f-stack/dpdk/drivers/net/mlx4/mlx4_rxtx.c

1395 lines
40 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2017 6WIND S.A.
* Copyright 2017 Mellanox Technologies, Ltd
*/
/**
* @file
* Data plane functions for mlx4 driver.
*/
#include <assert.h>
#include <stdint.h>
#include <string.h>
/* Verbs headers do not support -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include <rte_branch_prediction.h>
#include <rte_common.h>
#include <rte_io.h>
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include "mlx4.h"
#include "mlx4_prm.h"
#include "mlx4_rxtx.h"
#include "mlx4_utils.h"
/**
* Pointer-value pair structure used in tx_post_send for saving the first
* DWORD (32 byte) of a TXBB.
*/
struct pv {
union {
volatile struct mlx4_wqe_data_seg *dseg;
volatile uint32_t *dst;
};
uint32_t val;
};
/** A helper structure for TSO packet handling. */
struct tso_info {
/** Pointer to the array of saved first DWORD (32 byte) of a TXBB. */
struct pv *pv;
/** Current entry in the pv array. */
int pv_counter;
/** Total size of the WQE including padding. */
uint32_t wqe_size;
/** Size of TSO header to prepend to each packet to send. */
uint16_t tso_header_size;
/** Total size of the TSO segment in the WQE. */
uint16_t wqe_tso_seg_size;
/** Raw WQE size in units of 16 Bytes and without padding. */
uint8_t fence_size;
};
/** A table to translate Rx completion flags to packet type. */
uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
/*
* The index to the array should have:
* bit[7] - MLX4_CQE_L2_TUNNEL
* bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
* bit[5] - MLX4_CQE_STATUS_UDP
* bit[4] - MLX4_CQE_STATUS_TCP
* bit[3] - MLX4_CQE_STATUS_IPV4OPT
* bit[2] - MLX4_CQE_STATUS_IPV6
* bit[1] - MLX4_CQE_STATUS_IPF
* bit[0] - MLX4_CQE_STATUS_IPV4
* giving a total of up to 256 entries.
*/
/* L2 */
[0x00] = RTE_PTYPE_L2_ETHER,
/* L3 */
[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG,
[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG,
[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[0x08] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_L4_NONFRAG,
[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_L4_NONFRAG,
[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_L4_FRAG,
[0x0b] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_L4_FRAG,
/* TCP */
[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP,
[0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP,
[0x16] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_L4_TCP,
[0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_L4_TCP,
/* UDP */
[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[0x26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_L4_UDP,
[0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_L4_UDP,
/* Tunneled - L3 IPV6 */
[0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_NONFRAG,
[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_NONFRAG,
[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_FRAG,
[0x8b] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_FRAG,
/* Tunneled - L3 IPV6, TCP */
[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[0x96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
[0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
/* Tunneled - L3 IPV6, UDP */
[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
[0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
[0xa6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_UDP,
[0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_UDP,
/* Tunneled - L3 IPV4 */
[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_NONFRAG,
[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_NONFRAG,
[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_FRAG,
[0xcb] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_FRAG,
/* Tunneled - L3 IPV4, TCP */
[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[0xd6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_TCP,
[0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_TCP,
/* Tunneled - L3 IPV4, UDP */
[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
[0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
[0xe6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_UDP,
[0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_UDP,
};
/**
* Stamp TXBB burst so it won't be reused by the HW.
*
* Routine is used when freeing WQE used by the chip or when failing
* building an WQ entry has failed leaving partial information on the queue.
*
* @param sq
* Pointer to the SQ structure.
* @param start
* Pointer to the first TXBB to stamp.
* @param end
* Pointer to the followed end TXBB to stamp.
*
* @return
* Stamping burst size in byte units.
*/
static uint32_t
mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, volatile uint32_t *start,
volatile uint32_t *end)
{
uint32_t stamp = sq->stamp;
int32_t size = (intptr_t)end - (intptr_t)start;
assert(start != end);
/* Hold SQ ring wrap around. */
if (size < 0) {
size = (int32_t)sq->size + size;
do {
*start = stamp;
start += MLX4_SQ_STAMP_DWORDS;
} while (start != (volatile uint32_t *)sq->eob);
start = (volatile uint32_t *)sq->buf;
/* Flip invalid stamping ownership. */
stamp ^= RTE_BE32(1u << MLX4_SQ_OWNER_BIT);
sq->stamp = stamp;
if (start == end)
return size;
}
do {
*start = stamp;
start += MLX4_SQ_STAMP_DWORDS;
} while (start != end);
return (uint32_t)size;
}
/**
* Manage Tx completions.
*
* When sending a burst, mlx4_tx_burst() posts several WRs.
* To improve performance, a completion event is only required once every
* MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
* for other WRs, but this information would not be used anyway.
*
* @param txq
* Pointer to Tx queue structure.
* @param elts_m
* Tx elements number mask.
* @param sq
* Pointer to the SQ structure.
*/
static void
mlx4_txq_complete(struct txq *txq, const unsigned int elts_m,
struct mlx4_sq *sq)
{
unsigned int elts_tail = txq->elts_tail;
struct mlx4_cq *cq = &txq->mcq;
volatile struct mlx4_cqe *cqe;
uint32_t completed;
uint32_t cons_index = cq->cons_index;
volatile uint32_t *first_txbb;
/*
* Traverse over all CQ entries reported and handle each WQ entry
* reported by them.
*/
do {
cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
!!(cons_index & cq->cqe_cnt)))
break;
#ifndef NDEBUG
/*
* Make sure we read the CQE after we read the ownership bit.
*/
rte_io_rmb();
if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
MLX4_CQE_OPCODE_ERROR)) {
volatile struct mlx4_err_cqe *cqe_err =
(volatile struct mlx4_err_cqe *)cqe;
ERROR("%p CQE error - vendor syndrome: 0x%x"
" syndrome: 0x%x\n",
(void *)txq, cqe_err->vendor_err,
cqe_err->syndrome);
break;
}
#endif /* NDEBUG */
cons_index++;
} while (1);
completed = (cons_index - cq->cons_index) * txq->elts_comp_cd_init;
if (unlikely(!completed))
return;
/* First stamping address is the end of the last one. */
first_txbb = (&(*txq->elts)[elts_tail & elts_m])->eocb;
elts_tail += completed;
/* The new tail element holds the end address. */
sq->remain_size += mlx4_txq_stamp_freed_wqe(sq, first_txbb,
(&(*txq->elts)[elts_tail & elts_m])->eocb);
/* Update CQ consumer index. */
cq->cons_index = cons_index;
*cq->set_ci_db = rte_cpu_to_be_32(cons_index & MLX4_CQ_DB_CI_MASK);
txq->elts_tail = elts_tail;
}
/**
* Write Tx data segment to the SQ.
*
* @param dseg
* Pointer to data segment in SQ.
* @param lkey
* Memory region lkey.
* @param addr
* Data address.
* @param byte_count
* Big endian bytes count of the data to send.
*/
static inline void
mlx4_fill_tx_data_seg(volatile struct mlx4_wqe_data_seg *dseg,
uint32_t lkey, uintptr_t addr, rte_be32_t byte_count)
{
dseg->addr = rte_cpu_to_be_64(addr);
dseg->lkey = lkey;
#if RTE_CACHE_LINE_SIZE < 64
/*
* Need a barrier here before writing the byte_count
* fields to make sure that all the data is visible
* before the byte_count field is set.
* Otherwise, if the segment begins a new cacheline,
* the HCA prefetcher could grab the 64-byte chunk and
* get a valid (!= 0xffffffff) byte count but stale
* data, and end up sending the wrong data.
*/
rte_io_wmb();
#endif /* RTE_CACHE_LINE_SIZE */
dseg->byte_count = byte_count;
}
/**
* Obtain and calculate TSO information needed for assembling a TSO WQE.
*
* @param buf
* Pointer to the first packet mbuf.
* @param txq
* Pointer to Tx queue structure.
* @param tinfo
* Pointer to a structure to fill the info with.
*
* @return
* 0 on success, negative value upon error.
*/
static inline int
mlx4_tx_burst_tso_get_params(struct rte_mbuf *buf,
struct txq *txq,
struct tso_info *tinfo)
{
struct mlx4_sq *sq = &txq->msq;
const uint8_t tunneled = txq->priv->hw_csum_l2tun &&
(buf->ol_flags & PKT_TX_TUNNEL_MASK);
tinfo->tso_header_size = buf->l2_len + buf->l3_len + buf->l4_len;
if (tunneled)
tinfo->tso_header_size +=
buf->outer_l2_len + buf->outer_l3_len;
if (unlikely(buf->tso_segsz == 0 ||
tinfo->tso_header_size == 0 ||
tinfo->tso_header_size > MLX4_MAX_TSO_HEADER ||
tinfo->tso_header_size > buf->data_len))
return -EINVAL;
/*
* Calculate the WQE TSO segment size
* Note:
* 1. An LSO segment must be padded such that the subsequent data
* segment is 16-byte aligned.
* 2. The start address of the TSO segment is always 16 Bytes aligned.
*/
tinfo->wqe_tso_seg_size = RTE_ALIGN(sizeof(struct mlx4_wqe_lso_seg) +
tinfo->tso_header_size,
sizeof(struct mlx4_wqe_data_seg));
tinfo->fence_size = ((sizeof(struct mlx4_wqe_ctrl_seg) +
tinfo->wqe_tso_seg_size) >> MLX4_SEG_SHIFT) +
buf->nb_segs;
tinfo->wqe_size =
RTE_ALIGN((uint32_t)(tinfo->fence_size << MLX4_SEG_SHIFT),
MLX4_TXBB_SIZE);
/* Validate WQE size and WQE space in the send queue. */
if (sq->remain_size < tinfo->wqe_size ||
tinfo->wqe_size > MLX4_MAX_WQE_SIZE)
return -ENOMEM;
/* Init pv. */
tinfo->pv = (struct pv *)txq->bounce_buf;
tinfo->pv_counter = 0;
return 0;
}
/**
* Fill the TSO WQE data segments with info on buffers to transmit .
*
* @param buf
* Pointer to the first packet mbuf.
* @param txq
* Pointer to Tx queue structure.
* @param tinfo
* Pointer to TSO info to use.
* @param dseg
* Pointer to the first data segment in the TSO WQE.
* @param ctrl
* Pointer to the control segment in the TSO WQE.
*
* @return
* 0 on success, negative value upon error.
*/
static inline volatile struct mlx4_wqe_ctrl_seg *
mlx4_tx_burst_fill_tso_dsegs(struct rte_mbuf *buf,
struct txq *txq,
struct tso_info *tinfo,
volatile struct mlx4_wqe_data_seg *dseg,
volatile struct mlx4_wqe_ctrl_seg *ctrl)
{
uint32_t lkey;
int nb_segs = buf->nb_segs;
int nb_segs_txbb;
struct mlx4_sq *sq = &txq->msq;
struct rte_mbuf *sbuf = buf;
struct pv *pv = tinfo->pv;
int *pv_counter = &tinfo->pv_counter;
volatile struct mlx4_wqe_ctrl_seg *ctrl_next =
(volatile struct mlx4_wqe_ctrl_seg *)
((volatile uint8_t *)ctrl + tinfo->wqe_size);
uint16_t data_len = sbuf->data_len - tinfo->tso_header_size;
uintptr_t data_addr = rte_pktmbuf_mtod_offset(sbuf, uintptr_t,
tinfo->tso_header_size);
do {
/* how many dseg entries do we have in the current TXBB ? */
nb_segs_txbb = (MLX4_TXBB_SIZE -
((uintptr_t)dseg & (MLX4_TXBB_SIZE - 1))) >>
MLX4_SEG_SHIFT;
switch (nb_segs_txbb) {
#ifndef NDEBUG
default:
/* Should never happen. */
rte_panic("%p: Invalid number of SGEs(%d) for a TXBB",
(void *)txq, nb_segs_txbb);
/* rte_panic never returns. */
break;
#endif /* NDEBUG */
case 4:
/* Memory region key for this memory pool. */
lkey = mlx4_tx_mb2mr(txq, sbuf);
if (unlikely(lkey == (uint32_t)-1))
goto err;
dseg->addr = rte_cpu_to_be_64(data_addr);
dseg->lkey = lkey;
/*
* This data segment starts at the beginning of a new
* TXBB, so we need to postpone its byte_count writing
* for later.
*/
pv[*pv_counter].dseg = dseg;
/*
* Zero length segment is treated as inline segment
* with zero data.
*/
pv[(*pv_counter)++].val =
rte_cpu_to_be_32(data_len ?
data_len :
0x80000000);
if (--nb_segs == 0)
return ctrl_next;
/* Prepare next buf info */
sbuf = sbuf->next;
dseg++;
data_len = sbuf->data_len;
data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
/* fallthrough */
case 3:
lkey = mlx4_tx_mb2mr(txq, sbuf);
if (unlikely(lkey == (uint32_t)-1))
goto err;
mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
rte_cpu_to_be_32(data_len ?
data_len :
0x80000000));
if (--nb_segs == 0)
return ctrl_next;
/* Prepare next buf info */
sbuf = sbuf->next;
dseg++;
data_len = sbuf->data_len;
data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
/* fallthrough */
case 2:
lkey = mlx4_tx_mb2mr(txq, sbuf);
if (unlikely(lkey == (uint32_t)-1))
goto err;
mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
rte_cpu_to_be_32(data_len ?
data_len :
0x80000000));
if (--nb_segs == 0)
return ctrl_next;
/* Prepare next buf info */
sbuf = sbuf->next;
dseg++;
data_len = sbuf->data_len;
data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
/* fallthrough */
case 1:
lkey = mlx4_tx_mb2mr(txq, sbuf);
if (unlikely(lkey == (uint32_t)-1))
goto err;
mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
rte_cpu_to_be_32(data_len ?
data_len :
0x80000000));
if (--nb_segs == 0)
return ctrl_next;
/* Prepare next buf info */
sbuf = sbuf->next;
dseg++;
data_len = sbuf->data_len;
data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
/* fallthrough */
}
/* Wrap dseg if it points at the end of the queue. */
if ((volatile uint8_t *)dseg >= sq->eob)
dseg = (volatile struct mlx4_wqe_data_seg *)
((volatile uint8_t *)dseg - sq->size);
} while (true);
err:
return NULL;
}
/**
* Fill the packet's l2, l3 and l4 headers to the WQE.
*
* This will be used as the header for each TSO segment that is transmitted.
*
* @param buf
* Pointer to the first packet mbuf.
* @param txq
* Pointer to Tx queue structure.
* @param tinfo
* Pointer to TSO info to use.
* @param ctrl
* Pointer to the control segment in the TSO WQE.
*
* @return
* 0 on success, negative value upon error.
*/
static inline volatile struct mlx4_wqe_data_seg *
mlx4_tx_burst_fill_tso_hdr(struct rte_mbuf *buf,
struct txq *txq,
struct tso_info *tinfo,
volatile struct mlx4_wqe_ctrl_seg *ctrl)
{
volatile struct mlx4_wqe_lso_seg *tseg =
(volatile struct mlx4_wqe_lso_seg *)(ctrl + 1);
struct mlx4_sq *sq = &txq->msq;
struct pv *pv = tinfo->pv;
int *pv_counter = &tinfo->pv_counter;
int remain_size = tinfo->tso_header_size;
char *from = rte_pktmbuf_mtod(buf, char *);
uint16_t txbb_avail_space;
/* Union to overcome volatile constraints when copying TSO header. */
union {
volatile uint8_t *vto;
uint8_t *to;
} thdr = { .vto = (volatile uint8_t *)tseg->header, };
/*
* TSO data always starts at offset 20 from the beginning of the TXBB
* (16 byte ctrl + 4byte TSO desc). Since each TXBB is 64Byte aligned
* we can write the first 44 TSO header bytes without worry for TxQ
* wrapping or overwriting the first TXBB 32bit word.
*/
txbb_avail_space = MLX4_TXBB_SIZE -
(sizeof(struct mlx4_wqe_ctrl_seg) +
sizeof(struct mlx4_wqe_lso_seg));
while (remain_size >= (int)(txbb_avail_space + sizeof(uint32_t))) {
/* Copy to end of txbb. */
rte_memcpy(thdr.to, from, txbb_avail_space);
from += txbb_avail_space;
thdr.to += txbb_avail_space;
/* New TXBB, Check for TxQ wrap. */
if (thdr.to >= sq->eob)
thdr.vto = sq->buf;
/* New TXBB, stash the first 32bits for later use. */
pv[*pv_counter].dst = (volatile uint32_t *)thdr.to;
pv[(*pv_counter)++].val = *(uint32_t *)from,
from += sizeof(uint32_t);
thdr.to += sizeof(uint32_t);
remain_size -= txbb_avail_space + sizeof(uint32_t);
/* Avail space in new TXBB is TXBB size - 4 */
txbb_avail_space = MLX4_TXBB_SIZE - sizeof(uint32_t);
}
if (remain_size > txbb_avail_space) {
rte_memcpy(thdr.to, from, txbb_avail_space);
from += txbb_avail_space;
thdr.to += txbb_avail_space;
remain_size -= txbb_avail_space;
/* New TXBB, Check for TxQ wrap. */
if (thdr.to >= sq->eob)
thdr.vto = sq->buf;
pv[*pv_counter].dst = (volatile uint32_t *)thdr.to;
rte_memcpy(&pv[*pv_counter].val, from, remain_size);
(*pv_counter)++;
} else if (remain_size) {
rte_memcpy(thdr.to, from, remain_size);
}
tseg->mss_hdr_size = rte_cpu_to_be_32((buf->tso_segsz << 16) |
tinfo->tso_header_size);
/* Calculate data segment location */
return (volatile struct mlx4_wqe_data_seg *)
((uintptr_t)tseg + tinfo->wqe_tso_seg_size);
}
/**
* Write data segments and header for TSO uni/multi segment packet.
*
* @param buf
* Pointer to the first packet mbuf.
* @param txq
* Pointer to Tx queue structure.
* @param ctrl
* Pointer to the WQE control segment.
*
* @return
* Pointer to the next WQE control segment on success, NULL otherwise.
*/
static volatile struct mlx4_wqe_ctrl_seg *
mlx4_tx_burst_tso(struct rte_mbuf *buf, struct txq *txq,
volatile struct mlx4_wqe_ctrl_seg *ctrl)
{
volatile struct mlx4_wqe_data_seg *dseg;
volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
struct mlx4_sq *sq = &txq->msq;
struct tso_info tinfo;
struct pv *pv;
int pv_counter;
int ret;
ret = mlx4_tx_burst_tso_get_params(buf, txq, &tinfo);
if (unlikely(ret))
goto error;
dseg = mlx4_tx_burst_fill_tso_hdr(buf, txq, &tinfo, ctrl);
if (unlikely(dseg == NULL))
goto error;
if ((uintptr_t)dseg >= (uintptr_t)sq->eob)
dseg = (volatile struct mlx4_wqe_data_seg *)
((uintptr_t)dseg - sq->size);
ctrl_next = mlx4_tx_burst_fill_tso_dsegs(buf, txq, &tinfo, dseg, ctrl);
if (unlikely(ctrl_next == NULL))
goto error;
/* Write the first DWORD of each TXBB save earlier. */
if (likely(tinfo.pv_counter)) {
pv = tinfo.pv;
pv_counter = tinfo.pv_counter;
/* Need a barrier here before writing the first TXBB word. */
rte_io_wmb();
do {
--pv_counter;
*pv[pv_counter].dst = pv[pv_counter].val;
} while (pv_counter > 0);
}
ctrl->fence_size = tinfo.fence_size;
sq->remain_size -= tinfo.wqe_size;
return ctrl_next;
error:
txq->stats.odropped++;
return NULL;
}
/**
* Write data segments of multi-segment packet.
*
* @param buf
* Pointer to the first packet mbuf.
* @param txq
* Pointer to Tx queue structure.
* @param ctrl
* Pointer to the WQE control segment.
*
* @return
* Pointer to the next WQE control segment on success, NULL otherwise.
*/
static volatile struct mlx4_wqe_ctrl_seg *
mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
volatile struct mlx4_wqe_ctrl_seg *ctrl)
{
struct pv *pv = (struct pv *)txq->bounce_buf;
struct mlx4_sq *sq = &txq->msq;
struct rte_mbuf *sbuf = buf;
uint32_t lkey;
int pv_counter = 0;
int nb_segs = buf->nb_segs;
uint32_t wqe_size;
volatile struct mlx4_wqe_data_seg *dseg =
(volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
ctrl->fence_size = 1 + nb_segs;
wqe_size = RTE_ALIGN((uint32_t)(ctrl->fence_size << MLX4_SEG_SHIFT),
MLX4_TXBB_SIZE);
/* Validate WQE size and WQE space in the send queue. */
if (sq->remain_size < wqe_size ||
wqe_size > MLX4_MAX_WQE_SIZE)
return NULL;
/*
* Fill the data segments with buffer information.
* First WQE TXBB head segment is always control segment,
* so jump to tail TXBB data segments code for the first
* WQE data segments filling.
*/
goto txbb_tail_segs;
txbb_head_seg:
/* Memory region key (big endian) for this memory pool. */
lkey = mlx4_tx_mb2mr(txq, sbuf);
if (unlikely(lkey == (uint32_t)-1)) {
DEBUG("%p: unable to get MP <-> MR association",
(void *)txq);
return NULL;
}
/* Handle WQE wraparound. */
if (dseg >=
(volatile struct mlx4_wqe_data_seg *)sq->eob)
dseg = (volatile struct mlx4_wqe_data_seg *)
sq->buf;
dseg->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(sbuf, uintptr_t));
dseg->lkey = lkey;
/*
* This data segment starts at the beginning of a new
* TXBB, so we need to postpone its byte_count writing
* for later.
*/
pv[pv_counter].dseg = dseg;
/*
* Zero length segment is treated as inline segment
* with zero data.
*/
pv[pv_counter++].val = rte_cpu_to_be_32(sbuf->data_len ?
sbuf->data_len : 0x80000000);
sbuf = sbuf->next;
dseg++;
nb_segs--;
txbb_tail_segs:
/* Jump to default if there are more than two segments remaining. */
switch (nb_segs) {
default:
lkey = mlx4_tx_mb2mr(txq, sbuf);
if (unlikely(lkey == (uint32_t)-1)) {
DEBUG("%p: unable to get MP <-> MR association",
(void *)txq);
return NULL;
}
mlx4_fill_tx_data_seg(dseg, lkey,
rte_pktmbuf_mtod(sbuf, uintptr_t),
rte_cpu_to_be_32(sbuf->data_len ?
sbuf->data_len :
0x80000000));
sbuf = sbuf->next;
dseg++;
nb_segs--;
/* fallthrough */
case 2:
lkey = mlx4_tx_mb2mr(txq, sbuf);
if (unlikely(lkey == (uint32_t)-1)) {
DEBUG("%p: unable to get MP <-> MR association",
(void *)txq);
return NULL;
}
mlx4_fill_tx_data_seg(dseg, lkey,
rte_pktmbuf_mtod(sbuf, uintptr_t),
rte_cpu_to_be_32(sbuf->data_len ?
sbuf->data_len :
0x80000000));
sbuf = sbuf->next;
dseg++;
nb_segs--;
/* fallthrough */
case 1:
lkey = mlx4_tx_mb2mr(txq, sbuf);
if (unlikely(lkey == (uint32_t)-1)) {
DEBUG("%p: unable to get MP <-> MR association",
(void *)txq);
return NULL;
}
mlx4_fill_tx_data_seg(dseg, lkey,
rte_pktmbuf_mtod(sbuf, uintptr_t),
rte_cpu_to_be_32(sbuf->data_len ?
sbuf->data_len :
0x80000000));
nb_segs--;
if (nb_segs) {
sbuf = sbuf->next;
dseg++;
goto txbb_head_seg;
}
/* fallthrough */
case 0:
break;
}
/* Write the first DWORD of each TXBB save earlier. */
if (pv_counter) {
/* Need a barrier here before writing the byte_count. */
rte_io_wmb();
for (--pv_counter; pv_counter >= 0; pv_counter--)
pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
}
sq->remain_size -= wqe_size;
/* Align next WQE address to the next TXBB. */
return (volatile struct mlx4_wqe_ctrl_seg *)
((volatile uint8_t *)ctrl + wqe_size);
}
/**
* DPDK callback for Tx.
*
* @param dpdk_txq
* Generic pointer to Tx queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct txq *txq = (struct txq *)dpdk_txq;
unsigned int elts_head = txq->elts_head;
const unsigned int elts_n = txq->elts_n;
const unsigned int elts_m = elts_n - 1;
unsigned int bytes_sent = 0;
unsigned int i;
unsigned int max = elts_head - txq->elts_tail;
struct mlx4_sq *sq = &txq->msq;
volatile struct mlx4_wqe_ctrl_seg *ctrl;
struct txq_elt *elt;
assert(txq->elts_comp_cd != 0);
if (likely(max >= txq->elts_comp_cd_init))
mlx4_txq_complete(txq, elts_m, sq);
max = elts_n - max;
assert(max >= 1);
assert(max <= elts_n);
/* Always leave one free entry in the ring. */
--max;
if (max > pkts_n)
max = pkts_n;
elt = &(*txq->elts)[elts_head & elts_m];
/* First Tx burst element saves the next WQE control segment. */
ctrl = elt->wqe;
for (i = 0; (i != max); ++i) {
struct rte_mbuf *buf = pkts[i];
struct txq_elt *elt_next = &(*txq->elts)[++elts_head & elts_m];
uint32_t owner_opcode = sq->owner_opcode;
volatile struct mlx4_wqe_data_seg *dseg =
(volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
union {
uint32_t flags;
uint16_t flags16[2];
} srcrb;
uint32_t lkey;
bool tso = txq->priv->tso && (buf->ol_flags & PKT_TX_TCP_SEG);
/* Clean up old buffer. */
if (likely(elt->buf != NULL)) {
struct rte_mbuf *tmp = elt->buf;
#ifndef NDEBUG
/* Poisoning. */
memset(&elt->buf, 0x66, sizeof(struct rte_mbuf *));
#endif
/* Faster than rte_pktmbuf_free(). */
do {
struct rte_mbuf *next = tmp->next;
rte_pktmbuf_free_seg(tmp);
tmp = next;
} while (tmp != NULL);
}
RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
if (tso) {
/* Change opcode to TSO */
owner_opcode &= ~MLX4_OPCODE_CONFIG_CMD;
owner_opcode |= MLX4_OPCODE_LSO | MLX4_WQE_CTRL_RR;
ctrl_next = mlx4_tx_burst_tso(buf, txq, ctrl);
if (!ctrl_next) {
elt->buf = NULL;
break;
}
} else if (buf->nb_segs == 1) {
/* Validate WQE space in the send queue. */
if (sq->remain_size < MLX4_TXBB_SIZE) {
elt->buf = NULL;
break;
}
lkey = mlx4_tx_mb2mr(txq, buf);
if (unlikely(lkey == (uint32_t)-1)) {
/* MR does not exist. */
DEBUG("%p: unable to get MP <-> MR association",
(void *)txq);
elt->buf = NULL;
break;
}
mlx4_fill_tx_data_seg(dseg++, lkey,
rte_pktmbuf_mtod(buf, uintptr_t),
rte_cpu_to_be_32(buf->data_len));
/* Set WQE size in 16-byte units. */
ctrl->fence_size = 0x2;
sq->remain_size -= MLX4_TXBB_SIZE;
/* Align next WQE address to the next TXBB. */
ctrl_next = ctrl + 0x4;
} else {
ctrl_next = mlx4_tx_burst_segs(buf, txq, ctrl);
if (!ctrl_next) {
elt->buf = NULL;
break;
}
}
/* Hold SQ ring wrap around. */
if ((volatile uint8_t *)ctrl_next >= sq->eob) {
ctrl_next = (volatile struct mlx4_wqe_ctrl_seg *)
((volatile uint8_t *)ctrl_next - sq->size);
/* Flip HW valid ownership. */
sq->owner_opcode ^= 1u << MLX4_SQ_OWNER_BIT;
}
/*
* For raw Ethernet, the SOLICIT flag is used to indicate
* that no ICRC should be calculated.
*/
if (--txq->elts_comp_cd == 0) {
/* Save the completion burst end address. */
elt_next->eocb = (volatile uint32_t *)ctrl_next;
txq->elts_comp_cd = txq->elts_comp_cd_init;
srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
MLX4_WQE_CTRL_CQ_UPDATE);
} else {
srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
}
/* Enable HW checksum offload if requested */
if (txq->csum &&
(buf->ol_flags &
(PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
const uint64_t is_tunneled = (buf->ol_flags &
(PKT_TX_TUNNEL_GRE |
PKT_TX_TUNNEL_VXLAN));
if (is_tunneled && txq->csum_l2tun) {
owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
MLX4_WQE_CTRL_IL4_HDR_CSUM;
if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
srcrb.flags |=
RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
} else {
srcrb.flags |=
RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
MLX4_WQE_CTRL_TCP_UDP_CSUM);
}
}
if (txq->lb) {
/*
* Copy destination MAC address to the WQE, this allows
* loopback in eSwitch, so that VFs and PF can
* communicate with each other.
*/
srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
sizeof(uint16_t)));
} else {
ctrl->imm = 0;
}
ctrl->srcrb_flags = srcrb.flags;
/*
* Make sure descriptor is fully written before
* setting ownership bit (because HW can start
* executing as soon as we do).
*/
rte_io_wmb();
ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode);
elt->buf = buf;
bytes_sent += buf->pkt_len;
ctrl = ctrl_next;
elt = elt_next;
}
/* Take a shortcut if nothing must be sent. */
if (unlikely(i == 0))
return 0;
/* Save WQE address of the next Tx burst element. */
elt->wqe = ctrl;
/* Increment send statistics counters. */
txq->stats.opackets += i;
txq->stats.obytes += bytes_sent;
/* Make sure that descriptors are written before doorbell record. */
rte_wmb();
/* Ring QP doorbell. */
rte_write32(txq->msq.doorbell_qpn, txq->msq.db);
txq->elts_head += i;
return i;
}
/**
* Translate Rx completion flags to packet type.
*
* @param[in] cqe
* Pointer to CQE.
*
* @return
* Packet type for struct rte_mbuf.
*/
static inline uint32_t
rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe,
uint32_t l2tun_offload)
{
uint8_t idx = 0;
uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
uint32_t status = rte_be_to_cpu_32(cqe->status);
/*
* The index to the array should have:
* bit[7] - MLX4_CQE_L2_TUNNEL
* bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
*/
if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL))
idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
/*
* The index to the array should have:
* bit[5] - MLX4_CQE_STATUS_UDP
* bit[4] - MLX4_CQE_STATUS_TCP
* bit[3] - MLX4_CQE_STATUS_IPV4OPT
* bit[2] - MLX4_CQE_STATUS_IPV6
* bit[1] - MLX4_CQE_STATUS_IPF
* bit[0] - MLX4_CQE_STATUS_IPV4
* giving a total of up to 256 entries.
*/
idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
if (status & MLX4_CQE_STATUS_IPV6)
idx |= ((status & MLX4_CQE_STATUS_IPV6F) >> 11);
return mlx4_ptype_table[idx];
}
/**
* Translate Rx completion flags to offload flags.
*
* @param flags
* Rx completion flags returned by mlx4_cqe_flags().
* @param csum
* Whether Rx checksums are enabled.
* @param csum_l2tun
* Whether Rx L2 tunnel checksums are enabled.
*
* @return
* Offload flags (ol_flags) in mbuf format.
*/
static inline uint32_t
rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
{
uint32_t ol_flags = 0;
if (csum)
ol_flags |=
mlx4_transpose(flags,
MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
PKT_RX_IP_CKSUM_GOOD) |
mlx4_transpose(flags,
MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
PKT_RX_L4_CKSUM_GOOD);
if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
ol_flags |=
mlx4_transpose(flags,
MLX4_CQE_L2_TUNNEL_IPOK,
PKT_RX_IP_CKSUM_GOOD) |
mlx4_transpose(flags,
MLX4_CQE_L2_TUNNEL_L4_CSUM,
PKT_RX_L4_CKSUM_GOOD);
return ol_flags;
}
/**
* Extract checksum information from CQE flags.
*
* @param cqe
* Pointer to CQE structure.
* @param csum
* Whether Rx checksums are enabled.
* @param csum_l2tun
* Whether Rx L2 tunnel checksums are enabled.
*
* @return
* CQE checksum information.
*/
static inline uint32_t
mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
{
uint32_t flags = 0;
/*
* The relevant bits are in different locations on their
* CQE fields therefore we can join them in one 32bit
* variable.
*/
if (csum)
flags = (rte_be_to_cpu_32(cqe->status) &
MLX4_CQE_STATUS_IPV4_CSUM_OK);
if (csum_l2tun)
flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
(MLX4_CQE_L2_TUNNEL |
MLX4_CQE_L2_TUNNEL_IPOK |
MLX4_CQE_L2_TUNNEL_L4_CSUM |
MLX4_CQE_L2_TUNNEL_IPV4));
return flags;
}
/**
* Poll one CQE from CQ.
*
* @param rxq
* Pointer to the receive queue structure.
* @param[out] out
* Just polled CQE.
*
* @return
* Number of bytes of the CQE, 0 in case there is no completion.
*/
static unsigned int
mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
{
int ret = 0;
volatile struct mlx4_cqe *cqe = NULL;
struct mlx4_cq *cq = &rxq->mcq;
cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
!!(cq->cons_index & cq->cqe_cnt))
goto out;
/*
* Make sure we read CQ entry contents after we've checked the
* ownership bit.
*/
rte_rmb();
assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
MLX4_CQE_OPCODE_ERROR);
ret = rte_be_to_cpu_32(cqe->byte_cnt);
++cq->cons_index;
out:
*out = cqe;
return ret;
}
/**
* DPDK callback for Rx with scattered packets support.
*
* @param dpdk_rxq
* Generic pointer to Rx queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct rxq *rxq = dpdk_rxq;
const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
const uint16_t sges_n = rxq->sges_n;
struct rte_mbuf *pkt = NULL;
struct rte_mbuf *seg = NULL;
unsigned int i = 0;
uint32_t rq_ci = rxq->rq_ci << sges_n;
int len = 0;
while (pkts_n) {
volatile struct mlx4_cqe *cqe;
uint32_t idx = rq_ci & wr_cnt;
struct rte_mbuf *rep = (*rxq->elts)[idx];
volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];
/* Update the 'next' pointer of the previous segment. */
if (pkt)
seg->next = rep;
seg = rep;
rte_prefetch0(seg);
rte_prefetch0(scat);
rep = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(rep == NULL)) {
++rxq->stats.rx_nombuf;
if (!pkt) {
/*
* No buffers before we even started,
* bail out silently.
*/
break;
}
while (pkt != seg) {
assert(pkt != (*rxq->elts)[idx]);
rep = pkt->next;
pkt->next = NULL;
pkt->nb_segs = 1;
rte_mbuf_raw_free(pkt);
pkt = rep;
}
break;
}
if (!pkt) {
/* Looking for the new packet. */
len = mlx4_cq_poll_one(rxq, &cqe);
if (!len) {
rte_mbuf_raw_free(rep);
break;
}
if (unlikely(len < 0)) {
/* Rx error, packet is likely too large. */
rte_mbuf_raw_free(rep);
++rxq->stats.idropped;
goto skip;
}
pkt = seg;
assert(len >= (rxq->crc_present << 2));
/* Update packet information. */
pkt->packet_type =
rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload);
pkt->ol_flags = PKT_RX_RSS_HASH;
pkt->hash.rss = cqe->immed_rss_invalid;
if (rxq->crc_present)
len -= ETHER_CRC_LEN;
pkt->pkt_len = len;
if (rxq->csum | rxq->csum_l2tun) {
uint32_t flags =
mlx4_cqe_flags(cqe,
rxq->csum,
rxq->csum_l2tun);
pkt->ol_flags =
rxq_cq_to_ol_flags(flags,
rxq->csum,
rxq->csum_l2tun);
}
}
rep->nb_segs = 1;
rep->port = rxq->port_id;
rep->data_len = seg->data_len;
rep->data_off = seg->data_off;
(*rxq->elts)[idx] = rep;
/*
* Fill NIC descriptor with the new buffer. The lkey and size
* of the buffers are already known, only the buffer address
* changes.
*/
scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
/* If there's only one MR, no need to replace LKey in WQE. */
if (unlikely(mlx4_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
scat->lkey = mlx4_rx_mb2mr(rxq, rep);
if (len > seg->data_len) {
len -= seg->data_len;
++pkt->nb_segs;
++rq_ci;
continue;
}
/* The last segment. */
seg->data_len = len;
/* Increment bytes counter. */
rxq->stats.ibytes += pkt->pkt_len;
/* Return packet. */
*(pkts++) = pkt;
pkt = NULL;
--pkts_n;
++i;
skip:
/* Align consumer index to the next stride. */
rq_ci >>= sges_n;
++rq_ci;
rq_ci <<= sges_n;
}
if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
return 0;
/* Update the consumer index. */
rxq->rq_ci = rq_ci >> sges_n;
rte_wmb();
*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
*rxq->mcq.set_ci_db =
rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
/* Increment packets counter. */
rxq->stats.ipackets += i;
return i;
}
/**
* Dummy DPDK callback for Tx.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_txq
* Generic pointer to Tx queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
(void)dpdk_txq;
(void)pkts;
(void)pkts_n;
return 0;
}
/**
* Dummy DPDK callback for Rx.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_rxq
* Generic pointer to Rx queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
(void)dpdk_rxq;
(void)pkts;
(void)pkts_n;
return 0;
}