_LOG(ERR, "Failed to allocate %d bytes needed to store MAC addresses\n",
RTE_ETHER_ADDR_LEN);
return -ENOMEM;
}
/* Get a mac from device config */
rte_ether_addr_copy(&avp->ethaddr, &eth_dev->data->mac_addrs[0]);
return 0;
}
static int
eth_avp_dev_uninit(struct rte_eth_dev *eth_dev)
{
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -EPERM;
if (eth_dev->data == NULL)
return 0;
avp_dev_close(eth_dev);
return 0;
}
static int
eth_avp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct avp_adapter),
eth_avp_dev_init);
}
static int
eth_avp_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev,
eth_avp_dev_uninit);
}
static struct rte_pci_driver rte_avp_pmd = {
.id_table = pci_id_avp_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
.probe = eth_avp_pci_probe,
.remove = eth_avp_pci_remove,
};
static int
avp_dev_enable_scattered(struct rte_eth_dev *eth_dev,
struct avp_dev *avp)
{
unsigned int max_rx_pkt_len;
max_rx_pkt_len = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len;
if ((max_rx_pkt_len > avp->guest_mbuf_size) ||
(max_rx_pkt_len > avp->host_mbuf_size)) {
/*
* If the guest MTU is greater than either the host or guest
* buffers then chained mbufs have to be enabled in the TX
* direction. It is assumed that the application will not need
* to send packets larger than their max_rx_pkt_len (MRU).
*/
return 1;
}
if ((avp->max_rx_pkt_len > avp->guest_mbuf_size) ||
(avp->max_rx_pkt_len > avp->host_mbuf_size)) {
/*
* If the host MRU is greater than its own mbuf size or the
* guest mbuf size then chained mbufs have to be enabled in the
* RX direction.
*/
return 1;
}
return 0;
}
static int
avp_dev_rx_queue_setup(struct rte_eth_dev *eth_dev,
uint16_t rx_queue_id,
uint16_t nb_rx_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *pool)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct rte_pktmbuf_pool_private *mbp_priv;
struct avp_queue *rxq;
if (rx_queue_id >= eth_dev->data->nb_rx_queues) {
PMD_DRV_LOG(ERR, "RX queue id is out of range: rx_queue_id=%u, nb_rx_queues=%u\n",
rx_queue_id, eth_dev->data->nb_rx_queues);
return -EINVAL;
}
/* Save mbuf pool pointer */
avp->pool = pool;
/* Save the local mbuf size */
mbp_priv = rte_mempool_get_priv(pool);
avp->guest_mbuf_size = (uint16_t)(mbp_priv->mbuf_data_room_size);
avp->guest_mbuf_size -= RTE_PKTMBUF_HEADROOM;
if (avp_dev_enable_scattered(eth_dev, avp)) {
if (!eth_dev->data->scattered_rx) {
PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
eth_dev->data->scattered_rx = 1;
eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
}
}
PMD_DRV_LOG(DEBUG, "AVP max_rx_pkt_len=(%u,%u) mbuf_size=(%u,%u)\n",
avp->max_rx_pkt_len,
eth_dev->data->dev_conf.rxmode.max_rx_pkt_len,
avp->host_mbuf_size,
avp->guest_mbuf_size);
/* allocate a queue object */
rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct avp_queue),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq == NULL) {
PMD_DRV_LOG(ERR, "Failed to allocate new Rx queue object\n");
return -ENOMEM;
}
/* save back pointers to AVP and Ethernet devices */
rxq->avp = avp;
rxq->dev_data = eth_dev->data;
eth_dev->data->rx_queues[rx_queue_id] = (void *)rxq;
/* setup the queue receive mapping for the current queue. */
_avp_set_rx_queue_mappings(eth_dev, rx_queue_id);
PMD_DRV_LOG(DEBUG, "Rx queue %u setup at %p\n", rx_queue_id, rxq);
(void)nb_rx_desc;
(void)rx_conf;
return 0;
}
static int
avp_dev_tx_queue_setup(struct rte_eth_dev *eth_dev,
uint16_t tx_queue_id,
uint16_t nb_tx_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct avp_queue *txq;
if (tx_queue_id >= eth_dev->data->nb_tx_queues) {
PMD_DRV_LOG(ERR, "TX queue id is out of range: tx_queue_id=%u, nb_tx_queues=%u\n",
tx_queue_id, eth_dev->data->nb_tx_queues);
return -EINVAL;
}
/* allocate a queue object */
txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct avp_queue),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq == NULL) {
PMD_DRV_LOG(ERR, "Failed to allocate new Tx queue object\n");
return -ENOMEM;
}
/* only the configured set of transmit queues are used */
txq->queue_id = tx_queue_id;
txq->queue_base = tx_queue_id;
txq->queue_limit = tx_queue_id;
/* save back pointers to AVP and Ethernet devices */
txq->avp = avp;
txq->dev_data = eth_dev->data;
eth_dev->data->tx_queues[tx_queue_id] = (void *)txq;
PMD_DRV_LOG(DEBUG, "Tx queue %u setup at %p\n", tx_queue_id, txq);
(void)nb_tx_desc;
(void)tx_conf;
return 0;
}
static inline int
_avp_cmp_ether_addr(struct rte_ether_addr *a, struct rte_ether_addr *b)
{
uint16_t *_a = (uint16_t *)&a->addr_bytes[0];
uint16_t *_b = (uint16_t *)&b->addr_bytes[0];
return (_a[0] ^ _b[0]) | (_a[1] ^ _b[1]) | (_a[2] ^ _b[2]);
}
static inline int
_avp_mac_filter(struct avp_dev *avp, struct rte_mbuf *m)
{
struct rte_ether_hdr *eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
if (likely(_avp_cmp_ether_addr(&avp->ethaddr, &eth->d_addr) == 0)) {
/* allow all packets destined to our address */
return 0;
}
if (likely(rte_is_broadcast_ether_addr(&eth->d_addr))) {
/* allow all broadcast packets */
return 0;
}
if (likely(rte_is_multicast_ether_addr(&eth->d_addr))) {
/* allow all multicast packets */
return 0;
}
if (avp->flags & AVP_F_PROMISC) {
/* allow all packets when in promiscuous mode */
return 0;
}
return -1;
}
#ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
static inline void
__avp_dev_buffer_sanity_check(struct avp_dev *avp, struct rte_avp_desc *buf)
{
struct rte_avp_desc *first_buf;
struct rte_avp_desc *pkt_buf;
unsigned int pkt_len;
unsigned int nb_segs;
void *pkt_data;
unsigned int i;
first_buf = avp_dev_translate_buffer(avp, buf);
i = 0;
pkt_len = 0;
nb_segs = first_buf->nb_segs;
do {
/* Adjust pointers for guest addressing */
pkt_buf = avp_dev_translate_buffer(avp, buf);
if (pkt_buf == NULL)
rte_panic("bad buffer: segment %u has an invalid address %p\n",
i, buf);
pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
if (pkt_data == NULL)
rte_panic("bad buffer: segment %u has a NULL data pointer\n",
i);
if (pkt_buf->data_len == 0)
rte_panic("bad buffer: segment %u has 0 data length\n",
i);
pkt_len += pkt_buf->data_len;
nb_segs--;
i++;
} while (nb_segs && (buf = pkt_buf->next) != NULL);
if (nb_segs != 0)
rte_panic("bad buffer: expected %u segments found %u\n",
first_buf->nb_segs, (first_buf->nb_segs - nb_segs));
if (pkt_len != first_buf->pkt_len)
rte_panic("bad buffer: expected length %u found %u\n",
first_buf->pkt_len, pkt_len);
}
#define avp_dev_buffer_sanity_check(a, b) \
__avp_dev_buffer_sanity_check((a), (b))
#else /* RTE_LIBRTE_AVP_DEBUG_BUFFERS */
#define avp_dev_buffer_sanity_check(a, b) do {} while (0)
#endif
/*
* Copy a host buffer chain to a set of mbufs. This function assumes that
* there exactly the required number of mbufs to copy all source bytes.
*/
static inline struct rte_mbuf *
avp_dev_copy_from_buffers(struct avp_dev *avp,
struct rte_avp_desc *buf,
struct rte_mbuf **mbufs,
unsigned int count)
{
struct rte_mbuf *m_previous = NULL;
struct rte_avp_desc *pkt_buf;
unsigned int total_length = 0;
unsigned int copy_length;
unsigned int src_offset;
struct rte_mbuf *m;
uint16_t ol_flags;
uint16_t vlan_tci;
void *pkt_data;
unsigned int i;
avp_dev_buffer_sanity_check(avp, buf);
/* setup the first source buffer */
pkt_buf = avp_dev_translate_buffer(avp, buf);
pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
total_length = pkt_buf->pkt_len;
src_offset = 0;
if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
ol_flags = PKT_RX_VLAN;
vlan_tci = pkt_buf->vlan_tci;
} else {
ol_flags = 0;
vlan_tci = 0;
}
for (i = 0; (i < count) && (buf != NULL); i++) {
/* fill each destination buffer */
m = mbufs[i];
if (m_previous != NULL)
m_previous->next = m;
m_previous = m;
do {
/*
* Copy as many source buffers as will fit in the
* destination buffer.
*/
copy_length = RTE_MIN((avp->guest_mbuf_size -
rte_pktmbuf_data_len(m)),
(pkt_buf->data_len -
src_offset));
rte_memcpy(RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
rte_pktmbuf_data_len(m)),
RTE_PTR_ADD(pkt_data, src_offset),
copy_length);
rte_pktmbuf_data_len(m) += copy_length;
src_offset += copy_length;
if (likely(src_offset == pkt_buf->data_len)) {
/* need a new source buffer */
buf = pkt_buf->next;
if (buf != NULL) {
pkt_buf = avp_dev_translate_buffer(
avp, buf);
pkt_data = avp_dev_translate_buffer(
avp, pkt_buf->data);
src_offset = 0;
}
}
if (unlikely(rte_pktmbuf_data_len(m) ==
avp->guest_mbuf_size)) {
/* need a new destination mbuf */
break;
}
} while (buf != NULL);
}
m = mbufs[0];
m->ol_flags = ol_flags;
m->nb_segs = count;
rte_pktmbuf_pkt_len(m) = total_length;
m->vlan_tci = vlan_tci;
__rte_mbuf_sanity_check(m, 1);
return m;
}
static uint16_t
avp_recv_scattered_pkts(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct avp_queue *rxq = (struct avp_queue *)rx_queue;
struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
struct rte_mbuf *mbufs[RTE_AVP_MAX_MBUF_SEGMENTS];
struct avp_dev *avp = rxq->avp;
struct rte_avp_desc *pkt_buf;
struct rte_avp_fifo *free_q;
struct rte_avp_fifo *rx_q;
struct rte_avp_desc *buf;
unsigned int count, avail, n;
unsigned int guest_mbuf_size;
struct rte_mbuf *m;
unsigned int required;
unsigned int buf_len;
unsigned int port_id;
unsigned int i;
if (unlikely(avp->flags & AVP_F_DETACHED)) {
/* VM live migration in progress */
return 0;
}
guest_mbuf_size = avp->guest_mbuf_size;
port_id = avp->port_id;
rx_q = avp->rx_q[rxq->queue_id];
free_q = avp->free_q[rxq->queue_id];
/* setup next queue to service */
rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
(rxq->queue_id + 1) : rxq->queue_base;
/* determine how many slots are available in the free queue */
count = avp_fifo_free_count(free_q);
/* determine how many packets are available in the rx queue */
avail = avp_fifo_count(rx_q);
/* determine how many packets can be received */
count = RTE_MIN(count, avail);
count = RTE_MIN(count, nb_pkts);
count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);
if (unlikely(count == 0)) {
/* no free buffers, or no buffers on the rx queue */
return 0;
}
/* retrieve pending packets */
n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
count, rx_q);
count = 0;
for (i = 0; i < n; i++) {
/* prefetch next entry while processing current one */
if (i + 1 < n) {
pkt_buf = avp_dev_translate_buffer(avp,
avp_bufs[i + 1]);
rte_prefetch0(pkt_buf);
}
buf = avp_bufs[i];
/* Peek into the first buffer to determine the total length */
pkt_buf = avp_dev_translate_buffer(avp, buf);
buf_len = pkt_buf->pkt_len;
/* Allocate enough mbufs to receive the entire packet */
required = (buf_len + guest_mbuf_size - 1) / guest_mbuf_size;
if (rte_pktmbuf_alloc_bulk(avp->pool, mbufs, required)) {
rxq->dev_data->rx_mbuf_alloc_failed++;
continue;
}
/* Copy the data from the buffers to our mbufs */
m = avp_dev_copy_from_buffers(avp, buf, mbufs, required);
/* finalize mbuf */
m->port = port_id;
if (_avp_mac_filter(avp, m) != 0) {
/* silently discard packets not destined to our MAC */
rte_pktmbuf_free(m);
continue;
}
/* return new mbuf to caller */
rx_pkts[count++] = m;
rxq->bytes += buf_len;
}
rxq->packets += count;
/* return the buffers to the free queue */
avp_fifo_put(free_q, (void **)&avp_bufs[0], n);
return count;
}
static uint16_t
avp_recv_pkts(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct avp_queue *rxq = (struct avp_queue *)rx_queue;
struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
struct avp_dev *avp = rxq->avp;
struct rte_avp_desc *pkt_buf;
struct rte_avp_fifo *free_q;
struct rte_avp_fifo *rx_q;
unsigned int count, avail, n;
unsigned int pkt_len;
struct rte_mbuf *m;
char *pkt_data;
unsigned int i;
if (unlikely(avp->flags & AVP_F_DETACHED)) {
/* VM live migration in progress */
return 0;
}
rx_q = avp->rx_q[rxq->queue_id];
free_q = avp->free_q[rxq->queue_id];
/* setup next queue to service */
rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
(rxq->queue_id + 1) : rxq->queue_base;
/* determine how many slots are available in the free queue */
count = avp_fifo_free_count(free_q);
/* determine how many packets are available in the rx queue */
avail = avp_fifo_count(rx_q);
/* determine how many packets can be received */
count = RTE_MIN(count, avail);
count = RTE_MIN(count, nb_pkts);
count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);
if (unlikely(count == 0)) {
/* no free buffers, or no buffers on the rx queue */
return 0;
}
/* retrieve pending packets */
n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
count, rx_q);
count = 0;
for (i = 0; i < n; i++) {
/* prefetch next entry while processing current one */
if (i < n - 1) {
pkt_buf = avp_dev_translate_buffer(avp,
avp_bufs[i + 1]);
rte_prefetch0(pkt_buf);
}
/* Adjust host pointers for guest addressing */
pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
pkt_len = pkt_buf->pkt_len;
if (unlikely((pkt_len > avp->guest_mbuf_size) ||
(pkt_buf->nb_segs > 1))) {
/*
* application should be using the scattered receive
* function
*/
rxq->errors++;
continue;
}
/* process each packet to be transmitted */
m = rte_pktmbuf_alloc(avp->pool);
if (unlikely(m == NULL)) {
rxq->dev_data->rx_mbuf_alloc_failed++;
continue;
}
/* copy data out of the host buffer to our buffer */
m->data_off = RTE_PKTMBUF_HEADROOM;
rte_memcpy(rte_pktmbuf_mtod(m, void *), pkt_data, pkt_len);
/* initialize the local mbuf */
rte_pktmbuf_data_len(m) = pkt_len;
rte_pktmbuf_pkt_len(m) = pkt_len;
m->port = avp->port_id;
if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
m->ol_flags = PKT_RX_VLAN;
m->vlan_tci = pkt_buf->vlan_tci;
}
if (_avp_mac_filter(avp, m) != 0) {
/* silently discard packets not destined to our MAC */
rte_pktmbuf_free(m);
continue;
}
/* return new mbuf to caller */
rx_pkts[count++] = m;
rxq->bytes += pkt_len;
}
rxq->packets += count;
/* return the buffers to the free queue */
avp_fifo_put(free_q, (void **)&avp_bufs[0], n);
return count;
}
/*
* Copy a chained mbuf to a set of host buffers. This function assumes that
* there are sufficient destination buffers to contain the entire source
* packet.
*/
static inline uint16_t
avp_dev_copy_to_buffers(struct avp_dev *avp,
struct rte_mbuf *mbuf,
struct rte_avp_desc **buffers,
unsigned int count)
{
struct rte_avp_desc *previous_buf = NULL;
struct rte_avp_desc *first_buf = NULL;
struct rte_avp_desc *pkt_buf;
struct rte_avp_desc *buf;
size_t total_length;
struct rte_mbuf *m;
size_t copy_length;
size_t src_offset;
char *pkt_data;
unsigned int i;
__rte_mbuf_sanity_check(mbuf, 1);
m = mbuf;
src_offset = 0;
total_length = rte_pktmbuf_pkt_len(m);
for (i = 0; (i < count) && (m != NULL); i++) {
/* fill each destination buffer */
buf = buffers[i];
if (i < count - 1) {
/* prefetch next entry while processing this one */
pkt_buf = avp_dev_translate_buffer(avp, buffers[i + 1]);
rte_prefetch0(pkt_buf);
}
/* Adjust pointers for guest addressing */
pkt_buf = avp_dev_translate_buffer(avp, buf);
pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
/* setup the buffer chain */
if (previous_buf != NULL)
previous_buf->next = buf;
else
first_buf = pkt_buf;
previous_buf = pkt_buf;
do {
/*
* copy as many source mbuf segments as will fit in the
* destination buffer.
*/
copy_length = RTE_MIN((avp->host_mbuf_size -
pkt_buf->data_len),
(rte_pktmbuf_data_len(m) -
src_offset));
rte_memcpy(RTE_PTR_ADD(pkt_data, pkt_buf->data_len),
RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
src_offset),
copy_length);
pkt_buf->data_len += copy_length;
src_offset += copy_length;
if (likely(src_offset == rte_pktmbuf_data_len(m))) {
/* need a new source buffer */
m = m->next;
src_offset = 0;
}
if (unlikely(pkt_buf->data_len ==
avp->host_mbuf_size)) {
/* need a new destination buffer */
break;
}
} while (m != NULL);
}
first_buf->nb_segs = count;
first_buf->pkt_len = total_length;
if (mbuf->ol_flags & PKT_TX_VLAN_PKT) {
first_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
first_buf->vlan_tci = mbuf->vlan_tci;
}
avp_dev_buffer_sanity_check(avp, buffers[0]);
return total_length;
}
static uint16_t
avp_xmit_scattered_pkts(void *tx_queue,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct rte_avp_desc *avp_bufs[(AVP_MAX_TX_BURST *
RTE_AVP_MAX_MBUF_SEGMENTS)] = {};
struct avp_queue *txq = (struct avp_queue *)tx_queue;
struct rte_avp_desc *tx_bufs[AVP_MAX_TX_BURST];
struct avp_dev *avp = txq->avp;
struct rte_avp_fifo *alloc_q;
struct rte_avp_fifo *tx_q;
unsigned int count, avail, n;
unsigned int orig_nb_pkts;
struct rte_mbuf *m;
unsigned int required;
unsigned int segments;
unsigned int tx_bytes;
unsigned int i;
orig_nb_pkts = nb_pkts;
if (unlikely(avp->flags & AVP_F_DETACHED)) {
/* VM live migration in progress */
/* TODO ... buffer for X packets then drop? */
txq->errors += nb_pkts;
return 0;
}
tx_q = avp->tx_q[txq->queue_id];
alloc_q = avp->alloc_q[txq->queue_id];
/* limit the number of transmitted packets to the max burst size */
if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
nb_pkts = AVP_MAX_TX_BURST;
/* determine how many buffers are available to copy into */
avail = avp_fifo_count(alloc_q);
if (unlikely(avail > (AVP_MAX_TX_BURST *
RTE_AVP_MAX_MBUF_SEGMENTS)))
avail = AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS;
/* determine how many slots are available in the transmit queue */
count = avp_fifo_free_count(tx_q);
/* determine how many packets can be sent */
nb_pkts = RTE_MIN(count, nb_pkts);
/* determine how many packets will fit in the available buffers */
count = 0;
segments = 0;
for (i = 0; i < nb_pkts; i++) {
m = tx_pkts[i];
if (likely(i < (unsigned int)nb_pkts - 1)) {
/* prefetch next entry while processing this one */
rte_prefetch0(tx_pkts[i + 1]);
}
required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
avp->host_mbuf_size;
if (unlikely((required == 0) ||
(required > RTE_AVP_MAX_MBUF_SEGMENTS)))
break;
else if (unlikely(required + segments > avail))
break;
segments += required;
count++;
}
nb_pkts = count;
if (unlikely(nb_pkts == 0)) {
/* no available buffers, or no space on the tx queue */
txq->errors += orig_nb_pkts;
return 0;
}
PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
nb_pkts, tx_q);
/* retrieve sufficient send buffers */
n = avp_fifo_get(alloc_q, (void **)&avp_bufs, segments);
if (unlikely(n != segments)) {
PMD_TX_LOG(DEBUG, "Failed to allocate buffers "
"n=%u, segments=%u, orig=%u\n",
n, segments, orig_nb_pkts);
txq->errors += orig_nb_pkts;
return 0;
}
tx_bytes = 0;
count = 0;
for (i = 0; i < nb_pkts; i++) {
/* process each packet to be transmitted */
m = tx_pkts[i];
/* determine how many buffers are required for this packet */
required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
avp->host_mbuf_size;
tx_bytes += avp_dev_copy_to_buffers(avp, m,
&avp_bufs[count], required);
tx_bufs[i] = avp_bufs[count];
count += required;
/* free the original mbuf */
rte_pktmbuf_free(m);
}
txq->packets += nb_pkts;
txq->bytes += tx_bytes;
#ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
for (i = 0; i < nb_pkts; i++)
avp_dev_buffer_sanity_check(avp, tx_bufs[i]);
#endif
/* send the packets */
n = avp_fifo_put(tx_q, (void **)&tx_bufs[0], nb_pkts);
if (unlikely(n != orig_nb_pkts))
txq->errors += (orig_nb_pkts - n);
return n;
}
static uint16_t
avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct avp_queue *txq = (struct avp_queue *)tx_queue;
struct rte_avp_desc *avp_bufs[AVP_MAX_TX_BURST];
struct avp_dev *avp = txq->avp;
struct rte_avp_desc *pkt_buf;
struct rte_avp_fifo *alloc_q;
struct rte_avp_fifo *tx_q;
unsigned int count, avail, n;
struct rte_mbuf *m;
unsigned int pkt_len;
unsigned int tx_bytes;
char *pkt_data;
unsigned int i;
if (unlikely(avp->flags & AVP_F_DETACHED)) {
/* VM live migration in progress */
/* TODO ... buffer for X packets then drop?! */
txq->errors++;
return 0;
}
tx_q = avp->tx_q[txq->queue_id];
alloc_q = avp->alloc_q[txq->queue_id];
/* limit the number of transmitted packets to the max burst size */
if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
nb_pkts = AVP_MAX_TX_BURST;
/* determine how many buffers are available to copy into */
avail = avp_fifo_count(alloc_q);
/* determine how many slots are available in the transmit queue */
count = avp_fifo_free_count(tx_q);
/* determine how many packets can be sent */
count = RTE_MIN(count, avail);
count = RTE_MIN(count, nb_pkts);
if (unlikely(count == 0)) {
/* no available buffers, or no space on the tx queue */
txq->errors += nb_pkts;
return 0;
}
PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
count, tx_q);
/* retrieve sufficient send buffers */
n = avp_fifo_get(alloc_q, (void **)&avp_bufs, count);
if (unlikely(n != count)) {
txq->errors++;
return 0;
}
tx_bytes = 0;
for (i = 0; i < count; i++) {
/* prefetch next entry while processing the current one */
if (i < count - 1) {
pkt_buf = avp_dev_translate_buffer(avp,
avp_bufs[i + 1]);
rte_prefetch0(pkt_buf);
}
/* process each packet to be transmitted */
m = tx_pkts[i];
/* Adjust pointers for guest addressing */
pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
pkt_len = rte_pktmbuf_pkt_len(m);
if (unlikely((pkt_len > avp->guest_mbuf_size) ||
(pkt_len > avp->host_mbuf_size))) {
/*
* application should be using the scattered transmit
* function; send it truncated to avoid the performance
* hit of having to manage returning the already
* allocated buffer to the free list. This should not
* happen since the application should have set the
* max_rx_pkt_len based on its MTU and it should be
* policing its own packet sizes.
*/
txq->errors++;
pkt_len = RTE_MIN(avp->guest_mbuf_size,
avp->host_mbuf_size);
}
/* copy data out of our mbuf and into the AVP buffer */
rte_memcpy(pkt_data, rte_pktmbuf_mtod(m, void *), pkt_len);
pkt_buf->pkt_len = pkt_len;
pkt_buf->data_len = pkt_len;
pkt_buf->nb_segs = 1;
pkt_buf->next = NULL;
if (m->ol_flags & PKT_TX_VLAN_PKT) {
pkt_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
pkt_buf->vlan_tci = m->vlan_tci;
}
tx_bytes += pkt_len;
/* free the original mbuf */
rte_pktmbuf_free(m);
}
txq->packets += count;
txq->bytes += tx_bytes;
/* send the packets */
n = avp_fifo_put(tx_q, (void **)&avp_bufs[0], count);
return n;
}
static void
avp_dev_rx_queue_release(void *rx_queue)
{
struct avp_queue *rxq = (struct avp_queue *)rx_queue;
struct avp_dev *avp = rxq->avp;
struct rte_eth_dev_data *data = avp->dev_data;
unsigned int i;
for (i = 0; i < avp->num_rx_queues; i++) {
if (data->rx_queues[i] == rxq) {
rte_free(data->rx_queues[i]);
data->rx_queues[i] = NULL;
}
}
}
static void
avp_dev_rx_queue_release_all(struct rte_eth_dev *eth_dev)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct rte_eth_dev_data *data = avp->dev_data;
unsigned int i;
for (i = 0; i < avp->num_rx_queues; i++) {
if (data->rx_queues[i]) {
rte_free(data->rx_queues[i]);
data->rx_queues[i] = NULL;
}
}
}
static void
avp_dev_tx_queue_release(void *tx_queue)
{
struct avp_queue *txq = (struct avp_queue *)tx_queue;
struct avp_dev *avp = txq->avp;
struct rte_eth_dev_data *data = avp->dev_data;
unsigned int i;
for (i = 0; i < avp->num_tx_queues; i++) {
if (data->tx_queues[i] == txq) {
rte_free(data->tx_queues[i]);
data->tx_queues[i] = NULL;
}
}
}
static void
avp_dev_tx_queue_release_all(struct rte_eth_dev *eth_dev)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct rte_eth_dev_data *data = avp->dev_data;
unsigned int i;
for (i = 0; i < avp->num_tx_queues; i++) {
if (data->tx_queues[i]) {
rte_free(data->tx_queues[i]);
data->tx_queues[i] = NULL;
}
}
}
static int
avp_dev_configure(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct rte_avp_device_info *host_info;
struct rte_avp_device_config config;
int mask = 0;
void *addr;
int ret;
rte_spinlock_lock(&avp->lock);
if (avp->flags & AVP_F_DETACHED) {
PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
ret = -ENOTSUP;
goto unlock;
}
addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
host_info = (struct rte_avp_device_info *)addr;
/* Setup required number of queues */
_avp_set_queue_counts(eth_dev);
mask = (ETH_VLAN_STRIP_MASK |
ETH_VLAN_FILTER_MASK |
ETH_VLAN_EXTEND_MASK);
ret = avp_vlan_offload_set(eth_dev, mask);
if (ret < 0) {
PMD_DRV_LOG(ERR, "VLAN offload set failed by host, ret=%d\n",
ret);
goto unlock;
}
/* update device config */
memset(&config, 0, sizeof(config));
config.device_id = host_info->device_id;
config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
config.driver_version = AVP_DPDK_DRIVER_VERSION;
config.features = avp->features;
config.num_tx_queues = avp->num_tx_queues;
config.num_rx_queues = avp->num_rx_queues;
ret = avp_dev_ctrl_set_config(eth_dev, &config);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
ret);
goto unlock;
}
avp->flags |= AVP_F_CONFIGURED;
ret = 0;
unlock:
rte_spinlock_unlock(&avp->lock);
return ret;
}
static int
avp_dev_start(struct rte_eth_dev *eth_dev)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
int ret;
rte_spinlock_lock(&avp->lock);
if (avp->flags & AVP_F_DETACHED) {
PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
ret = -ENOTSUP;
goto unlock;
}
/* update link state */
ret = avp_dev_ctrl_set_link_state(eth_dev, 1);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
ret);
goto unlock;
}
/* remember current link state */
avp->flags |= AVP_F_LINKUP;
ret = 0;
unlock:
rte_spinlock_unlock(&avp->lock);
return ret;
}
static void
avp_dev_stop(struct rte_eth_dev *eth_dev)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
int ret;
rte_spinlock_lock(&avp->lock);
if (avp->flags & AVP_F_DETACHED) {
PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
goto unlock;
}
/* remember current link state */
avp->flags &= ~AVP_F_LINKUP;
/* update link state */
ret = avp_dev_ctrl_set_link_state(eth_dev, 0);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
ret);
}
unlock:
rte_spinlock_unlock(&avp->lock);
}
static void
avp_dev_close(struct rte_eth_dev *eth_dev)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
int ret;
rte_spinlock_lock(&avp->lock);
if (avp->flags & AVP_F_DETACHED) {
PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
goto unlock;
}
/* remember current link state */
avp->flags &= ~AVP_F_LINKUP;
avp->flags &= ~AVP_F_CONFIGURED;
ret = avp_dev_disable_interrupts(eth_dev);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to disable interrupts\n");
/* continue */
}
/* update device state */
ret = avp_dev_ctrl_shutdown(eth_dev);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Device shutdown failed by host, ret=%d\n",
ret);
/* continue */
}
/* release dynamic storage for rx/tx queues */
avp_dev_rx_queue_release_all(eth_dev);
avp_dev_tx_queue_release_all(eth_dev);
unlock:
rte_spinlock_unlock(&avp->lock);
}
static int
avp_dev_link_update(struct rte_eth_dev *eth_dev,
__rte_unused int wait_to_complete)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct rte_eth_link *link = &eth_dev->data->dev_link;
link->link_speed = ETH_SPEED_NUM_10G;
link->link_duplex = ETH_LINK_FULL_DUPLEX;
link->link_status = !!(avp->flags & AVP_F_LINKUP);
return -1;
}
static int
avp_dev_promiscuous_enable(struct rte_eth_dev *eth_dev)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
rte_spinlock_lock(&avp->lock);
if ((avp->flags & AVP_F_PROMISC) == 0) {
avp->flags |= AVP_F_PROMISC;
PMD_DRV_LOG(DEBUG, "Promiscuous mode enabled on %u\n",
eth_dev->data->port_id);
}
rte_spinlock_unlock(&avp->lock);
return 0;
}
static int
avp_dev_promiscuous_disable(struct rte_eth_dev *eth_dev)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
rte_spinlock_lock(&avp->lock);
if ((avp->flags & AVP_F_PROMISC) != 0) {
avp->flags &= ~AVP_F_PROMISC;
PMD_DRV_LOG(DEBUG, "Promiscuous mode disabled on %u\n",
eth_dev->data->port_id);
}
rte_spinlock_unlock(&avp->lock);
return 0;
}
static int
avp_dev_info_get(struct rte_eth_dev *eth_dev,
struct rte_eth_dev_info *dev_info)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
dev_info->max_rx_queues = avp->max_rx_queues;
dev_info->max_tx_queues = avp->max_tx_queues;
dev_info->min_rx_bufsize = AVP_MIN_RX_BUFSIZE;
dev_info->max_rx_pktlen = avp->max_rx_pkt_len;
dev_info->max_mac_addrs = AVP_MAX_MAC_ADDRS;
if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP;
dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT;
}
return 0;
}
static int
avp_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct rte_eth_conf *dev_conf = &eth_dev->data->dev_conf;
uint64_t offloads = dev_conf->rxmode.offloads;
if (mask & ETH_VLAN_STRIP_MASK) {
if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
if (offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
avp->features |= RTE_AVP_FEATURE_VLAN_OFFLOAD;
else
avp->features &= ~RTE_AVP_FEATURE_VLAN_OFFLOAD;
} else {
PMD_DRV_LOG(ERR, "VLAN strip offload not supported\n");
}
}
if (mask & ETH_VLAN_FILTER_MASK) {
if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
PMD_DRV_LOG(ERR, "VLAN filter offload not supported\n");
}
if (mask & ETH_VLAN_EXTEND_MASK) {
if (offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
PMD_DRV_LOG(ERR, "VLAN extend offload not supported\n");
}
return 0;
}
static int
avp_dev_stats_get(struct rte_eth_dev *eth_dev, struct rte_eth_stats *stats)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
unsigned int i;
for (i = 0; i < avp->num_rx_queues; i++) {
struct avp_queue *rxq = avp->dev_data->rx_queues[i];
if (rxq) {
stats->ipackets += rxq->packets;
stats->ibytes += rxq->bytes;
stats->ierrors += rxq->errors;
stats->q_ipackets[i] += rxq->packets;
stats->q_ibytes[i] += rxq->bytes;
stats->q_errors[i] += rxq->errors;
}
}
for (i = 0; i < avp->num_tx_queues; i++) {
struct avp_queue *txq = avp->dev_data->tx_queues[i];
if (txq) {
stats->opackets += txq->packets;
stats->obytes += txq->bytes;
stats->oerrors += txq->errors;
stats->q_opackets[i] += txq->packets;
stats->q_obytes[i] += txq->bytes;
}
}
return 0;
}
static int
avp_dev_stats_reset(struct rte_eth_dev *eth_dev)
{
struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
unsigned int i;
for (i = 0; i < avp->num_rx_queues; i++) {
struct avp_queue *rxq = avp->dev_data->rx_queues[i];
if (rxq) {
rxq->bytes = 0;
rxq->packets = 0;
rxq->errors = 0;
}
}
for (i = 0; i < avp->num_tx_queues; i++) {
struct avp_queue *txq = avp->dev_data->tx_queues[i];
if (txq) {
txq->bytes = 0;
txq->packets = 0;
txq->errors = 0;
}
}
return 0;
}
RTE_PMD_REGISTER_PCI(net_avp, rte_avp_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_avp, pci_id_avp_map);
RTE_INIT(avp_init_log)
{
avp_logtype_driver = rte_log_register("pmd.net.avp.driver");
if (avp_logtype_driver >= 0)
rte_log_set_level(avp_logtype_driver, RTE_LOG_NOTICE);
}