f-stack/dpdk/lib/librte_rcu/rte_rcu_qsbr.c

500 lines
13 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2018-2020 Arm Limited
*/
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
#include <errno.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_malloc.h>
#include <rte_eal.h>
#include <rte_atomic.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_errno.h>
#include <rte_ring_elem.h>
#include "rte_rcu_qsbr.h"
#include "rcu_qsbr_pvt.h"
/* Get the memory size of QSBR variable */
size_t
rte_rcu_qsbr_get_memsize(uint32_t max_threads)
{
size_t sz;
if (max_threads == 0) {
rte_log(RTE_LOG_ERR, rte_rcu_log_type,
"%s(): Invalid max_threads %u\n",
__func__, max_threads);
rte_errno = EINVAL;
return 1;
}
sz = sizeof(struct rte_rcu_qsbr);
/* Add the size of quiescent state counter array */
sz += sizeof(struct rte_rcu_qsbr_cnt) * max_threads;
/* Add the size of the registered thread ID bitmap array */
sz += __RTE_QSBR_THRID_ARRAY_SIZE(max_threads);
return sz;
}
/* Initialize a quiescent state variable */
int
rte_rcu_qsbr_init(struct rte_rcu_qsbr *v, uint32_t max_threads)
{
size_t sz;
if (v == NULL) {
rte_log(RTE_LOG_ERR, rte_rcu_log_type,
"%s(): Invalid input parameter\n", __func__);
rte_errno = EINVAL;
return 1;
}
sz = rte_rcu_qsbr_get_memsize(max_threads);
if (sz == 1)
return 1;
/* Set all the threads to offline */
memset(v, 0, sz);
v->max_threads = max_threads;
v->num_elems = RTE_ALIGN_MUL_CEIL(max_threads,
__RTE_QSBR_THRID_ARRAY_ELM_SIZE) /
__RTE_QSBR_THRID_ARRAY_ELM_SIZE;
v->token = __RTE_QSBR_CNT_INIT;
v->acked_token = __RTE_QSBR_CNT_INIT - 1;
return 0;
}
/* Register a reader thread to report its quiescent state
* on a QS variable.
*/
int
rte_rcu_qsbr_thread_register(struct rte_rcu_qsbr *v, unsigned int thread_id)
{
unsigned int i, id, success;
uint64_t old_bmap, new_bmap;
if (v == NULL || thread_id >= v->max_threads) {
rte_log(RTE_LOG_ERR, rte_rcu_log_type,
"%s(): Invalid input parameter\n", __func__);
rte_errno = EINVAL;
return 1;
}
__RTE_RCU_IS_LOCK_CNT_ZERO(v, thread_id, ERR, "Lock counter %u\n",
v->qsbr_cnt[thread_id].lock_cnt);
id = thread_id & __RTE_QSBR_THRID_MASK;
i = thread_id >> __RTE_QSBR_THRID_INDEX_SHIFT;
/* Make sure that the counter for registered threads does not
* go out of sync. Hence, additional checks are required.
*/
/* Check if the thread is already registered */
old_bmap = __atomic_load_n(__RTE_QSBR_THRID_ARRAY_ELM(v, i),
__ATOMIC_RELAXED);
if (old_bmap & 1UL << id)
return 0;
do {
new_bmap = old_bmap | (1UL << id);
success = __atomic_compare_exchange(
__RTE_QSBR_THRID_ARRAY_ELM(v, i),
&old_bmap, &new_bmap, 0,
__ATOMIC_RELEASE, __ATOMIC_RELAXED);
if (success)
__atomic_fetch_add(&v->num_threads,
1, __ATOMIC_RELAXED);
else if (old_bmap & (1UL << id))
/* Someone else registered this thread.
* Counter should not be incremented.
*/
return 0;
} while (success == 0);
return 0;
}
/* Remove a reader thread, from the list of threads reporting their
* quiescent state on a QS variable.
*/
int
rte_rcu_qsbr_thread_unregister(struct rte_rcu_qsbr *v, unsigned int thread_id)
{
unsigned int i, id, success;
uint64_t old_bmap, new_bmap;
if (v == NULL || thread_id >= v->max_threads) {
rte_log(RTE_LOG_ERR, rte_rcu_log_type,
"%s(): Invalid input parameter\n", __func__);
rte_errno = EINVAL;
return 1;
}
__RTE_RCU_IS_LOCK_CNT_ZERO(v, thread_id, ERR, "Lock counter %u\n",
v->qsbr_cnt[thread_id].lock_cnt);
id = thread_id & __RTE_QSBR_THRID_MASK;
i = thread_id >> __RTE_QSBR_THRID_INDEX_SHIFT;
/* Make sure that the counter for registered threads does not
* go out of sync. Hence, additional checks are required.
*/
/* Check if the thread is already unregistered */
old_bmap = __atomic_load_n(__RTE_QSBR_THRID_ARRAY_ELM(v, i),
__ATOMIC_RELAXED);
if (!(old_bmap & (1UL << id)))
return 0;
do {
new_bmap = old_bmap & ~(1UL << id);
/* Make sure any loads of the shared data structure are
* completed before removal of the thread from the list of
* reporting threads.
*/
success = __atomic_compare_exchange(
__RTE_QSBR_THRID_ARRAY_ELM(v, i),
&old_bmap, &new_bmap, 0,
__ATOMIC_RELEASE, __ATOMIC_RELAXED);
if (success)
__atomic_fetch_sub(&v->num_threads,
1, __ATOMIC_RELAXED);
else if (!(old_bmap & (1UL << id)))
/* Someone else unregistered this thread.
* Counter should not be incremented.
*/
return 0;
} while (success == 0);
return 0;
}
/* Wait till the reader threads have entered quiescent state. */
void
rte_rcu_qsbr_synchronize(struct rte_rcu_qsbr *v, unsigned int thread_id)
{
uint64_t t;
RTE_ASSERT(v != NULL);
t = rte_rcu_qsbr_start(v);
/* If the current thread has readside critical section,
* update its quiescent state status.
*/
if (thread_id != RTE_QSBR_THRID_INVALID)
rte_rcu_qsbr_quiescent(v, thread_id);
/* Wait for other readers to enter quiescent state */
rte_rcu_qsbr_check(v, t, true);
}
/* Dump the details of a single quiescent state variable to a file. */
int
rte_rcu_qsbr_dump(FILE *f, struct rte_rcu_qsbr *v)
{
uint64_t bmap;
uint32_t i, t, id;
if (v == NULL || f == NULL) {
rte_log(RTE_LOG_ERR, rte_rcu_log_type,
"%s(): Invalid input parameter\n", __func__);
rte_errno = EINVAL;
return 1;
}
fprintf(f, "\nQuiescent State Variable @%p\n", v);
fprintf(f, " QS variable memory size = %zu\n",
rte_rcu_qsbr_get_memsize(v->max_threads));
fprintf(f, " Given # max threads = %u\n", v->max_threads);
fprintf(f, " Current # threads = %u\n", v->num_threads);
fprintf(f, " Registered thread IDs = ");
for (i = 0; i < v->num_elems; i++) {
bmap = __atomic_load_n(__RTE_QSBR_THRID_ARRAY_ELM(v, i),
__ATOMIC_ACQUIRE);
id = i << __RTE_QSBR_THRID_INDEX_SHIFT;
while (bmap) {
t = __builtin_ctzl(bmap);
fprintf(f, "%u ", id + t);
bmap &= ~(1UL << t);
}
}
fprintf(f, "\n");
fprintf(f, " Token = %" PRIu64 "\n",
__atomic_load_n(&v->token, __ATOMIC_ACQUIRE));
fprintf(f, " Least Acknowledged Token = %" PRIu64 "\n",
__atomic_load_n(&v->acked_token, __ATOMIC_ACQUIRE));
fprintf(f, "Quiescent State Counts for readers:\n");
for (i = 0; i < v->num_elems; i++) {
bmap = __atomic_load_n(__RTE_QSBR_THRID_ARRAY_ELM(v, i),
__ATOMIC_ACQUIRE);
id = i << __RTE_QSBR_THRID_INDEX_SHIFT;
while (bmap) {
t = __builtin_ctzl(bmap);
fprintf(f, "thread ID = %u, count = %" PRIu64 ", lock count = %u\n",
id + t,
__atomic_load_n(
&v->qsbr_cnt[id + t].cnt,
__ATOMIC_RELAXED),
__atomic_load_n(
&v->qsbr_cnt[id + t].lock_cnt,
__ATOMIC_RELAXED));
bmap &= ~(1UL << t);
}
}
return 0;
}
/* Create a queue used to store the data structure elements that can
* be freed later. This queue is referred to as 'defer queue'.
*/
struct rte_rcu_qsbr_dq *
rte_rcu_qsbr_dq_create(const struct rte_rcu_qsbr_dq_parameters *params)
{
struct rte_rcu_qsbr_dq *dq;
uint32_t qs_fifo_size;
unsigned int flags;
if (params == NULL || params->free_fn == NULL ||
params->v == NULL || params->name == NULL ||
params->size == 0 || params->esize == 0 ||
(params->esize % 4 != 0)) {
rte_log(RTE_LOG_ERR, rte_rcu_log_type,
"%s(): Invalid input parameter\n", __func__);
rte_errno = EINVAL;
return NULL;
}
/* If auto reclamation is configured, reclaim limit
* should be a valid value.
*/
if ((params->trigger_reclaim_limit <= params->size) &&
(params->max_reclaim_size == 0)) {
rte_log(RTE_LOG_ERR, rte_rcu_log_type,
"%s(): Invalid input parameter, size = %u, trigger_reclaim_limit = %u, max_reclaim_size = %u\n",
__func__, params->size, params->trigger_reclaim_limit,
params->max_reclaim_size);
rte_errno = EINVAL;
return NULL;
}
dq = rte_zmalloc(NULL, sizeof(struct rte_rcu_qsbr_dq),
RTE_CACHE_LINE_SIZE);
if (dq == NULL) {
rte_errno = ENOMEM;
return NULL;
}
/* Decide the flags for the ring.
* If MT safety is requested, use RTS for ring enqueue as most
* use cases involve dq-enqueue happening on the control plane.
* Ring dequeue is always HTS due to the possibility of revert.
*/
flags = RING_F_MP_RTS_ENQ;
if (params->flags & RTE_RCU_QSBR_DQ_MT_UNSAFE)
flags = RING_F_SP_ENQ;
flags |= RING_F_MC_HTS_DEQ;
/* round up qs_fifo_size to next power of two that is not less than
* max_size.
*/
qs_fifo_size = rte_align32pow2(params->size + 1);
/* Add token size to ring element size */
dq->r = rte_ring_create_elem(params->name,
__RTE_QSBR_TOKEN_SIZE + params->esize,
qs_fifo_size, SOCKET_ID_ANY, flags);
if (dq->r == NULL) {
rte_log(RTE_LOG_ERR, rte_rcu_log_type,
"%s(): defer queue create failed\n", __func__);
rte_free(dq);
return NULL;
}
dq->v = params->v;
dq->size = params->size;
dq->esize = __RTE_QSBR_TOKEN_SIZE + params->esize;
dq->trigger_reclaim_limit = params->trigger_reclaim_limit;
dq->max_reclaim_size = params->max_reclaim_size;
dq->free_fn = params->free_fn;
dq->p = params->p;
return dq;
}
/* Enqueue one resource to the defer queue to free after the grace
* period is over.
*/
int rte_rcu_qsbr_dq_enqueue(struct rte_rcu_qsbr_dq *dq, void *e)
{
__rte_rcu_qsbr_dq_elem_t *dq_elem;
uint32_t cur_size;
if (dq == NULL || e == NULL) {
rte_log(RTE_LOG_ERR, rte_rcu_log_type,
"%s(): Invalid input parameter\n", __func__);
rte_errno = EINVAL;
return 1;
}
char data[dq->esize];
dq_elem = (__rte_rcu_qsbr_dq_elem_t *)data;
/* Start the grace period */
dq_elem->token = rte_rcu_qsbr_start(dq->v);
/* Reclaim resources if the queue size has hit the reclaim
* limit. This helps the queue from growing too large and
* allows time for reader threads to report their quiescent state.
*/
cur_size = rte_ring_count(dq->r);
if (cur_size > dq->trigger_reclaim_limit) {
rte_log(RTE_LOG_INFO, rte_rcu_log_type,
"%s(): Triggering reclamation\n", __func__);
rte_rcu_qsbr_dq_reclaim(dq, dq->max_reclaim_size,
NULL, NULL, NULL);
}
/* Enqueue the token and resource. Generating the token and
* enqueuing (token + resource) on the queue is not an
* atomic operation. When the defer queue is shared by multiple
* writers, this might result in tokens enqueued out of order
* on the queue. So, some tokens might wait longer than they
* are required to be reclaimed.
*/
memcpy(dq_elem->elem, e, dq->esize - __RTE_QSBR_TOKEN_SIZE);
/* Check the status as enqueue might fail since the other threads
* might have used up the freed space.
* Enqueue uses the configured flags when the DQ was created.
*/
if (rte_ring_enqueue_elem(dq->r, data, dq->esize) != 0) {
rte_log(RTE_LOG_ERR, rte_rcu_log_type,
"%s(): Enqueue failed\n", __func__);
/* Note that the token generated above is not used.
* Other than wasting tokens, it should not cause any
* other issues.
*/
rte_log(RTE_LOG_INFO, rte_rcu_log_type,
"%s(): Skipped enqueuing token = %" PRIu64 "\n",
__func__, dq_elem->token);
rte_errno = ENOSPC;
return 1;
}
rte_log(RTE_LOG_INFO, rte_rcu_log_type,
"%s(): Enqueued token = %" PRIu64 "\n",
__func__, dq_elem->token);
return 0;
}
/* Reclaim resources from the defer queue. */
int
rte_rcu_qsbr_dq_reclaim(struct rte_rcu_qsbr_dq *dq, unsigned int n,
unsigned int *freed, unsigned int *pending,
unsigned int *available)
{
uint32_t cnt;
__rte_rcu_qsbr_dq_elem_t *dq_elem;
if (dq == NULL || n == 0) {
rte_log(RTE_LOG_ERR, rte_rcu_log_type,
"%s(): Invalid input parameter\n", __func__);
rte_errno = EINVAL;
return 1;
}
cnt = 0;
char data[dq->esize];
/* Check reader threads quiescent state and reclaim resources */
while (cnt < n &&
rte_ring_dequeue_bulk_elem_start(dq->r, &data,
dq->esize, 1, available) != 0) {
dq_elem = (__rte_rcu_qsbr_dq_elem_t *)data;
/* Reclaim the resource */
if (rte_rcu_qsbr_check(dq->v, dq_elem->token, false) != 1) {
rte_ring_dequeue_elem_finish(dq->r, 0);
break;
}
rte_ring_dequeue_elem_finish(dq->r, 1);
rte_log(RTE_LOG_INFO, rte_rcu_log_type,
"%s(): Reclaimed token = %" PRIu64 "\n",
__func__, dq_elem->token);
dq->free_fn(dq->p, dq_elem->elem, 1);
cnt++;
}
rte_log(RTE_LOG_INFO, rte_rcu_log_type,
"%s(): Reclaimed %u resources\n", __func__, cnt);
if (freed != NULL)
*freed = cnt;
if (pending != NULL)
*pending = rte_ring_count(dq->r);
return 0;
}
/* Delete a defer queue. */
int
rte_rcu_qsbr_dq_delete(struct rte_rcu_qsbr_dq *dq)
{
unsigned int pending;
if (dq == NULL) {
rte_log(RTE_LOG_DEBUG, rte_rcu_log_type,
"%s(): Invalid input parameter\n", __func__);
return 0;
}
/* Reclaim all the resources */
rte_rcu_qsbr_dq_reclaim(dq, ~0, NULL, &pending, NULL);
if (pending != 0) {
rte_errno = EAGAIN;
return 1;
}
rte_ring_free(dq->r);
rte_free(dq);
return 0;
}
RTE_LOG_REGISTER(rte_rcu_log_type, lib.rcu, ERR);