f-stack/dpdk/drivers/crypto/octeontx/otx_cryptodev_ops.c

948 lines
23 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Cavium, Inc
*/
#include <rte_alarm.h>
#include <rte_bus_pci.h>
#include <rte_cryptodev.h>
#include <rte_cryptodev_pmd.h>
#include <rte_errno.h>
#include <rte_malloc.h>
#include <rte_mempool.h>
#include "otx_cryptodev.h"
#include "otx_cryptodev_capabilities.h"
#include "otx_cryptodev_hw_access.h"
#include "otx_cryptodev_mbox.h"
#include "otx_cryptodev_ops.h"
#include "cpt_pmd_logs.h"
#include "cpt_ucode.h"
#include "cpt_ucode_asym.h"
/* Forward declarations */
static int
otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id);
/* Alarm routines */
static void
otx_cpt_alarm_cb(void *arg)
{
struct cpt_vf *cptvf = arg;
otx_cpt_poll_misc(cptvf);
rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
otx_cpt_alarm_cb, cptvf);
}
static int
otx_cpt_periodic_alarm_start(void *arg)
{
return rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
otx_cpt_alarm_cb, arg);
}
static int
otx_cpt_periodic_alarm_stop(void *arg)
{
return rte_eal_alarm_cancel(otx_cpt_alarm_cb, arg);
}
/* PMD ops */
static int
otx_cpt_dev_config(struct rte_cryptodev *dev __rte_unused,
struct rte_cryptodev_config *config __rte_unused)
{
CPT_PMD_INIT_FUNC_TRACE();
return 0;
}
static int
otx_cpt_dev_start(struct rte_cryptodev *c_dev)
{
void *cptvf = c_dev->data->dev_private;
CPT_PMD_INIT_FUNC_TRACE();
return otx_cpt_start_device(cptvf);
}
static void
otx_cpt_dev_stop(struct rte_cryptodev *c_dev)
{
void *cptvf = c_dev->data->dev_private;
CPT_PMD_INIT_FUNC_TRACE();
otx_cpt_stop_device(cptvf);
}
static int
otx_cpt_dev_close(struct rte_cryptodev *c_dev)
{
void *cptvf = c_dev->data->dev_private;
int i, ret;
CPT_PMD_INIT_FUNC_TRACE();
for (i = 0; i < c_dev->data->nb_queue_pairs; i++) {
ret = otx_cpt_que_pair_release(c_dev, i);
if (ret)
return ret;
}
otx_cpt_periodic_alarm_stop(cptvf);
otx_cpt_deinit_device(cptvf);
return 0;
}
static void
otx_cpt_dev_info_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *info)
{
CPT_PMD_INIT_FUNC_TRACE();
if (info != NULL) {
info->max_nb_queue_pairs = CPT_NUM_QS_PER_VF;
info->feature_flags = dev->feature_flags;
info->capabilities = otx_get_capabilities(info->feature_flags);
info->sym.max_nb_sessions = 0;
info->driver_id = otx_cryptodev_driver_id;
info->min_mbuf_headroom_req = OTX_CPT_MIN_HEADROOM_REQ;
info->min_mbuf_tailroom_req = OTX_CPT_MIN_TAILROOM_REQ;
}
}
static void
otx_cpt_stats_get(struct rte_cryptodev *dev __rte_unused,
struct rte_cryptodev_stats *stats __rte_unused)
{
CPT_PMD_INIT_FUNC_TRACE();
}
static void
otx_cpt_stats_reset(struct rte_cryptodev *dev __rte_unused)
{
CPT_PMD_INIT_FUNC_TRACE();
}
static int
otx_cpt_que_pair_setup(struct rte_cryptodev *dev,
uint16_t que_pair_id,
const struct rte_cryptodev_qp_conf *qp_conf,
int socket_id __rte_unused)
{
struct cpt_instance *instance = NULL;
struct rte_pci_device *pci_dev;
int ret = -1;
CPT_PMD_INIT_FUNC_TRACE();
if (dev->data->queue_pairs[que_pair_id] != NULL) {
ret = otx_cpt_que_pair_release(dev, que_pair_id);
if (ret)
return ret;
}
if (qp_conf->nb_descriptors > DEFAULT_CMD_QLEN) {
CPT_LOG_INFO("Number of descriptors too big %d, using default "
"queue length of %d", qp_conf->nb_descriptors,
DEFAULT_CMD_QLEN);
}
pci_dev = RTE_DEV_TO_PCI(dev->device);
if (pci_dev->mem_resource[0].addr == NULL) {
CPT_LOG_ERR("PCI mem address null");
return -EIO;
}
ret = otx_cpt_get_resource(dev, 0, &instance, que_pair_id);
if (ret != 0 || instance == NULL) {
CPT_LOG_ERR("Error getting instance handle from device %s : "
"ret = %d", dev->data->name, ret);
return ret;
}
instance->queue_id = que_pair_id;
instance->sess_mp = qp_conf->mp_session;
instance->sess_mp_priv = qp_conf->mp_session_private;
dev->data->queue_pairs[que_pair_id] = instance;
return 0;
}
static int
otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id)
{
struct cpt_instance *instance = dev->data->queue_pairs[que_pair_id];
int ret;
CPT_PMD_INIT_FUNC_TRACE();
ret = otx_cpt_put_resource(instance);
if (ret != 0) {
CPT_LOG_ERR("Error putting instance handle of device %s : "
"ret = %d", dev->data->name, ret);
return ret;
}
dev->data->queue_pairs[que_pair_id] = NULL;
return 0;
}
static unsigned int
otx_cpt_get_session_size(struct rte_cryptodev *dev __rte_unused)
{
return cpt_get_session_size();
}
static void
otx_cpt_session_init(void *sym_sess, uint8_t driver_id)
{
struct rte_cryptodev_sym_session *sess = sym_sess;
struct cpt_sess_misc *cpt_sess =
(struct cpt_sess_misc *) get_sym_session_private_data(sess, driver_id);
CPT_PMD_INIT_FUNC_TRACE();
cpt_sess->ctx_dma_addr = rte_mempool_virt2iova(cpt_sess) +
sizeof(struct cpt_sess_misc);
}
static int
otx_cpt_session_cfg(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform,
struct rte_cryptodev_sym_session *sess,
struct rte_mempool *mempool)
{
struct rte_crypto_sym_xform *chain;
void *sess_private_data = NULL;
CPT_PMD_INIT_FUNC_TRACE();
if (cpt_is_algo_supported(xform))
goto err;
if (unlikely(sess == NULL)) {
CPT_LOG_ERR("invalid session struct");
return -EINVAL;
}
if (rte_mempool_get(mempool, &sess_private_data)) {
CPT_LOG_ERR("Could not allocate sess_private_data");
return -ENOMEM;
}
chain = xform;
while (chain) {
switch (chain->type) {
case RTE_CRYPTO_SYM_XFORM_AEAD:
if (fill_sess_aead(chain, sess_private_data))
goto err;
break;
case RTE_CRYPTO_SYM_XFORM_CIPHER:
if (fill_sess_cipher(chain, sess_private_data))
goto err;
break;
case RTE_CRYPTO_SYM_XFORM_AUTH:
if (chain->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
if (fill_sess_gmac(chain, sess_private_data))
goto err;
} else {
if (fill_sess_auth(chain, sess_private_data))
goto err;
}
break;
default:
CPT_LOG_ERR("Invalid crypto xform type");
break;
}
chain = chain->next;
}
set_sym_session_private_data(sess, dev->driver_id, sess_private_data);
otx_cpt_session_init(sess, dev->driver_id);
return 0;
err:
if (sess_private_data)
rte_mempool_put(mempool, sess_private_data);
return -EPERM;
}
static void
otx_cpt_session_clear(struct rte_cryptodev *dev,
struct rte_cryptodev_sym_session *sess)
{
void *sess_priv = get_sym_session_private_data(sess, dev->driver_id);
CPT_PMD_INIT_FUNC_TRACE();
if (sess_priv) {
memset(sess_priv, 0, otx_cpt_get_session_size(dev));
struct rte_mempool *sess_mp = rte_mempool_from_obj(sess_priv);
set_sym_session_private_data(sess, dev->driver_id, NULL);
rte_mempool_put(sess_mp, sess_priv);
}
}
static unsigned int
otx_cpt_asym_session_size_get(struct rte_cryptodev *dev __rte_unused)
{
return sizeof(struct cpt_asym_sess_misc);
}
static int
otx_cpt_asym_session_cfg(struct rte_cryptodev *dev,
struct rte_crypto_asym_xform *xform __rte_unused,
struct rte_cryptodev_asym_session *sess,
struct rte_mempool *pool)
{
struct cpt_asym_sess_misc *priv;
int ret;
CPT_PMD_INIT_FUNC_TRACE();
if (rte_mempool_get(pool, (void **)&priv)) {
CPT_LOG_ERR("Could not allocate session private data");
return -ENOMEM;
}
memset(priv, 0, sizeof(struct cpt_asym_sess_misc));
ret = cpt_fill_asym_session_parameters(priv, xform);
if (ret) {
CPT_LOG_ERR("Could not configure session parameters");
/* Return session to mempool */
rte_mempool_put(pool, priv);
return ret;
}
set_asym_session_private_data(sess, dev->driver_id, priv);
return 0;
}
static void
otx_cpt_asym_session_clear(struct rte_cryptodev *dev,
struct rte_cryptodev_asym_session *sess)
{
struct cpt_asym_sess_misc *priv;
struct rte_mempool *sess_mp;
CPT_PMD_INIT_FUNC_TRACE();
priv = get_asym_session_private_data(sess, dev->driver_id);
if (priv == NULL)
return;
/* Free resources allocated during session configure */
cpt_free_asym_session_parameters(priv);
memset(priv, 0, otx_cpt_asym_session_size_get(dev));
sess_mp = rte_mempool_from_obj(priv);
set_asym_session_private_data(sess, dev->driver_id, NULL);
rte_mempool_put(sess_mp, priv);
}
static __rte_always_inline int32_t __hot
otx_cpt_request_enqueue(struct cpt_instance *instance,
struct pending_queue *pqueue,
void *req)
{
struct cpt_request_info *user_req = (struct cpt_request_info *)req;
if (unlikely(pqueue->pending_count >= DEFAULT_CMD_QLEN))
return -EAGAIN;
fill_cpt_inst(instance, req);
CPT_LOG_DP_DEBUG("req: %p op: %p ", req, user_req->op);
/* Fill time_out cycles */
user_req->time_out = rte_get_timer_cycles() +
DEFAULT_COMMAND_TIMEOUT * rte_get_timer_hz();
user_req->extra_time = 0;
/* Default mode of software queue */
mark_cpt_inst(instance);
pqueue->rid_queue[pqueue->enq_tail].rid = (uintptr_t)user_req;
/* We will use soft queue length here to limit requests */
MOD_INC(pqueue->enq_tail, DEFAULT_CMD_QLEN);
pqueue->pending_count += 1;
CPT_LOG_DP_DEBUG("Submitted NB cmd with request: %p "
"op: %p", user_req, user_req->op);
return 0;
}
static __rte_always_inline int __hot
otx_cpt_enq_single_asym(struct cpt_instance *instance,
struct rte_crypto_op *op,
struct pending_queue *pqueue)
{
struct cpt_qp_meta_info *minfo = &instance->meta_info;
struct rte_crypto_asym_op *asym_op = op->asym;
struct asym_op_params params = {0};
struct cpt_asym_sess_misc *sess;
uintptr_t *cop;
void *mdata;
int ret;
if (unlikely(rte_mempool_get(minfo->pool, &mdata) < 0)) {
CPT_LOG_DP_ERR("Could not allocate meta buffer for request");
return -ENOMEM;
}
sess = get_asym_session_private_data(asym_op->session,
otx_cryptodev_driver_id);
/* Store phys_addr of the mdata to meta_buf */
params.meta_buf = rte_mempool_virt2iova(mdata);
cop = mdata;
cop[0] = (uintptr_t)mdata;
cop[1] = (uintptr_t)op;
cop[2] = cop[3] = 0ULL;
params.req = RTE_PTR_ADD(cop, 4 * sizeof(uintptr_t));
params.req->op = cop;
/* Adjust meta_buf by crypto_op data and request_info struct */
params.meta_buf += (4 * sizeof(uintptr_t)) +
sizeof(struct cpt_request_info);
switch (sess->xfrm_type) {
case RTE_CRYPTO_ASYM_XFORM_MODEX:
ret = cpt_modex_prep(&params, &sess->mod_ctx);
if (unlikely(ret))
goto req_fail;
break;
case RTE_CRYPTO_ASYM_XFORM_RSA:
ret = cpt_enqueue_rsa_op(op, &params, sess);
if (unlikely(ret))
goto req_fail;
break;
default:
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
ret = -EINVAL;
goto req_fail;
}
ret = otx_cpt_request_enqueue(instance, pqueue, params.req);
if (unlikely(ret)) {
CPT_LOG_DP_ERR("Could not enqueue crypto req");
goto req_fail;
}
return 0;
req_fail:
free_op_meta(mdata, minfo->pool);
return ret;
}
static __rte_always_inline int __hot
otx_cpt_enq_single_sym(struct cpt_instance *instance,
struct rte_crypto_op *op,
struct pending_queue *pqueue)
{
struct cpt_sess_misc *sess;
struct rte_crypto_sym_op *sym_op = op->sym;
void *prep_req, *mdata = NULL;
int ret = 0;
uint64_t cpt_op;
sess = (struct cpt_sess_misc *)
get_sym_session_private_data(sym_op->session,
otx_cryptodev_driver_id);
cpt_op = sess->cpt_op;
if (likely(cpt_op & CPT_OP_CIPHER_MASK))
ret = fill_fc_params(op, sess, &instance->meta_info, &mdata,
&prep_req);
else
ret = fill_digest_params(op, sess, &instance->meta_info,
&mdata, &prep_req);
if (unlikely(ret)) {
CPT_LOG_DP_ERR("prep cryto req : op %p, cpt_op 0x%x "
"ret 0x%x", op, (unsigned int)cpt_op, ret);
return ret;
}
/* Enqueue prepared instruction to h/w */
ret = otx_cpt_request_enqueue(instance, pqueue, prep_req);
if (unlikely(ret)) {
/* Buffer allocated for request preparation need to be freed */
free_op_meta(mdata, instance->meta_info.pool);
return ret;
}
return 0;
}
static __rte_always_inline int __hot
otx_cpt_enq_single_sym_sessless(struct cpt_instance *instance,
struct rte_crypto_op *op,
struct pending_queue *pqueue)
{
struct cpt_sess_misc *sess;
struct rte_crypto_sym_op *sym_op = op->sym;
int ret;
void *sess_t = NULL;
void *sess_private_data_t = NULL;
/* Create tmp session */
if (rte_mempool_get(instance->sess_mp, (void **)&sess_t)) {
ret = -ENOMEM;
goto exit;
}
if (rte_mempool_get(instance->sess_mp_priv,
(void **)&sess_private_data_t)) {
ret = -ENOMEM;
goto free_sess;
}
sess = (struct cpt_sess_misc *)sess_private_data_t;
sess->ctx_dma_addr = rte_mempool_virt2iova(sess) +
sizeof(struct cpt_sess_misc);
ret = instance_session_cfg(sym_op->xform, (void *)sess);
if (unlikely(ret)) {
ret = -EINVAL;
goto free_sess_priv;
}
/* Save tmp session in op */
sym_op->session = (struct rte_cryptodev_sym_session *)sess_t;
set_sym_session_private_data(sym_op->session, otx_cryptodev_driver_id,
sess_private_data_t);
/* Enqueue op with the tmp session set */
ret = otx_cpt_enq_single_sym(instance, op, pqueue);
if (unlikely(ret))
goto free_sess_priv;
return 0;
free_sess_priv:
rte_mempool_put(instance->sess_mp_priv, sess_private_data_t);
free_sess:
rte_mempool_put(instance->sess_mp, sess_t);
exit:
return ret;
}
#define OP_TYPE_SYM 0
#define OP_TYPE_ASYM 1
static __rte_always_inline int __hot
otx_cpt_enq_single(struct cpt_instance *inst,
struct rte_crypto_op *op,
struct pending_queue *pqueue,
const uint8_t op_type)
{
/* Check for the type */
if (op_type == OP_TYPE_SYM) {
if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
return otx_cpt_enq_single_sym(inst, op, pqueue);
else
return otx_cpt_enq_single_sym_sessless(inst, op,
pqueue);
}
if (op_type == OP_TYPE_ASYM) {
if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
return otx_cpt_enq_single_asym(inst, op, pqueue);
}
/* Should not reach here */
return -ENOTSUP;
}
static __rte_always_inline uint16_t __hot
otx_cpt_pkt_enqueue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
const uint8_t op_type)
{
struct cpt_instance *instance = (struct cpt_instance *)qptr;
uint16_t count;
int ret;
struct cpt_vf *cptvf = (struct cpt_vf *)instance;
struct pending_queue *pqueue = &cptvf->pqueue;
count = DEFAULT_CMD_QLEN - pqueue->pending_count;
if (nb_ops > count)
nb_ops = count;
count = 0;
while (likely(count < nb_ops)) {
/* Enqueue single op */
ret = otx_cpt_enq_single(instance, ops[count], pqueue, op_type);
if (unlikely(ret))
break;
count++;
}
otx_cpt_ring_dbell(instance, count);
return count;
}
static uint16_t
otx_cpt_enqueue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
{
return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_ASYM);
}
static uint16_t
otx_cpt_enqueue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
{
return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_SYM);
}
static inline void
otx_cpt_asym_rsa_op(struct rte_crypto_op *cop, struct cpt_request_info *req,
struct rte_crypto_rsa_xform *rsa_ctx)
{
struct rte_crypto_rsa_op_param *rsa = &cop->asym->rsa;
switch (rsa->op_type) {
case RTE_CRYPTO_ASYM_OP_ENCRYPT:
rsa->cipher.length = rsa_ctx->n.length;
memcpy(rsa->cipher.data, req->rptr, rsa->cipher.length);
break;
case RTE_CRYPTO_ASYM_OP_DECRYPT:
if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
rsa->message.length = rsa_ctx->n.length;
else {
/* Get length of decrypted output */
rsa->message.length = rte_cpu_to_be_16
(*((uint16_t *)req->rptr));
/* Offset data pointer by length fields */
req->rptr += 2;
}
memcpy(rsa->message.data, req->rptr, rsa->message.length);
break;
case RTE_CRYPTO_ASYM_OP_SIGN:
rsa->sign.length = rsa_ctx->n.length;
memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
break;
case RTE_CRYPTO_ASYM_OP_VERIFY:
if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
rsa->sign.length = rsa_ctx->n.length;
else {
/* Get length of decrypted output */
rsa->sign.length = rte_cpu_to_be_16
(*((uint16_t *)req->rptr));
/* Offset data pointer by length fields */
req->rptr += 2;
}
memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
if (memcmp(rsa->sign.data, rsa->message.data,
rsa->message.length)) {
CPT_LOG_DP_ERR("RSA verification failed");
cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
}
break;
default:
CPT_LOG_DP_DEBUG("Invalid RSA operation type");
cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
break;
}
}
static __rte_always_inline void __hot
otx_cpt_asym_post_process(struct rte_crypto_op *cop,
struct cpt_request_info *req)
{
struct rte_crypto_asym_op *op = cop->asym;
struct cpt_asym_sess_misc *sess;
sess = get_asym_session_private_data(op->session,
otx_cryptodev_driver_id);
switch (sess->xfrm_type) {
case RTE_CRYPTO_ASYM_XFORM_RSA:
otx_cpt_asym_rsa_op(cop, req, &sess->rsa_ctx);
break;
case RTE_CRYPTO_ASYM_XFORM_MODEX:
op->modex.result.length = sess->mod_ctx.modulus.length;
memcpy(op->modex.result.data, req->rptr,
op->modex.result.length);
break;
default:
CPT_LOG_DP_DEBUG("Invalid crypto xform type");
cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
break;
}
}
static __rte_always_inline void __hot
otx_cpt_dequeue_post_process(struct rte_crypto_op *cop, uintptr_t *rsp,
const uint8_t op_type)
{
/* H/w has returned success */
cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
/* Perform further post processing */
if ((op_type == OP_TYPE_SYM) &&
(cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)) {
/* Check if auth verify need to be completed */
if (unlikely(rsp[2]))
compl_auth_verify(cop, (uint8_t *)rsp[2], rsp[3]);
return;
}
if ((op_type == OP_TYPE_ASYM) &&
(cop->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)) {
rsp = RTE_PTR_ADD(rsp, 4 * sizeof(uintptr_t));
otx_cpt_asym_post_process(cop, (struct cpt_request_info *)rsp);
}
return;
}
static __rte_always_inline uint16_t __hot
otx_cpt_pkt_dequeue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
const uint8_t op_type)
{
struct cpt_instance *instance = (struct cpt_instance *)qptr;
struct cpt_request_info *user_req;
struct cpt_vf *cptvf = (struct cpt_vf *)instance;
struct rid *rid_e;
uint8_t cc[nb_ops];
int i, count, pcount;
uint8_t ret;
int nb_completed;
struct pending_queue *pqueue = &cptvf->pqueue;
struct rte_crypto_op *cop;
void *metabuf;
uintptr_t *rsp;
pcount = pqueue->pending_count;
count = (nb_ops > pcount) ? pcount : nb_ops;
for (i = 0; i < count; i++) {
rid_e = &pqueue->rid_queue[pqueue->deq_head];
user_req = (struct cpt_request_info *)(rid_e->rid);
if (likely((i+1) < count))
rte_prefetch_non_temporal((void *)rid_e[1].rid);
ret = check_nb_command_id(user_req, instance);
if (unlikely(ret == ERR_REQ_PENDING)) {
/* Stop checking for completions */
break;
}
/* Return completion code and op handle */
cc[i] = ret;
ops[i] = user_req->op;
CPT_LOG_DP_DEBUG("Request %p Op %p completed with code %d",
user_req, user_req->op, ret);
MOD_INC(pqueue->deq_head, DEFAULT_CMD_QLEN);
pqueue->pending_count -= 1;
}
nb_completed = i;
for (i = 0; i < nb_completed; i++) {
rsp = (void *)ops[i];
if (likely((i + 1) < nb_completed))
rte_prefetch0(ops[i+1]);
metabuf = (void *)rsp[0];
cop = (void *)rsp[1];
ops[i] = cop;
/* Check completion code */
if (likely(cc[i] == 0)) {
/* H/w success pkt. Post process */
otx_cpt_dequeue_post_process(cop, rsp, op_type);
} else if (cc[i] == ERR_GC_ICV_MISCOMPARE) {
/* auth data mismatch */
cop->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
} else {
/* Error */
cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
}
if (unlikely(cop->sess_type == RTE_CRYPTO_OP_SESSIONLESS)) {
void *sess_private_data_t =
get_sym_session_private_data(cop->sym->session,
otx_cryptodev_driver_id);
memset(sess_private_data_t, 0,
cpt_get_session_size());
memset(cop->sym->session, 0,
rte_cryptodev_sym_get_existing_header_session_size(
cop->sym->session));
rte_mempool_put(instance->sess_mp_priv,
sess_private_data_t);
rte_mempool_put(instance->sess_mp, cop->sym->session);
cop->sym->session = NULL;
}
free_op_meta(metabuf, instance->meta_info.pool);
}
return nb_completed;
}
static uint16_t
otx_cpt_dequeue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
{
return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_ASYM);
}
static uint16_t
otx_cpt_dequeue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
{
return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_SYM);
}
static struct rte_cryptodev_ops cptvf_ops = {
/* Device related operations */
.dev_configure = otx_cpt_dev_config,
.dev_start = otx_cpt_dev_start,
.dev_stop = otx_cpt_dev_stop,
.dev_close = otx_cpt_dev_close,
.dev_infos_get = otx_cpt_dev_info_get,
.stats_get = otx_cpt_stats_get,
.stats_reset = otx_cpt_stats_reset,
.queue_pair_setup = otx_cpt_que_pair_setup,
.queue_pair_release = otx_cpt_que_pair_release,
.queue_pair_count = NULL,
/* Crypto related operations */
.sym_session_get_size = otx_cpt_get_session_size,
.sym_session_configure = otx_cpt_session_cfg,
.sym_session_clear = otx_cpt_session_clear,
.asym_session_get_size = otx_cpt_asym_session_size_get,
.asym_session_configure = otx_cpt_asym_session_cfg,
.asym_session_clear = otx_cpt_asym_session_clear,
};
int
otx_cpt_dev_create(struct rte_cryptodev *c_dev)
{
struct rte_pci_device *pdev = RTE_DEV_TO_PCI(c_dev->device);
struct cpt_vf *cptvf = NULL;
void *reg_base;
char dev_name[32];
int ret;
if (pdev->mem_resource[0].phys_addr == 0ULL)
return -EIO;
/* for secondary processes, we don't initialise any further as primary
* has already done this work.
*/
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
cptvf = rte_zmalloc_socket("otx_cryptodev_private_mem",
sizeof(struct cpt_vf), RTE_CACHE_LINE_SIZE,
rte_socket_id());
if (cptvf == NULL) {
CPT_LOG_ERR("Cannot allocate memory for device private data");
return -ENOMEM;
}
snprintf(dev_name, 32, "%02x:%02x.%x",
pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
reg_base = pdev->mem_resource[0].addr;
if (!reg_base) {
CPT_LOG_ERR("Failed to map BAR0 of %s", dev_name);
ret = -ENODEV;
goto fail;
}
ret = otx_cpt_hw_init(cptvf, pdev, reg_base, dev_name);
if (ret) {
CPT_LOG_ERR("Failed to init cptvf %s", dev_name);
ret = -EIO;
goto fail;
}
switch (cptvf->vftype) {
case OTX_CPT_VF_TYPE_AE:
/* Set asymmetric cpt feature flags */
c_dev->feature_flags = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO |
RTE_CRYPTODEV_FF_HW_ACCELERATED |
RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT;
break;
case OTX_CPT_VF_TYPE_SE:
/* Set symmetric cpt feature flags */
c_dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
RTE_CRYPTODEV_FF_HW_ACCELERATED |
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
RTE_CRYPTODEV_FF_IN_PLACE_SGL |
RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT;
break;
default:
/* Feature not supported. Abort */
CPT_LOG_ERR("VF type not supported by %s", dev_name);
ret = -EIO;
goto deinit_dev;
}
/* Start off timer for mailbox interrupts */
otx_cpt_periodic_alarm_start(cptvf);
c_dev->dev_ops = &cptvf_ops;
if (c_dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) {
c_dev->enqueue_burst = otx_cpt_enqueue_sym;
c_dev->dequeue_burst = otx_cpt_dequeue_sym;
} else {
c_dev->enqueue_burst = otx_cpt_enqueue_asym;
c_dev->dequeue_burst = otx_cpt_dequeue_asym;
}
/* Save dev private data */
c_dev->data->dev_private = cptvf;
return 0;
deinit_dev:
otx_cpt_deinit_device(cptvf);
fail:
if (cptvf) {
/* Free private data allocated */
rte_free(cptvf);
}
return ret;
}