f-stack/dpdk/drivers/bus/pci/bsd/pci.c

618 lines
13 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <dirent.h>
#include <limits.h>
#include <sys/queue.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <sys/pciio.h>
#include <dev/pci/pcireg.h>
#if defined(RTE_ARCH_X86)
#include <machine/cpufunc.h>
#endif
#include <rte_interrupts.h>
#include <rte_log.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_common.h>
#include <rte_launch.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_malloc.h>
#include <rte_string_fns.h>
#include <rte_debug.h>
#include <rte_devargs.h>
#include "eal_filesystem.h"
#include "private.h"
/**
* @file
* PCI probing under BSD
*
* This code is used to simulate a PCI probe by parsing information in
* sysfs. Moreover, when a registered driver matches a device, the
* kernel driver currently using it is unloaded and replaced by
* igb_uio module, which is a very minimal userland driver for Intel
* network card, only providing access to PCI BAR to applications, and
* enabling bus master.
*/
extern struct rte_pci_bus rte_pci_bus;
/* Map pci device */
int
rte_pci_map_device(struct rte_pci_device *dev)
{
int ret = -1;
/* try mapping the NIC resources */
switch (dev->kdrv) {
case RTE_KDRV_NIC_UIO:
/* map resources for devices that use uio */
ret = pci_uio_map_resource(dev);
break;
default:
RTE_LOG(DEBUG, EAL,
" Not managed by a supported kernel driver, skipped\n");
ret = 1;
break;
}
return ret;
}
/* Unmap pci device */
void
rte_pci_unmap_device(struct rte_pci_device *dev)
{
/* try unmapping the NIC resources */
switch (dev->kdrv) {
case RTE_KDRV_NIC_UIO:
/* unmap resources for devices that use uio */
pci_uio_unmap_resource(dev);
break;
default:
RTE_LOG(DEBUG, EAL,
" Not managed by a supported kernel driver, skipped\n");
break;
}
}
void
pci_uio_free_resource(struct rte_pci_device *dev,
struct mapped_pci_resource *uio_res)
{
rte_free(uio_res);
if (dev->intr_handle.fd) {
close(dev->intr_handle.fd);
dev->intr_handle.fd = -1;
dev->intr_handle.type = RTE_INTR_HANDLE_UNKNOWN;
}
}
int
pci_uio_alloc_resource(struct rte_pci_device *dev,
struct mapped_pci_resource **uio_res)
{
char devname[PATH_MAX]; /* contains the /dev/uioX */
struct rte_pci_addr *loc;
loc = &dev->addr;
snprintf(devname, sizeof(devname), "/dev/uio@pci:%u:%u:%u",
dev->addr.bus, dev->addr.devid, dev->addr.function);
if (access(devname, O_RDWR) < 0) {
RTE_LOG(WARNING, EAL, " "PCI_PRI_FMT" not managed by UIO driver, "
"skipping\n", loc->domain, loc->bus, loc->devid, loc->function);
return 1;
}
/* save fd if in primary process */
dev->intr_handle.fd = open(devname, O_RDWR);
if (dev->intr_handle.fd < 0) {
RTE_LOG(ERR, EAL, "Cannot open %s: %s\n",
devname, strerror(errno));
goto error;
}
dev->intr_handle.type = RTE_INTR_HANDLE_UIO;
/* allocate the mapping details for secondary processes*/
*uio_res = rte_zmalloc("UIO_RES", sizeof(**uio_res), 0);
if (*uio_res == NULL) {
RTE_LOG(ERR, EAL,
"%s(): cannot store uio mmap details\n", __func__);
goto error;
}
strlcpy((*uio_res)->path, devname, sizeof((*uio_res)->path));
memcpy(&(*uio_res)->pci_addr, &dev->addr, sizeof((*uio_res)->pci_addr));
return 0;
error:
pci_uio_free_resource(dev, *uio_res);
return -1;
}
int
pci_uio_map_resource_by_index(struct rte_pci_device *dev, int res_idx,
struct mapped_pci_resource *uio_res, int map_idx)
{
int fd;
char *devname;
void *mapaddr;
uint64_t offset;
uint64_t pagesz;
struct pci_map *maps;
maps = uio_res->maps;
devname = uio_res->path;
pagesz = sysconf(_SC_PAGESIZE);
/* allocate memory to keep path */
maps[map_idx].path = rte_malloc(NULL, strlen(devname) + 1, 0);
if (maps[map_idx].path == NULL) {
RTE_LOG(ERR, EAL, "Cannot allocate memory for path: %s\n",
strerror(errno));
return -1;
}
/*
* open resource file, to mmap it
*/
fd = open(devname, O_RDWR);
if (fd < 0) {
RTE_LOG(ERR, EAL, "Cannot open %s: %s\n",
devname, strerror(errno));
goto error;
}
/* if matching map is found, then use it */
offset = res_idx * pagesz;
mapaddr = pci_map_resource(NULL, fd, (off_t)offset,
(size_t)dev->mem_resource[res_idx].len, 0);
close(fd);
if (mapaddr == MAP_FAILED)
goto error;
maps[map_idx].phaddr = dev->mem_resource[res_idx].phys_addr;
maps[map_idx].size = dev->mem_resource[res_idx].len;
maps[map_idx].addr = mapaddr;
maps[map_idx].offset = offset;
strcpy(maps[map_idx].path, devname);
dev->mem_resource[res_idx].addr = mapaddr;
return 0;
error:
rte_free(maps[map_idx].path);
return -1;
}
static int
pci_scan_one(int dev_pci_fd, struct pci_conf *conf)
{
struct rte_pci_device *dev;
struct pci_bar_io bar;
unsigned i, max;
dev = malloc(sizeof(*dev));
if (dev == NULL) {
return -1;
}
memset(dev, 0, sizeof(*dev));
dev->device.bus = &rte_pci_bus.bus;
dev->addr.domain = conf->pc_sel.pc_domain;
dev->addr.bus = conf->pc_sel.pc_bus;
dev->addr.devid = conf->pc_sel.pc_dev;
dev->addr.function = conf->pc_sel.pc_func;
/* get vendor id */
dev->id.vendor_id = conf->pc_vendor;
/* get device id */
dev->id.device_id = conf->pc_device;
/* get subsystem_vendor id */
dev->id.subsystem_vendor_id = conf->pc_subvendor;
/* get subsystem_device id */
dev->id.subsystem_device_id = conf->pc_subdevice;
/* get class id */
dev->id.class_id = (conf->pc_class << 16) |
(conf->pc_subclass << 8) |
(conf->pc_progif);
/* TODO: get max_vfs */
dev->max_vfs = 0;
/* FreeBSD has no NUMA support (yet) */
dev->device.numa_node = 0;
pci_name_set(dev);
/* FreeBSD has only one pass through driver */
dev->kdrv = RTE_KDRV_NIC_UIO;
/* parse resources */
switch (conf->pc_hdr & PCIM_HDRTYPE) {
case PCIM_HDRTYPE_NORMAL:
max = PCIR_MAX_BAR_0;
break;
case PCIM_HDRTYPE_BRIDGE:
max = PCIR_MAX_BAR_1;
break;
case PCIM_HDRTYPE_CARDBUS:
max = PCIR_MAX_BAR_2;
break;
default:
goto skipdev;
}
for (i = 0; i <= max; i++) {
bar.pbi_sel = conf->pc_sel;
bar.pbi_reg = PCIR_BAR(i);
if (ioctl(dev_pci_fd, PCIOCGETBAR, &bar) < 0)
continue;
dev->mem_resource[i].len = bar.pbi_length;
if (PCI_BAR_IO(bar.pbi_base)) {
dev->mem_resource[i].addr = (void *)(bar.pbi_base & ~((uint64_t)0xf));
continue;
}
dev->mem_resource[i].phys_addr = bar.pbi_base & ~((uint64_t)0xf);
}
/* device is valid, add in list (sorted) */
if (TAILQ_EMPTY(&rte_pci_bus.device_list)) {
rte_pci_add_device(dev);
}
else {
struct rte_pci_device *dev2 = NULL;
int ret;
TAILQ_FOREACH(dev2, &rte_pci_bus.device_list, next) {
ret = rte_pci_addr_cmp(&dev->addr, &dev2->addr);
if (ret > 0)
continue;
else if (ret < 0) {
rte_pci_insert_device(dev2, dev);
} else { /* already registered */
dev2->kdrv = dev->kdrv;
dev2->max_vfs = dev->max_vfs;
pci_name_set(dev2);
memmove(dev2->mem_resource,
dev->mem_resource,
sizeof(dev->mem_resource));
free(dev);
}
return 0;
}
rte_pci_add_device(dev);
}
return 0;
skipdev:
free(dev);
return 0;
}
/*
* Scan the content of the PCI bus, and add the devices in the devices
* list. Call pci_scan_one() for each pci entry found.
*/
int
rte_pci_scan(void)
{
int fd;
unsigned dev_count = 0;
struct pci_conf matches[16];
struct pci_conf_io conf_io = {
.pat_buf_len = 0,
.num_patterns = 0,
.patterns = NULL,
.match_buf_len = sizeof(matches),
.matches = &matches[0],
};
/* for debug purposes, PCI can be disabled */
if (!rte_eal_has_pci())
return 0;
fd = open("/dev/pci", O_RDONLY);
if (fd < 0) {
RTE_LOG(ERR, EAL, "%s(): error opening /dev/pci\n", __func__);
goto error;
}
do {
unsigned i;
if (ioctl(fd, PCIOCGETCONF, &conf_io) < 0) {
RTE_LOG(ERR, EAL, "%s(): error with ioctl on /dev/pci: %s\n",
__func__, strerror(errno));
goto error;
}
for (i = 0; i < conf_io.num_matches; i++)
if (pci_scan_one(fd, &matches[i]) < 0)
goto error;
dev_count += conf_io.num_matches;
} while(conf_io.status == PCI_GETCONF_MORE_DEVS);
close(fd);
RTE_LOG(DEBUG, EAL, "PCI scan found %u devices\n", dev_count);
return 0;
error:
if (fd >= 0)
close(fd);
return -1;
}
bool
pci_device_iommu_support_va(__rte_unused const struct rte_pci_device *dev)
{
return false;
}
enum rte_iova_mode
pci_device_iova_mode(const struct rte_pci_driver *pdrv __rte_unused,
const struct rte_pci_device *pdev)
{
/* Supports only RTE_KDRV_NIC_UIO */
if (pdev->kdrv != RTE_KDRV_NIC_UIO)
RTE_LOG(DEBUG, EAL, "Unsupported kernel driver? Defaulting to IOVA as 'PA'\n");
return RTE_IOVA_PA;
}
/* Read PCI config space. */
int rte_pci_read_config(const struct rte_pci_device *dev,
void *buf, size_t len, off_t offset)
{
int fd = -1;
int size;
/* Copy Linux implementation's behaviour */
const int return_len = len;
struct pci_io pi = {
.pi_sel = {
.pc_domain = dev->addr.domain,
.pc_bus = dev->addr.bus,
.pc_dev = dev->addr.devid,
.pc_func = dev->addr.function,
},
.pi_reg = offset,
};
fd = open("/dev/pci", O_RDWR);
if (fd < 0) {
RTE_LOG(ERR, EAL, "%s(): error opening /dev/pci\n", __func__);
goto error;
}
while (len > 0) {
size = (len >= 4) ? 4 : ((len >= 2) ? 2 : 1);
pi.pi_width = size;
if (ioctl(fd, PCIOCREAD, &pi) < 0)
goto error;
memcpy(buf, &pi.pi_data, size);
buf = (char *)buf + size;
pi.pi_reg += size;
len -= size;
}
close(fd);
return return_len;
error:
if (fd >= 0)
close(fd);
return -1;
}
/* Write PCI config space. */
int rte_pci_write_config(const struct rte_pci_device *dev,
const void *buf, size_t len, off_t offset)
{
int fd = -1;
struct pci_io pi = {
.pi_sel = {
.pc_domain = dev->addr.domain,
.pc_bus = dev->addr.bus,
.pc_dev = dev->addr.devid,
.pc_func = dev->addr.function,
},
.pi_reg = offset,
.pi_data = *(const uint32_t *)buf,
.pi_width = len,
};
if (len == 3 || len > sizeof(pi.pi_data)) {
RTE_LOG(ERR, EAL, "%s(): invalid pci read length\n", __func__);
goto error;
}
memcpy(&pi.pi_data, buf, len);
fd = open("/dev/pci", O_RDWR);
if (fd < 0) {
RTE_LOG(ERR, EAL, "%s(): error opening /dev/pci\n", __func__);
goto error;
}
if (ioctl(fd, PCIOCWRITE, &pi) < 0)
goto error;
close(fd);
return 0;
error:
if (fd >= 0)
close(fd);
return -1;
}
int
rte_pci_ioport_map(struct rte_pci_device *dev, int bar,
struct rte_pci_ioport *p)
{
int ret;
switch (dev->kdrv) {
#if defined(RTE_ARCH_X86)
case RTE_KDRV_NIC_UIO:
if (rte_eal_iopl_init() != 0) {
RTE_LOG(ERR, EAL, "%s(): insufficient ioport permissions for PCI device %s\n",
__func__, dev->name);
return -1;
}
if ((uintptr_t) dev->mem_resource[bar].addr <= UINT16_MAX) {
p->base = (uintptr_t)dev->mem_resource[bar].addr;
ret = 0;
} else
ret = -1;
break;
#endif
default:
ret = -1;
break;
}
if (!ret)
p->dev = dev;
return ret;
}
static void
pci_uio_ioport_read(struct rte_pci_ioport *p,
void *data, size_t len, off_t offset)
{
#if defined(RTE_ARCH_X86)
uint8_t *d;
int size;
unsigned short reg = p->base + offset;
for (d = data; len > 0; d += size, reg += size, len -= size) {
if (len >= 4) {
size = 4;
*(uint32_t *)d = inl(reg);
} else if (len >= 2) {
size = 2;
*(uint16_t *)d = inw(reg);
} else {
size = 1;
*d = inb(reg);
}
}
#else
RTE_SET_USED(p);
RTE_SET_USED(data);
RTE_SET_USED(len);
RTE_SET_USED(offset);
#endif
}
void
rte_pci_ioport_read(struct rte_pci_ioport *p,
void *data, size_t len, off_t offset)
{
switch (p->dev->kdrv) {
case RTE_KDRV_NIC_UIO:
pci_uio_ioport_read(p, data, len, offset);
break;
default:
break;
}
}
static void
pci_uio_ioport_write(struct rte_pci_ioport *p,
const void *data, size_t len, off_t offset)
{
#if defined(RTE_ARCH_X86)
const uint8_t *s;
int size;
unsigned short reg = p->base + offset;
for (s = data; len > 0; s += size, reg += size, len -= size) {
if (len >= 4) {
size = 4;
outl(reg, *(const uint32_t *)s);
} else if (len >= 2) {
size = 2;
outw(reg, *(const uint16_t *)s);
} else {
size = 1;
outb(reg, *s);
}
}
#else
RTE_SET_USED(p);
RTE_SET_USED(data);
RTE_SET_USED(len);
RTE_SET_USED(offset);
#endif
}
void
rte_pci_ioport_write(struct rte_pci_ioport *p,
const void *data, size_t len, off_t offset)
{
switch (p->dev->kdrv) {
case RTE_KDRV_NIC_UIO:
pci_uio_ioport_write(p, data, len, offset);
break;
default:
break;
}
}
int
rte_pci_ioport_unmap(struct rte_pci_ioport *p)
{
int ret;
switch (p->dev->kdrv) {
#if defined(RTE_ARCH_X86)
case RTE_KDRV_NIC_UIO:
ret = 0;
break;
#endif
default:
ret = -1;
break;
}
return ret;
}