f-stack/dpdk/lib/librte_mempool/rte_mempool.c

1338 lines
34 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation.
* Copyright(c) 2016 6WIND S.A.
*/
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <inttypes.h>
#include <errno.h>
#include <sys/queue.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_atomic.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_errno.h>
#include <rte_string_fns.h>
#include <rte_spinlock.h>
#include <rte_tailq.h>
#include <rte_eal_paging.h>
#include "rte_mempool.h"
#include "rte_mempool_trace.h"
TAILQ_HEAD(rte_mempool_list, rte_tailq_entry);
static struct rte_tailq_elem rte_mempool_tailq = {
.name = "RTE_MEMPOOL",
};
EAL_REGISTER_TAILQ(rte_mempool_tailq)
#define CACHE_FLUSHTHRESH_MULTIPLIER 1.5
#define CALC_CACHE_FLUSHTHRESH(c) \
((typeof(c))((c) * CACHE_FLUSHTHRESH_MULTIPLIER))
#if defined(RTE_ARCH_X86)
/*
* return the greatest common divisor between a and b (fast algorithm)
*
*/
static unsigned get_gcd(unsigned a, unsigned b)
{
unsigned c;
if (0 == a)
return b;
if (0 == b)
return a;
if (a < b) {
c = a;
a = b;
b = c;
}
while (b != 0) {
c = a % b;
a = b;
b = c;
}
return a;
}
/*
* Depending on memory configuration on x86 arch, objects addresses are spread
* between channels and ranks in RAM: the pool allocator will add
* padding between objects. This function return the new size of the
* object.
*/
static unsigned int
arch_mem_object_align(unsigned int obj_size)
{
unsigned nrank, nchan;
unsigned new_obj_size;
/* get number of channels */
nchan = rte_memory_get_nchannel();
if (nchan == 0)
nchan = 4;
nrank = rte_memory_get_nrank();
if (nrank == 0)
nrank = 1;
/* process new object size */
new_obj_size = (obj_size + RTE_MEMPOOL_ALIGN_MASK) / RTE_MEMPOOL_ALIGN;
while (get_gcd(new_obj_size, nrank * nchan) != 1)
new_obj_size++;
return new_obj_size * RTE_MEMPOOL_ALIGN;
}
#else
static unsigned int
arch_mem_object_align(unsigned int obj_size)
{
return obj_size;
}
#endif
struct pagesz_walk_arg {
int socket_id;
size_t min;
};
static int
find_min_pagesz(const struct rte_memseg_list *msl, void *arg)
{
struct pagesz_walk_arg *wa = arg;
bool valid;
/*
* we need to only look at page sizes available for a particular socket
* ID. so, we either need an exact match on socket ID (can match both
* native and external memory), or, if SOCKET_ID_ANY was specified as a
* socket ID argument, we must only look at native memory and ignore any
* page sizes associated with external memory.
*/
valid = msl->socket_id == wa->socket_id;
valid |= wa->socket_id == SOCKET_ID_ANY && msl->external == 0;
if (valid && msl->page_sz < wa->min)
wa->min = msl->page_sz;
return 0;
}
static size_t
get_min_page_size(int socket_id)
{
struct pagesz_walk_arg wa;
wa.min = SIZE_MAX;
wa.socket_id = socket_id;
rte_memseg_list_walk(find_min_pagesz, &wa);
return wa.min == SIZE_MAX ? (size_t) rte_mem_page_size() : wa.min;
}
static void
mempool_add_elem(struct rte_mempool *mp, __rte_unused void *opaque,
void *obj, rte_iova_t iova)
{
struct rte_mempool_objhdr *hdr;
struct rte_mempool_objtlr *tlr __rte_unused;
/* set mempool ptr in header */
hdr = RTE_PTR_SUB(obj, sizeof(*hdr));
hdr->mp = mp;
hdr->iova = iova;
STAILQ_INSERT_TAIL(&mp->elt_list, hdr, next);
mp->populated_size++;
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
tlr = __mempool_get_trailer(obj);
tlr->cookie = RTE_MEMPOOL_TRAILER_COOKIE;
#endif
}
/* call obj_cb() for each mempool element */
uint32_t
rte_mempool_obj_iter(struct rte_mempool *mp,
rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg)
{
struct rte_mempool_objhdr *hdr;
void *obj;
unsigned n = 0;
STAILQ_FOREACH(hdr, &mp->elt_list, next) {
obj = (char *)hdr + sizeof(*hdr);
obj_cb(mp, obj_cb_arg, obj, n);
n++;
}
return n;
}
/* call mem_cb() for each mempool memory chunk */
uint32_t
rte_mempool_mem_iter(struct rte_mempool *mp,
rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg)
{
struct rte_mempool_memhdr *hdr;
unsigned n = 0;
STAILQ_FOREACH(hdr, &mp->mem_list, next) {
mem_cb(mp, mem_cb_arg, hdr, n);
n++;
}
return n;
}
/* get the header, trailer and total size of a mempool element. */
uint32_t
rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
struct rte_mempool_objsz *sz)
{
struct rte_mempool_objsz lsz;
sz = (sz != NULL) ? sz : &lsz;
sz->header_size = sizeof(struct rte_mempool_objhdr);
if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0)
sz->header_size = RTE_ALIGN_CEIL(sz->header_size,
RTE_MEMPOOL_ALIGN);
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
sz->trailer_size = sizeof(struct rte_mempool_objtlr);
#else
sz->trailer_size = 0;
#endif
/* element size is 8 bytes-aligned at least */
sz->elt_size = RTE_ALIGN_CEIL(elt_size, sizeof(uint64_t));
/* expand trailer to next cache line */
if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0) {
sz->total_size = sz->header_size + sz->elt_size +
sz->trailer_size;
sz->trailer_size += ((RTE_MEMPOOL_ALIGN -
(sz->total_size & RTE_MEMPOOL_ALIGN_MASK)) &
RTE_MEMPOOL_ALIGN_MASK);
}
/*
* increase trailer to add padding between objects in order to
* spread them across memory channels/ranks
*/
if ((flags & MEMPOOL_F_NO_SPREAD) == 0) {
unsigned new_size;
new_size = arch_mem_object_align
(sz->header_size + sz->elt_size + sz->trailer_size);
sz->trailer_size = new_size - sz->header_size - sz->elt_size;
}
/* this is the size of an object, including header and trailer */
sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size;
return sz->total_size;
}
/* free a memchunk allocated with rte_memzone_reserve() */
static void
rte_mempool_memchunk_mz_free(__rte_unused struct rte_mempool_memhdr *memhdr,
void *opaque)
{
const struct rte_memzone *mz = opaque;
rte_memzone_free(mz);
}
/* Free memory chunks used by a mempool. Objects must be in pool */
static void
rte_mempool_free_memchunks(struct rte_mempool *mp)
{
struct rte_mempool_memhdr *memhdr;
void *elt;
while (!STAILQ_EMPTY(&mp->elt_list)) {
rte_mempool_ops_dequeue_bulk(mp, &elt, 1);
(void)elt;
STAILQ_REMOVE_HEAD(&mp->elt_list, next);
mp->populated_size--;
}
while (!STAILQ_EMPTY(&mp->mem_list)) {
memhdr = STAILQ_FIRST(&mp->mem_list);
STAILQ_REMOVE_HEAD(&mp->mem_list, next);
if (memhdr->free_cb != NULL)
memhdr->free_cb(memhdr, memhdr->opaque);
rte_free(memhdr);
mp->nb_mem_chunks--;
}
}
static int
mempool_ops_alloc_once(struct rte_mempool *mp)
{
int ret;
/* create the internal ring if not already done */
if ((mp->flags & MEMPOOL_F_POOL_CREATED) == 0) {
ret = rte_mempool_ops_alloc(mp);
if (ret != 0)
return ret;
mp->flags |= MEMPOOL_F_POOL_CREATED;
}
return 0;
}
/* Add objects in the pool, using a physically contiguous memory
* zone. Return the number of objects added, or a negative value
* on error.
*/
int
rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr,
rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
void *opaque)
{
unsigned i = 0;
size_t off;
struct rte_mempool_memhdr *memhdr;
int ret;
ret = mempool_ops_alloc_once(mp);
if (ret != 0)
return ret;
/* mempool is already populated */
if (mp->populated_size >= mp->size)
return -ENOSPC;
memhdr = rte_zmalloc("MEMPOOL_MEMHDR", sizeof(*memhdr), 0);
if (memhdr == NULL)
return -ENOMEM;
memhdr->mp = mp;
memhdr->addr = vaddr;
memhdr->iova = iova;
memhdr->len = len;
memhdr->free_cb = free_cb;
memhdr->opaque = opaque;
if (mp->flags & MEMPOOL_F_NO_CACHE_ALIGN)
off = RTE_PTR_ALIGN_CEIL(vaddr, 8) - vaddr;
else
off = RTE_PTR_ALIGN_CEIL(vaddr, RTE_MEMPOOL_ALIGN) - vaddr;
if (off > len) {
ret = 0;
goto fail;
}
i = rte_mempool_ops_populate(mp, mp->size - mp->populated_size,
(char *)vaddr + off,
(iova == RTE_BAD_IOVA) ? RTE_BAD_IOVA : (iova + off),
len - off, mempool_add_elem, NULL);
/* not enough room to store one object */
if (i == 0) {
ret = 0;
goto fail;
}
STAILQ_INSERT_TAIL(&mp->mem_list, memhdr, next);
mp->nb_mem_chunks++;
rte_mempool_trace_populate_iova(mp, vaddr, iova, len, free_cb, opaque);
return i;
fail:
rte_free(memhdr);
return ret;
}
static rte_iova_t
get_iova(void *addr)
{
struct rte_memseg *ms;
/* try registered memory first */
ms = rte_mem_virt2memseg(addr, NULL);
if (ms == NULL || ms->iova == RTE_BAD_IOVA)
/* fall back to actual physical address */
return rte_mem_virt2iova(addr);
return ms->iova + RTE_PTR_DIFF(addr, ms->addr);
}
/* Populate the mempool with a virtual area. Return the number of
* objects added, or a negative value on error.
*/
int
rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
void *opaque)
{
rte_iova_t iova;
size_t off, phys_len;
int ret, cnt = 0;
if (mp->flags & MEMPOOL_F_NO_IOVA_CONTIG)
return rte_mempool_populate_iova(mp, addr, RTE_BAD_IOVA,
len, free_cb, opaque);
for (off = 0; off < len &&
mp->populated_size < mp->size; off += phys_len) {
iova = get_iova(addr + off);
/* populate with the largest group of contiguous pages */
for (phys_len = RTE_MIN(
(size_t)(RTE_PTR_ALIGN_CEIL(addr + off + 1, pg_sz) -
(addr + off)),
len - off);
off + phys_len < len;
phys_len = RTE_MIN(phys_len + pg_sz, len - off)) {
rte_iova_t iova_tmp;
iova_tmp = get_iova(addr + off + phys_len);
if (iova_tmp == RTE_BAD_IOVA ||
iova_tmp != iova + phys_len)
break;
}
ret = rte_mempool_populate_iova(mp, addr + off, iova,
phys_len, free_cb, opaque);
if (ret == 0)
continue;
if (ret < 0)
goto fail;
/* no need to call the free callback for next chunks */
free_cb = NULL;
cnt += ret;
}
rte_mempool_trace_populate_virt(mp, addr, len, pg_sz, free_cb, opaque);
return cnt;
fail:
rte_mempool_free_memchunks(mp);
return ret;
}
/* Get the minimal page size used in a mempool before populating it. */
int
rte_mempool_get_page_size(struct rte_mempool *mp, size_t *pg_sz)
{
bool need_iova_contig_obj;
bool alloc_in_ext_mem;
int ret;
/* check if we can retrieve a valid socket ID */
ret = rte_malloc_heap_socket_is_external(mp->socket_id);
if (ret < 0)
return -EINVAL;
alloc_in_ext_mem = (ret == 1);
need_iova_contig_obj = !(mp->flags & MEMPOOL_F_NO_IOVA_CONTIG);
if (!need_iova_contig_obj)
*pg_sz = 0;
else if (rte_eal_has_hugepages() || alloc_in_ext_mem)
*pg_sz = get_min_page_size(mp->socket_id);
else
*pg_sz = rte_mem_page_size();
rte_mempool_trace_get_page_size(mp, *pg_sz);
return 0;
}
/* Default function to populate the mempool: allocate memory in memzones,
* and populate them. Return the number of objects added, or a negative
* value on error.
*/
int
rte_mempool_populate_default(struct rte_mempool *mp)
{
unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
char mz_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
ssize_t mem_size;
size_t align, pg_sz, pg_shift = 0;
rte_iova_t iova;
unsigned mz_id, n;
int ret;
bool need_iova_contig_obj;
size_t max_alloc_size = SIZE_MAX;
ret = mempool_ops_alloc_once(mp);
if (ret != 0)
return ret;
/* mempool must not be populated */
if (mp->nb_mem_chunks != 0)
return -EEXIST;
/*
* the following section calculates page shift and page size values.
*
* these values impact the result of calc_mem_size operation, which
* returns the amount of memory that should be allocated to store the
* desired number of objects. when not zero, it allocates more memory
* for the padding between objects, to ensure that an object does not
* cross a page boundary. in other words, page size/shift are to be set
* to zero if mempool elements won't care about page boundaries.
* there are several considerations for page size and page shift here.
*
* if we don't need our mempools to have physically contiguous objects,
* then just set page shift and page size to 0, because the user has
* indicated that there's no need to care about anything.
*
* if we do need contiguous objects (if a mempool driver has its
* own calc_size() method returning min_chunk_size = mem_size),
* there is also an option to reserve the entire mempool memory
* as one contiguous block of memory.
*
* if we require contiguous objects, but not necessarily the entire
* mempool reserved space to be contiguous, pg_sz will be != 0,
* and the default ops->populate() will take care of not placing
* objects across pages.
*
* if our IO addresses are physical, we may get memory from bigger
* pages, or we might get memory from smaller pages, and how much of it
* we require depends on whether we want bigger or smaller pages.
* However, requesting each and every memory size is too much work, so
* what we'll do instead is walk through the page sizes available, pick
* the smallest one and set up page shift to match that one. We will be
* wasting some space this way, but it's much nicer than looping around
* trying to reserve each and every page size.
*
* If we fail to get enough contiguous memory, then we'll go and
* reserve space in smaller chunks.
*/
need_iova_contig_obj = !(mp->flags & MEMPOOL_F_NO_IOVA_CONTIG);
ret = rte_mempool_get_page_size(mp, &pg_sz);
if (ret < 0)
return ret;
if (pg_sz != 0)
pg_shift = rte_bsf32(pg_sz);
for (mz_id = 0, n = mp->size; n > 0; mz_id++, n -= ret) {
size_t min_chunk_size;
mem_size = rte_mempool_ops_calc_mem_size(
mp, n, pg_shift, &min_chunk_size, &align);
if (mem_size < 0) {
ret = mem_size;
goto fail;
}
ret = snprintf(mz_name, sizeof(mz_name),
RTE_MEMPOOL_MZ_FORMAT "_%d", mp->name, mz_id);
if (ret < 0 || ret >= (int)sizeof(mz_name)) {
ret = -ENAMETOOLONG;
goto fail;
}
/* if we're trying to reserve contiguous memory, add appropriate
* memzone flag.
*/
if (min_chunk_size == (size_t)mem_size)
mz_flags |= RTE_MEMZONE_IOVA_CONTIG;
/* Allocate a memzone, retrying with a smaller area on ENOMEM */
do {
mz = rte_memzone_reserve_aligned(mz_name,
RTE_MIN((size_t)mem_size, max_alloc_size),
mp->socket_id, mz_flags, align);
if (mz != NULL || rte_errno != ENOMEM)
break;
max_alloc_size = RTE_MIN(max_alloc_size,
(size_t)mem_size) / 2;
} while (mz == NULL && max_alloc_size >= min_chunk_size);
if (mz == NULL) {
ret = -rte_errno;
goto fail;
}
if (need_iova_contig_obj)
iova = mz->iova;
else
iova = RTE_BAD_IOVA;
if (pg_sz == 0 || (mz_flags & RTE_MEMZONE_IOVA_CONTIG))
ret = rte_mempool_populate_iova(mp, mz->addr,
iova, mz->len,
rte_mempool_memchunk_mz_free,
(void *)(uintptr_t)mz);
else
ret = rte_mempool_populate_virt(mp, mz->addr,
mz->len, pg_sz,
rte_mempool_memchunk_mz_free,
(void *)(uintptr_t)mz);
if (ret == 0) /* should not happen */
ret = -ENOBUFS;
if (ret < 0) {
rte_memzone_free(mz);
goto fail;
}
}
rte_mempool_trace_populate_default(mp);
return mp->size;
fail:
rte_mempool_free_memchunks(mp);
return ret;
}
/* return the memory size required for mempool objects in anonymous mem */
static ssize_t
get_anon_size(const struct rte_mempool *mp)
{
ssize_t size;
size_t pg_sz, pg_shift;
size_t min_chunk_size;
size_t align;
pg_sz = rte_mem_page_size();
pg_shift = rte_bsf32(pg_sz);
size = rte_mempool_ops_calc_mem_size(mp, mp->size, pg_shift,
&min_chunk_size, &align);
return size;
}
/* unmap a memory zone mapped by rte_mempool_populate_anon() */
static void
rte_mempool_memchunk_anon_free(struct rte_mempool_memhdr *memhdr,
void *opaque)
{
ssize_t size;
/*
* Calculate size since memhdr->len has contiguous chunk length
* which may be smaller if anon map is split into many contiguous
* chunks. Result must be the same as we calculated on populate.
*/
size = get_anon_size(memhdr->mp);
if (size < 0)
return;
rte_mem_unmap(opaque, size);
}
/* populate the mempool with an anonymous mapping */
int
rte_mempool_populate_anon(struct rte_mempool *mp)
{
ssize_t size;
int ret;
char *addr;
/* mempool is already populated, error */
if ((!STAILQ_EMPTY(&mp->mem_list)) || mp->nb_mem_chunks != 0) {
rte_errno = EINVAL;
return 0;
}
ret = mempool_ops_alloc_once(mp);
if (ret < 0) {
rte_errno = -ret;
return 0;
}
size = get_anon_size(mp);
if (size < 0) {
rte_errno = -size;
return 0;
}
/* get chunk of virtually continuous memory */
addr = rte_mem_map(NULL, size, RTE_PROT_READ | RTE_PROT_WRITE,
RTE_MAP_SHARED | RTE_MAP_ANONYMOUS, -1, 0);
if (addr == NULL)
return 0;
/* can't use MMAP_LOCKED, it does not exist on BSD */
if (rte_mem_lock(addr, size) < 0) {
rte_mem_unmap(addr, size);
return 0;
}
ret = rte_mempool_populate_virt(mp, addr, size, rte_mem_page_size(),
rte_mempool_memchunk_anon_free, addr);
if (ret == 0) /* should not happen */
ret = -ENOBUFS;
if (ret < 0) {
rte_errno = -ret;
goto fail;
}
rte_mempool_trace_populate_anon(mp);
return mp->populated_size;
fail:
rte_mempool_free_memchunks(mp);
return 0;
}
/* free a mempool */
void
rte_mempool_free(struct rte_mempool *mp)
{
struct rte_mempool_list *mempool_list = NULL;
struct rte_tailq_entry *te;
if (mp == NULL)
return;
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
rte_mcfg_tailq_write_lock();
/* find out tailq entry */
TAILQ_FOREACH(te, mempool_list, next) {
if (te->data == (void *)mp)
break;
}
if (te != NULL) {
TAILQ_REMOVE(mempool_list, te, next);
rte_free(te);
}
rte_mcfg_tailq_write_unlock();
rte_mempool_trace_free(mp);
rte_mempool_free_memchunks(mp);
rte_mempool_ops_free(mp);
rte_memzone_free(mp->mz);
}
static void
mempool_cache_init(struct rte_mempool_cache *cache, uint32_t size)
{
cache->size = size;
cache->flushthresh = CALC_CACHE_FLUSHTHRESH(size);
cache->len = 0;
}
/*
* Create and initialize a cache for objects that are retrieved from and
* returned to an underlying mempool. This structure is identical to the
* local_cache[lcore_id] pointed to by the mempool structure.
*/
struct rte_mempool_cache *
rte_mempool_cache_create(uint32_t size, int socket_id)
{
struct rte_mempool_cache *cache;
if (size == 0 || size > RTE_MEMPOOL_CACHE_MAX_SIZE) {
rte_errno = EINVAL;
return NULL;
}
cache = rte_zmalloc_socket("MEMPOOL_CACHE", sizeof(*cache),
RTE_CACHE_LINE_SIZE, socket_id);
if (cache == NULL) {
RTE_LOG(ERR, MEMPOOL, "Cannot allocate mempool cache.\n");
rte_errno = ENOMEM;
return NULL;
}
mempool_cache_init(cache, size);
rte_mempool_trace_cache_create(size, socket_id, cache);
return cache;
}
/*
* Free a cache. It's the responsibility of the user to make sure that any
* remaining objects in the cache are flushed to the corresponding
* mempool.
*/
void
rte_mempool_cache_free(struct rte_mempool_cache *cache)
{
rte_mempool_trace_cache_free(cache);
rte_free(cache);
}
/* create an empty mempool */
struct rte_mempool *
rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
unsigned cache_size, unsigned private_data_size,
int socket_id, unsigned flags)
{
char mz_name[RTE_MEMZONE_NAMESIZE];
struct rte_mempool_list *mempool_list;
struct rte_mempool *mp = NULL;
struct rte_tailq_entry *te = NULL;
const struct rte_memzone *mz = NULL;
size_t mempool_size;
unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
struct rte_mempool_objsz objsz;
unsigned lcore_id;
int ret;
/* compilation-time checks */
RTE_BUILD_BUG_ON((sizeof(struct rte_mempool) &
RTE_CACHE_LINE_MASK) != 0);
RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_cache) &
RTE_CACHE_LINE_MASK) != 0);
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_debug_stats) &
RTE_CACHE_LINE_MASK) != 0);
RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, stats) &
RTE_CACHE_LINE_MASK) != 0);
#endif
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
/* asked for zero items */
if (n == 0) {
rte_errno = EINVAL;
return NULL;
}
/* asked cache too big */
if (cache_size > RTE_MEMPOOL_CACHE_MAX_SIZE ||
CALC_CACHE_FLUSHTHRESH(cache_size) > n) {
rte_errno = EINVAL;
return NULL;
}
/* "no cache align" imply "no spread" */
if (flags & MEMPOOL_F_NO_CACHE_ALIGN)
flags |= MEMPOOL_F_NO_SPREAD;
/* calculate mempool object sizes. */
if (!rte_mempool_calc_obj_size(elt_size, flags, &objsz)) {
rte_errno = EINVAL;
return NULL;
}
rte_mcfg_mempool_write_lock();
/*
* reserve a memory zone for this mempool: private data is
* cache-aligned
*/
private_data_size = (private_data_size +
RTE_MEMPOOL_ALIGN_MASK) & (~RTE_MEMPOOL_ALIGN_MASK);
/* try to allocate tailq entry */
te = rte_zmalloc("MEMPOOL_TAILQ_ENTRY", sizeof(*te), 0);
if (te == NULL) {
RTE_LOG(ERR, MEMPOOL, "Cannot allocate tailq entry!\n");
goto exit_unlock;
}
mempool_size = MEMPOOL_HEADER_SIZE(mp, cache_size);
mempool_size += private_data_size;
mempool_size = RTE_ALIGN_CEIL(mempool_size, RTE_MEMPOOL_ALIGN);
ret = snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT, name);
if (ret < 0 || ret >= (int)sizeof(mz_name)) {
rte_errno = ENAMETOOLONG;
goto exit_unlock;
}
mz = rte_memzone_reserve(mz_name, mempool_size, socket_id, mz_flags);
if (mz == NULL)
goto exit_unlock;
/* init the mempool structure */
mp = mz->addr;
memset(mp, 0, MEMPOOL_HEADER_SIZE(mp, cache_size));
ret = strlcpy(mp->name, name, sizeof(mp->name));
if (ret < 0 || ret >= (int)sizeof(mp->name)) {
rte_errno = ENAMETOOLONG;
goto exit_unlock;
}
mp->mz = mz;
mp->size = n;
mp->flags = flags;
mp->socket_id = socket_id;
mp->elt_size = objsz.elt_size;
mp->header_size = objsz.header_size;
mp->trailer_size = objsz.trailer_size;
/* Size of default caches, zero means disabled. */
mp->cache_size = cache_size;
mp->private_data_size = private_data_size;
STAILQ_INIT(&mp->elt_list);
STAILQ_INIT(&mp->mem_list);
/*
* local_cache pointer is set even if cache_size is zero.
* The local_cache points to just past the elt_pa[] array.
*/
mp->local_cache = (struct rte_mempool_cache *)
RTE_PTR_ADD(mp, MEMPOOL_HEADER_SIZE(mp, 0));
/* Init all default caches. */
if (cache_size != 0) {
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
mempool_cache_init(&mp->local_cache[lcore_id],
cache_size);
}
te->data = mp;
rte_mcfg_tailq_write_lock();
TAILQ_INSERT_TAIL(mempool_list, te, next);
rte_mcfg_tailq_write_unlock();
rte_mcfg_mempool_write_unlock();
rte_mempool_trace_create_empty(name, n, elt_size, cache_size,
private_data_size, flags, mp);
return mp;
exit_unlock:
rte_mcfg_mempool_write_unlock();
rte_free(te);
rte_mempool_free(mp);
return NULL;
}
/* create the mempool */
struct rte_mempool *
rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
unsigned cache_size, unsigned private_data_size,
rte_mempool_ctor_t *mp_init, void *mp_init_arg,
rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
int socket_id, unsigned flags)
{
int ret;
struct rte_mempool *mp;
mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
private_data_size, socket_id, flags);
if (mp == NULL)
return NULL;
/*
* Since we have 4 combinations of the SP/SC/MP/MC examine the flags to
* set the correct index into the table of ops structs.
*/
if ((flags & MEMPOOL_F_SP_PUT) && (flags & MEMPOOL_F_SC_GET))
ret = rte_mempool_set_ops_byname(mp, "ring_sp_sc", NULL);
else if (flags & MEMPOOL_F_SP_PUT)
ret = rte_mempool_set_ops_byname(mp, "ring_sp_mc", NULL);
else if (flags & MEMPOOL_F_SC_GET)
ret = rte_mempool_set_ops_byname(mp, "ring_mp_sc", NULL);
else
ret = rte_mempool_set_ops_byname(mp, "ring_mp_mc", NULL);
if (ret)
goto fail;
/* call the mempool priv initializer */
if (mp_init)
mp_init(mp, mp_init_arg);
if (rte_mempool_populate_default(mp) < 0)
goto fail;
/* call the object initializers */
if (obj_init)
rte_mempool_obj_iter(mp, obj_init, obj_init_arg);
rte_mempool_trace_create(name, n, elt_size, cache_size,
private_data_size, mp_init, mp_init_arg, obj_init,
obj_init_arg, flags, mp);
return mp;
fail:
rte_mempool_free(mp);
return NULL;
}
/* Return the number of entries in the mempool */
unsigned int
rte_mempool_avail_count(const struct rte_mempool *mp)
{
unsigned count;
unsigned lcore_id;
count = rte_mempool_ops_get_count(mp);
if (mp->cache_size == 0)
return count;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
count += mp->local_cache[lcore_id].len;
/*
* due to race condition (access to len is not locked), the
* total can be greater than size... so fix the result
*/
if (count > mp->size)
return mp->size;
return count;
}
/* return the number of entries allocated from the mempool */
unsigned int
rte_mempool_in_use_count(const struct rte_mempool *mp)
{
return mp->size - rte_mempool_avail_count(mp);
}
/* dump the cache status */
static unsigned
rte_mempool_dump_cache(FILE *f, const struct rte_mempool *mp)
{
unsigned lcore_id;
unsigned count = 0;
unsigned cache_count;
fprintf(f, " internal cache infos:\n");
fprintf(f, " cache_size=%"PRIu32"\n", mp->cache_size);
if (mp->cache_size == 0)
return count;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
cache_count = mp->local_cache[lcore_id].len;
fprintf(f, " cache_count[%u]=%"PRIu32"\n",
lcore_id, cache_count);
count += cache_count;
}
fprintf(f, " total_cache_count=%u\n", count);
return count;
}
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
/* check and update cookies or panic (internal) */
void rte_mempool_check_cookies(const struct rte_mempool *mp,
void * const *obj_table_const, unsigned n, int free)
{
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
struct rte_mempool_objhdr *hdr;
struct rte_mempool_objtlr *tlr;
uint64_t cookie;
void *tmp;
void *obj;
void **obj_table;
/* Force to drop the "const" attribute. This is done only when
* DEBUG is enabled */
tmp = (void *) obj_table_const;
obj_table = tmp;
while (n--) {
obj = obj_table[n];
if (rte_mempool_from_obj(obj) != mp)
rte_panic("MEMPOOL: object is owned by another "
"mempool\n");
hdr = __mempool_get_header(obj);
cookie = hdr->cookie;
if (free == 0) {
if (cookie != RTE_MEMPOOL_HEADER_COOKIE1) {
RTE_LOG(CRIT, MEMPOOL,
"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
obj, (const void *) mp, cookie);
rte_panic("MEMPOOL: bad header cookie (put)\n");
}
hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
} else if (free == 1) {
if (cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
RTE_LOG(CRIT, MEMPOOL,
"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
obj, (const void *) mp, cookie);
rte_panic("MEMPOOL: bad header cookie (get)\n");
}
hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE1;
} else if (free == 2) {
if (cookie != RTE_MEMPOOL_HEADER_COOKIE1 &&
cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
RTE_LOG(CRIT, MEMPOOL,
"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
obj, (const void *) mp, cookie);
rte_panic("MEMPOOL: bad header cookie (audit)\n");
}
}
tlr = __mempool_get_trailer(obj);
cookie = tlr->cookie;
if (cookie != RTE_MEMPOOL_TRAILER_COOKIE) {
RTE_LOG(CRIT, MEMPOOL,
"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
obj, (const void *) mp, cookie);
rte_panic("MEMPOOL: bad trailer cookie\n");
}
}
#else
RTE_SET_USED(mp);
RTE_SET_USED(obj_table_const);
RTE_SET_USED(n);
RTE_SET_USED(free);
#endif
}
void
rte_mempool_contig_blocks_check_cookies(const struct rte_mempool *mp,
void * const *first_obj_table_const, unsigned int n, int free)
{
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
struct rte_mempool_info info;
const size_t total_elt_sz =
mp->header_size + mp->elt_size + mp->trailer_size;
unsigned int i, j;
rte_mempool_ops_get_info(mp, &info);
for (i = 0; i < n; ++i) {
void *first_obj = first_obj_table_const[i];
for (j = 0; j < info.contig_block_size; ++j) {
void *obj;
obj = (void *)((uintptr_t)first_obj + j * total_elt_sz);
rte_mempool_check_cookies(mp, &obj, 1, free);
}
}
#else
RTE_SET_USED(mp);
RTE_SET_USED(first_obj_table_const);
RTE_SET_USED(n);
RTE_SET_USED(free);
#endif
}
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
static void
mempool_obj_audit(struct rte_mempool *mp, __rte_unused void *opaque,
void *obj, __rte_unused unsigned idx)
{
__mempool_check_cookies(mp, &obj, 1, 2);
}
static void
mempool_audit_cookies(struct rte_mempool *mp)
{
unsigned num;
num = rte_mempool_obj_iter(mp, mempool_obj_audit, NULL);
if (num != mp->size) {
rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
"iterated only over %u elements\n",
mp, mp->size, num);
}
}
#else
#define mempool_audit_cookies(mp) do {} while(0)
#endif
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic error "-Wcast-qual"
#endif
/* check cookies before and after objects */
static void
mempool_audit_cache(const struct rte_mempool *mp)
{
/* check cache size consistency */
unsigned lcore_id;
if (mp->cache_size == 0)
return;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
const struct rte_mempool_cache *cache;
cache = &mp->local_cache[lcore_id];
if (cache->len > cache->flushthresh) {
RTE_LOG(CRIT, MEMPOOL, "badness on cache[%u]\n",
lcore_id);
rte_panic("MEMPOOL: invalid cache len\n");
}
}
}
/* check the consistency of mempool (size, cookies, ...) */
void
rte_mempool_audit(struct rte_mempool *mp)
{
mempool_audit_cache(mp);
mempool_audit_cookies(mp);
/* For case where mempool DEBUG is not set, and cache size is 0 */
RTE_SET_USED(mp);
}
/* dump the status of the mempool on the console */
void
rte_mempool_dump(FILE *f, struct rte_mempool *mp)
{
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
struct rte_mempool_info info;
struct rte_mempool_debug_stats sum;
unsigned lcore_id;
#endif
struct rte_mempool_memhdr *memhdr;
struct rte_mempool_ops *ops;
unsigned common_count;
unsigned cache_count;
size_t mem_len = 0;
RTE_ASSERT(f != NULL);
RTE_ASSERT(mp != NULL);
fprintf(f, "mempool <%s>@%p\n", mp->name, mp);
fprintf(f, " flags=%x\n", mp->flags);
fprintf(f, " socket_id=%d\n", mp->socket_id);
fprintf(f, " pool=%p\n", mp->pool_data);
fprintf(f, " iova=0x%" PRIx64 "\n", mp->mz->iova);
fprintf(f, " nb_mem_chunks=%u\n", mp->nb_mem_chunks);
fprintf(f, " size=%"PRIu32"\n", mp->size);
fprintf(f, " populated_size=%"PRIu32"\n", mp->populated_size);
fprintf(f, " header_size=%"PRIu32"\n", mp->header_size);
fprintf(f, " elt_size=%"PRIu32"\n", mp->elt_size);
fprintf(f, " trailer_size=%"PRIu32"\n", mp->trailer_size);
fprintf(f, " total_obj_size=%"PRIu32"\n",
mp->header_size + mp->elt_size + mp->trailer_size);
fprintf(f, " private_data_size=%"PRIu32"\n", mp->private_data_size);
fprintf(f, " ops_index=%d\n", mp->ops_index);
ops = rte_mempool_get_ops(mp->ops_index);
fprintf(f, " ops_name: <%s>\n", (ops != NULL) ? ops->name : "NA");
STAILQ_FOREACH(memhdr, &mp->mem_list, next)
mem_len += memhdr->len;
if (mem_len != 0) {
fprintf(f, " avg bytes/object=%#Lf\n",
(long double)mem_len / mp->size);
}
cache_count = rte_mempool_dump_cache(f, mp);
common_count = rte_mempool_ops_get_count(mp);
if ((cache_count + common_count) > mp->size)
common_count = mp->size - cache_count;
fprintf(f, " common_pool_count=%u\n", common_count);
/* sum and dump statistics */
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
rte_mempool_ops_get_info(mp, &info);
memset(&sum, 0, sizeof(sum));
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
sum.put_bulk += mp->stats[lcore_id].put_bulk;
sum.put_objs += mp->stats[lcore_id].put_objs;
sum.get_success_bulk += mp->stats[lcore_id].get_success_bulk;
sum.get_success_objs += mp->stats[lcore_id].get_success_objs;
sum.get_fail_bulk += mp->stats[lcore_id].get_fail_bulk;
sum.get_fail_objs += mp->stats[lcore_id].get_fail_objs;
sum.get_success_blks += mp->stats[lcore_id].get_success_blks;
sum.get_fail_blks += mp->stats[lcore_id].get_fail_blks;
}
fprintf(f, " stats:\n");
fprintf(f, " put_bulk=%"PRIu64"\n", sum.put_bulk);
fprintf(f, " put_objs=%"PRIu64"\n", sum.put_objs);
fprintf(f, " get_success_bulk=%"PRIu64"\n", sum.get_success_bulk);
fprintf(f, " get_success_objs=%"PRIu64"\n", sum.get_success_objs);
fprintf(f, " get_fail_bulk=%"PRIu64"\n", sum.get_fail_bulk);
fprintf(f, " get_fail_objs=%"PRIu64"\n", sum.get_fail_objs);
if (info.contig_block_size > 0) {
fprintf(f, " get_success_blks=%"PRIu64"\n",
sum.get_success_blks);
fprintf(f, " get_fail_blks=%"PRIu64"\n", sum.get_fail_blks);
}
#else
fprintf(f, " no statistics available\n");
#endif
rte_mempool_audit(mp);
}
/* dump the status of all mempools on the console */
void
rte_mempool_list_dump(FILE *f)
{
struct rte_mempool *mp = NULL;
struct rte_tailq_entry *te;
struct rte_mempool_list *mempool_list;
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
rte_mcfg_mempool_read_lock();
TAILQ_FOREACH(te, mempool_list, next) {
mp = (struct rte_mempool *) te->data;
rte_mempool_dump(f, mp);
}
rte_mcfg_mempool_read_unlock();
}
/* search a mempool from its name */
struct rte_mempool *
rte_mempool_lookup(const char *name)
{
struct rte_mempool *mp = NULL;
struct rte_tailq_entry *te;
struct rte_mempool_list *mempool_list;
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
rte_mcfg_mempool_read_lock();
TAILQ_FOREACH(te, mempool_list, next) {
mp = (struct rte_mempool *) te->data;
if (strncmp(name, mp->name, RTE_MEMPOOL_NAMESIZE) == 0)
break;
}
rte_mcfg_mempool_read_unlock();
if (te == NULL) {
rte_errno = ENOENT;
return NULL;
}
return mp;
}
void rte_mempool_walk(void (*func)(struct rte_mempool *, void *),
void *arg)
{
struct rte_tailq_entry *te = NULL;
struct rte_mempool_list *mempool_list;
void *tmp_te;
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
rte_mcfg_mempool_read_lock();
TAILQ_FOREACH_SAFE(te, mempool_list, next, tmp_te) {
(*func)((struct rte_mempool *) te->data, arg);
}
rte_mcfg_mempool_read_unlock();
}