f-stack/dpdk/lib/librte_eal/x86/include/rte_memcpy.h

886 lines
27 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#ifndef _RTE_MEMCPY_X86_64_H_
#define _RTE_MEMCPY_X86_64_H_
/**
* @file
*
* Functions for SSE/AVX/AVX2/AVX512 implementation of memcpy().
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <rte_vect.h>
#include <rte_common.h>
#include <rte_config.h>
#ifdef __cplusplus
extern "C" {
#endif
#if defined(RTE_TOOLCHAIN_GCC) && (GCC_VERSION >= 100000)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#endif
/**
* Copy bytes from one location to another. The locations must not overlap.
*
* @note This is implemented as a macro, so it's address should not be taken
* and care is needed as parameter expressions may be evaluated multiple times.
*
* @param dst
* Pointer to the destination of the data.
* @param src
* Pointer to the source data.
* @param n
* Number of bytes to copy.
* @return
* Pointer to the destination data.
*/
static __rte_always_inline void *
rte_memcpy(void *dst, const void *src, size_t n);
#if defined __AVX512F__ && defined RTE_MEMCPY_AVX512
#define ALIGNMENT_MASK 0x3F
/**
* AVX512 implementation below
*/
/**
* Copy 16 bytes from one location to another,
* locations should not overlap.
*/
static __rte_always_inline void
rte_mov16(uint8_t *dst, const uint8_t *src)
{
__m128i xmm0;
xmm0 = _mm_loadu_si128((const __m128i *)src);
_mm_storeu_si128((__m128i *)dst, xmm0);
}
/**
* Copy 32 bytes from one location to another,
* locations should not overlap.
*/
static __rte_always_inline void
rte_mov32(uint8_t *dst, const uint8_t *src)
{
__m256i ymm0;
ymm0 = _mm256_loadu_si256((const __m256i *)src);
_mm256_storeu_si256((__m256i *)dst, ymm0);
}
/**
* Copy 64 bytes from one location to another,
* locations should not overlap.
*/
static __rte_always_inline void
rte_mov64(uint8_t *dst, const uint8_t *src)
{
__m512i zmm0;
zmm0 = _mm512_loadu_si512((const void *)src);
_mm512_storeu_si512((void *)dst, zmm0);
}
/**
* Copy 128 bytes from one location to another,
* locations should not overlap.
*/
static __rte_always_inline void
rte_mov128(uint8_t *dst, const uint8_t *src)
{
rte_mov64(dst + 0 * 64, src + 0 * 64);
rte_mov64(dst + 1 * 64, src + 1 * 64);
}
/**
* Copy 256 bytes from one location to another,
* locations should not overlap.
*/
static __rte_always_inline void
rte_mov256(uint8_t *dst, const uint8_t *src)
{
rte_mov64(dst + 0 * 64, src + 0 * 64);
rte_mov64(dst + 1 * 64, src + 1 * 64);
rte_mov64(dst + 2 * 64, src + 2 * 64);
rte_mov64(dst + 3 * 64, src + 3 * 64);
}
/**
* Copy 128-byte blocks from one location to another,
* locations should not overlap.
*/
static __rte_always_inline void
rte_mov128blocks(uint8_t *dst, const uint8_t *src, size_t n)
{
__m512i zmm0, zmm1;
while (n >= 128) {
zmm0 = _mm512_loadu_si512((const void *)(src + 0 * 64));
n -= 128;
zmm1 = _mm512_loadu_si512((const void *)(src + 1 * 64));
src = src + 128;
_mm512_storeu_si512((void *)(dst + 0 * 64), zmm0);
_mm512_storeu_si512((void *)(dst + 1 * 64), zmm1);
dst = dst + 128;
}
}
/**
* Copy 512-byte blocks from one location to another,
* locations should not overlap.
*/
static inline void
rte_mov512blocks(uint8_t *dst, const uint8_t *src, size_t n)
{
__m512i zmm0, zmm1, zmm2, zmm3, zmm4, zmm5, zmm6, zmm7;
while (n >= 512) {
zmm0 = _mm512_loadu_si512((const void *)(src + 0 * 64));
n -= 512;
zmm1 = _mm512_loadu_si512((const void *)(src + 1 * 64));
zmm2 = _mm512_loadu_si512((const void *)(src + 2 * 64));
zmm3 = _mm512_loadu_si512((const void *)(src + 3 * 64));
zmm4 = _mm512_loadu_si512((const void *)(src + 4 * 64));
zmm5 = _mm512_loadu_si512((const void *)(src + 5 * 64));
zmm6 = _mm512_loadu_si512((const void *)(src + 6 * 64));
zmm7 = _mm512_loadu_si512((const void *)(src + 7 * 64));
src = src + 512;
_mm512_storeu_si512((void *)(dst + 0 * 64), zmm0);
_mm512_storeu_si512((void *)(dst + 1 * 64), zmm1);
_mm512_storeu_si512((void *)(dst + 2 * 64), zmm2);
_mm512_storeu_si512((void *)(dst + 3 * 64), zmm3);
_mm512_storeu_si512((void *)(dst + 4 * 64), zmm4);
_mm512_storeu_si512((void *)(dst + 5 * 64), zmm5);
_mm512_storeu_si512((void *)(dst + 6 * 64), zmm6);
_mm512_storeu_si512((void *)(dst + 7 * 64), zmm7);
dst = dst + 512;
}
}
static __rte_always_inline void *
rte_memcpy_generic(void *dst, const void *src, size_t n)
{
uintptr_t dstu = (uintptr_t)dst;
uintptr_t srcu = (uintptr_t)src;
void *ret = dst;
size_t dstofss;
size_t bits;
/**
* Copy less than 16 bytes
*/
if (n < 16) {
if (n & 0x01) {
*(uint8_t *)dstu = *(const uint8_t *)srcu;
srcu = (uintptr_t)((const uint8_t *)srcu + 1);
dstu = (uintptr_t)((uint8_t *)dstu + 1);
}
if (n & 0x02) {
*(uint16_t *)dstu = *(const uint16_t *)srcu;
srcu = (uintptr_t)((const uint16_t *)srcu + 1);
dstu = (uintptr_t)((uint16_t *)dstu + 1);
}
if (n & 0x04) {
*(uint32_t *)dstu = *(const uint32_t *)srcu;
srcu = (uintptr_t)((const uint32_t *)srcu + 1);
dstu = (uintptr_t)((uint32_t *)dstu + 1);
}
if (n & 0x08)
*(uint64_t *)dstu = *(const uint64_t *)srcu;
return ret;
}
/**
* Fast way when copy size doesn't exceed 512 bytes
*/
if (n <= 32) {
rte_mov16((uint8_t *)dst, (const uint8_t *)src);
rte_mov16((uint8_t *)dst - 16 + n,
(const uint8_t *)src - 16 + n);
return ret;
}
if (n <= 64) {
rte_mov32((uint8_t *)dst, (const uint8_t *)src);
rte_mov32((uint8_t *)dst - 32 + n,
(const uint8_t *)src - 32 + n);
return ret;
}
if (n <= 512) {
if (n >= 256) {
n -= 256;
rte_mov256((uint8_t *)dst, (const uint8_t *)src);
src = (const uint8_t *)src + 256;
dst = (uint8_t *)dst + 256;
}
if (n >= 128) {
n -= 128;
rte_mov128((uint8_t *)dst, (const uint8_t *)src);
src = (const uint8_t *)src + 128;
dst = (uint8_t *)dst + 128;
}
COPY_BLOCK_128_BACK63:
if (n > 64) {
rte_mov64((uint8_t *)dst, (const uint8_t *)src);
rte_mov64((uint8_t *)dst - 64 + n,
(const uint8_t *)src - 64 + n);
return ret;
}
if (n > 0)
rte_mov64((uint8_t *)dst - 64 + n,
(const uint8_t *)src - 64 + n);
return ret;
}
/**
* Make store aligned when copy size exceeds 512 bytes
*/
dstofss = ((uintptr_t)dst & 0x3F);
if (dstofss > 0) {
dstofss = 64 - dstofss;
n -= dstofss;
rte_mov64((uint8_t *)dst, (const uint8_t *)src);
src = (const uint8_t *)src + dstofss;
dst = (uint8_t *)dst + dstofss;
}
/**
* Copy 512-byte blocks.
* Use copy block function for better instruction order control,
* which is important when load is unaligned.
*/
rte_mov512blocks((uint8_t *)dst, (const uint8_t *)src, n);
bits = n;
n = n & 511;
bits -= n;
src = (const uint8_t *)src + bits;
dst = (uint8_t *)dst + bits;
/**
* Copy 128-byte blocks.
* Use copy block function for better instruction order control,
* which is important when load is unaligned.
*/
if (n >= 128) {
rte_mov128blocks((uint8_t *)dst, (const uint8_t *)src, n);
bits = n;
n = n & 127;
bits -= n;
src = (const uint8_t *)src + bits;
dst = (uint8_t *)dst + bits;
}
/**
* Copy whatever left
*/
goto COPY_BLOCK_128_BACK63;
}
#elif defined __AVX2__
#define ALIGNMENT_MASK 0x1F
/**
* AVX2 implementation below
*/
/**
* Copy 16 bytes from one location to another,
* locations should not overlap.
*/
static __rte_always_inline void
rte_mov16(uint8_t *dst, const uint8_t *src)
{
__m128i xmm0;
xmm0 = _mm_loadu_si128((const __m128i *)src);
_mm_storeu_si128((__m128i *)dst, xmm0);
}
/**
* Copy 32 bytes from one location to another,
* locations should not overlap.
*/
static __rte_always_inline void
rte_mov32(uint8_t *dst, const uint8_t *src)
{
__m256i ymm0;
ymm0 = _mm256_loadu_si256((const __m256i *)src);
_mm256_storeu_si256((__m256i *)dst, ymm0);
}
/**
* Copy 64 bytes from one location to another,
* locations should not overlap.
*/
static __rte_always_inline void
rte_mov64(uint8_t *dst, const uint8_t *src)
{
rte_mov32((uint8_t *)dst + 0 * 32, (const uint8_t *)src + 0 * 32);
rte_mov32((uint8_t *)dst + 1 * 32, (const uint8_t *)src + 1 * 32);
}
/**
* Copy 128 bytes from one location to another,
* locations should not overlap.
*/
static __rte_always_inline void
rte_mov128(uint8_t *dst, const uint8_t *src)
{
rte_mov32((uint8_t *)dst + 0 * 32, (const uint8_t *)src + 0 * 32);
rte_mov32((uint8_t *)dst + 1 * 32, (const uint8_t *)src + 1 * 32);
rte_mov32((uint8_t *)dst + 2 * 32, (const uint8_t *)src + 2 * 32);
rte_mov32((uint8_t *)dst + 3 * 32, (const uint8_t *)src + 3 * 32);
}
/**
* Copy 128-byte blocks from one location to another,
* locations should not overlap.
*/
static __rte_always_inline void
rte_mov128blocks(uint8_t *dst, const uint8_t *src, size_t n)
{
__m256i ymm0, ymm1, ymm2, ymm3;
while (n >= 128) {
ymm0 = _mm256_loadu_si256((const __m256i *)((const uint8_t *)src + 0 * 32));
n -= 128;
ymm1 = _mm256_loadu_si256((const __m256i *)((const uint8_t *)src + 1 * 32));
ymm2 = _mm256_loadu_si256((const __m256i *)((const uint8_t *)src + 2 * 32));
ymm3 = _mm256_loadu_si256((const __m256i *)((const uint8_t *)src + 3 * 32));
src = (const uint8_t *)src + 128;
_mm256_storeu_si256((__m256i *)((uint8_t *)dst + 0 * 32), ymm0);
_mm256_storeu_si256((__m256i *)((uint8_t *)dst + 1 * 32), ymm1);
_mm256_storeu_si256((__m256i *)((uint8_t *)dst + 2 * 32), ymm2);
_mm256_storeu_si256((__m256i *)((uint8_t *)dst + 3 * 32), ymm3);
dst = (uint8_t *)dst + 128;
}
}
static __rte_always_inline void *
rte_memcpy_generic(void *dst, const void *src, size_t n)
{
uintptr_t dstu = (uintptr_t)dst;
uintptr_t srcu = (uintptr_t)src;
void *ret = dst;
size_t dstofss;
size_t bits;
/**
* Copy less than 16 bytes
*/
if (n < 16) {
if (n & 0x01) {
*(uint8_t *)dstu = *(const uint8_t *)srcu;
srcu = (uintptr_t)((const uint8_t *)srcu + 1);
dstu = (uintptr_t)((uint8_t *)dstu + 1);
}
if (n & 0x02) {
*(uint16_t *)dstu = *(const uint16_t *)srcu;
srcu = (uintptr_t)((const uint16_t *)srcu + 1);
dstu = (uintptr_t)((uint16_t *)dstu + 1);
}
if (n & 0x04) {
*(uint32_t *)dstu = *(const uint32_t *)srcu;
srcu = (uintptr_t)((const uint32_t *)srcu + 1);
dstu = (uintptr_t)((uint32_t *)dstu + 1);
}
if (n & 0x08) {
*(uint64_t *)dstu = *(const uint64_t *)srcu;
}
return ret;
}
/**
* Fast way when copy size doesn't exceed 256 bytes
*/
if (n <= 32) {
rte_mov16((uint8_t *)dst, (const uint8_t *)src);
rte_mov16((uint8_t *)dst - 16 + n,
(const uint8_t *)src - 16 + n);
return ret;
}
if (n <= 48) {
rte_mov16((uint8_t *)dst, (const uint8_t *)src);
rte_mov16((uint8_t *)dst + 16, (const uint8_t *)src + 16);
rte_mov16((uint8_t *)dst - 16 + n,
(const uint8_t *)src - 16 + n);
return ret;
}
if (n <= 64) {
rte_mov32((uint8_t *)dst, (const uint8_t *)src);
rte_mov32((uint8_t *)dst - 32 + n,
(const uint8_t *)src - 32 + n);
return ret;
}
if (n <= 256) {
if (n >= 128) {
n -= 128;
rte_mov128((uint8_t *)dst, (const uint8_t *)src);
src = (const uint8_t *)src + 128;
dst = (uint8_t *)dst + 128;
}
COPY_BLOCK_128_BACK31:
if (n >= 64) {
n -= 64;
rte_mov64((uint8_t *)dst, (const uint8_t *)src);
src = (const uint8_t *)src + 64;
dst = (uint8_t *)dst + 64;
}
if (n > 32) {
rte_mov32((uint8_t *)dst, (const uint8_t *)src);
rte_mov32((uint8_t *)dst - 32 + n,
(const uint8_t *)src - 32 + n);
return ret;
}
if (n > 0) {
rte_mov32((uint8_t *)dst - 32 + n,
(const uint8_t *)src - 32 + n);
}
return ret;
}
/**
* Make store aligned when copy size exceeds 256 bytes
*/
dstofss = (uintptr_t)dst & 0x1F;
if (dstofss > 0) {
dstofss = 32 - dstofss;
n -= dstofss;
rte_mov32((uint8_t *)dst, (const uint8_t *)src);
src = (const uint8_t *)src + dstofss;
dst = (uint8_t *)dst + dstofss;
}
/**
* Copy 128-byte blocks
*/
rte_mov128blocks((uint8_t *)dst, (const uint8_t *)src, n);
bits = n;
n = n & 127;
bits -= n;
src = (const uint8_t *)src + bits;
dst = (uint8_t *)dst + bits;
/**
* Copy whatever left
*/
goto COPY_BLOCK_128_BACK31;
}
#else /* __AVX512F__ */
#define ALIGNMENT_MASK 0x0F
/**
* SSE & AVX implementation below
*/
/**
* Copy 16 bytes from one location to another,
* locations should not overlap.
*/
static __rte_always_inline void
rte_mov16(uint8_t *dst, const uint8_t *src)
{
__m128i xmm0;
xmm0 = _mm_loadu_si128((const __m128i *)(const __m128i *)src);
_mm_storeu_si128((__m128i *)dst, xmm0);
}
/**
* Copy 32 bytes from one location to another,
* locations should not overlap.
*/
static __rte_always_inline void
rte_mov32(uint8_t *dst, const uint8_t *src)
{
rte_mov16((uint8_t *)dst + 0 * 16, (const uint8_t *)src + 0 * 16);
rte_mov16((uint8_t *)dst + 1 * 16, (const uint8_t *)src + 1 * 16);
}
/**
* Copy 64 bytes from one location to another,
* locations should not overlap.
*/
static __rte_always_inline void
rte_mov64(uint8_t *dst, const uint8_t *src)
{
rte_mov16((uint8_t *)dst + 0 * 16, (const uint8_t *)src + 0 * 16);
rte_mov16((uint8_t *)dst + 1 * 16, (const uint8_t *)src + 1 * 16);
rte_mov16((uint8_t *)dst + 2 * 16, (const uint8_t *)src + 2 * 16);
rte_mov16((uint8_t *)dst + 3 * 16, (const uint8_t *)src + 3 * 16);
}
/**
* Copy 128 bytes from one location to another,
* locations should not overlap.
*/
static __rte_always_inline void
rte_mov128(uint8_t *dst, const uint8_t *src)
{
rte_mov16((uint8_t *)dst + 0 * 16, (const uint8_t *)src + 0 * 16);
rte_mov16((uint8_t *)dst + 1 * 16, (const uint8_t *)src + 1 * 16);
rte_mov16((uint8_t *)dst + 2 * 16, (const uint8_t *)src + 2 * 16);
rte_mov16((uint8_t *)dst + 3 * 16, (const uint8_t *)src + 3 * 16);
rte_mov16((uint8_t *)dst + 4 * 16, (const uint8_t *)src + 4 * 16);
rte_mov16((uint8_t *)dst + 5 * 16, (const uint8_t *)src + 5 * 16);
rte_mov16((uint8_t *)dst + 6 * 16, (const uint8_t *)src + 6 * 16);
rte_mov16((uint8_t *)dst + 7 * 16, (const uint8_t *)src + 7 * 16);
}
/**
* Copy 256 bytes from one location to another,
* locations should not overlap.
*/
static inline void
rte_mov256(uint8_t *dst, const uint8_t *src)
{
rte_mov16((uint8_t *)dst + 0 * 16, (const uint8_t *)src + 0 * 16);
rte_mov16((uint8_t *)dst + 1 * 16, (const uint8_t *)src + 1 * 16);
rte_mov16((uint8_t *)dst + 2 * 16, (const uint8_t *)src + 2 * 16);
rte_mov16((uint8_t *)dst + 3 * 16, (const uint8_t *)src + 3 * 16);
rte_mov16((uint8_t *)dst + 4 * 16, (const uint8_t *)src + 4 * 16);
rte_mov16((uint8_t *)dst + 5 * 16, (const uint8_t *)src + 5 * 16);
rte_mov16((uint8_t *)dst + 6 * 16, (const uint8_t *)src + 6 * 16);
rte_mov16((uint8_t *)dst + 7 * 16, (const uint8_t *)src + 7 * 16);
rte_mov16((uint8_t *)dst + 8 * 16, (const uint8_t *)src + 8 * 16);
rte_mov16((uint8_t *)dst + 9 * 16, (const uint8_t *)src + 9 * 16);
rte_mov16((uint8_t *)dst + 10 * 16, (const uint8_t *)src + 10 * 16);
rte_mov16((uint8_t *)dst + 11 * 16, (const uint8_t *)src + 11 * 16);
rte_mov16((uint8_t *)dst + 12 * 16, (const uint8_t *)src + 12 * 16);
rte_mov16((uint8_t *)dst + 13 * 16, (const uint8_t *)src + 13 * 16);
rte_mov16((uint8_t *)dst + 14 * 16, (const uint8_t *)src + 14 * 16);
rte_mov16((uint8_t *)dst + 15 * 16, (const uint8_t *)src + 15 * 16);
}
/**
* Macro for copying unaligned block from one location to another with constant load offset,
* 47 bytes leftover maximum,
* locations should not overlap.
* Requirements:
* - Store is aligned
* - Load offset is <offset>, which must be immediate value within [1, 15]
* - For <src>, make sure <offset> bit backwards & <16 - offset> bit forwards are available for loading
* - <dst>, <src>, <len> must be variables
* - __m128i <xmm0> ~ <xmm8> must be pre-defined
*/
#define MOVEUNALIGNED_LEFT47_IMM(dst, src, len, offset) \
__extension__ ({ \
size_t tmp; \
while (len >= 128 + 16 - offset) { \
xmm0 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 0 * 16)); \
len -= 128; \
xmm1 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 1 * 16)); \
xmm2 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 2 * 16)); \
xmm3 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 3 * 16)); \
xmm4 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 4 * 16)); \
xmm5 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 5 * 16)); \
xmm6 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 6 * 16)); \
xmm7 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 7 * 16)); \
xmm8 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 8 * 16)); \
src = (const uint8_t *)src + 128; \
_mm_storeu_si128((__m128i *)((uint8_t *)dst + 0 * 16), _mm_alignr_epi8(xmm1, xmm0, offset)); \
_mm_storeu_si128((__m128i *)((uint8_t *)dst + 1 * 16), _mm_alignr_epi8(xmm2, xmm1, offset)); \
_mm_storeu_si128((__m128i *)((uint8_t *)dst + 2 * 16), _mm_alignr_epi8(xmm3, xmm2, offset)); \
_mm_storeu_si128((__m128i *)((uint8_t *)dst + 3 * 16), _mm_alignr_epi8(xmm4, xmm3, offset)); \
_mm_storeu_si128((__m128i *)((uint8_t *)dst + 4 * 16), _mm_alignr_epi8(xmm5, xmm4, offset)); \
_mm_storeu_si128((__m128i *)((uint8_t *)dst + 5 * 16), _mm_alignr_epi8(xmm6, xmm5, offset)); \
_mm_storeu_si128((__m128i *)((uint8_t *)dst + 6 * 16), _mm_alignr_epi8(xmm7, xmm6, offset)); \
_mm_storeu_si128((__m128i *)((uint8_t *)dst + 7 * 16), _mm_alignr_epi8(xmm8, xmm7, offset)); \
dst = (uint8_t *)dst + 128; \
} \
tmp = len; \
len = ((len - 16 + offset) & 127) + 16 - offset; \
tmp -= len; \
src = (const uint8_t *)src + tmp; \
dst = (uint8_t *)dst + tmp; \
if (len >= 32 + 16 - offset) { \
while (len >= 32 + 16 - offset) { \
xmm0 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 0 * 16)); \
len -= 32; \
xmm1 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 1 * 16)); \
xmm2 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 2 * 16)); \
src = (const uint8_t *)src + 32; \
_mm_storeu_si128((__m128i *)((uint8_t *)dst + 0 * 16), _mm_alignr_epi8(xmm1, xmm0, offset)); \
_mm_storeu_si128((__m128i *)((uint8_t *)dst + 1 * 16), _mm_alignr_epi8(xmm2, xmm1, offset)); \
dst = (uint8_t *)dst + 32; \
} \
tmp = len; \
len = ((len - 16 + offset) & 31) + 16 - offset; \
tmp -= len; \
src = (const uint8_t *)src + tmp; \
dst = (uint8_t *)dst + tmp; \
} \
})
/**
* Macro for copying unaligned block from one location to another,
* 47 bytes leftover maximum,
* locations should not overlap.
* Use switch here because the aligning instruction requires immediate value for shift count.
* Requirements:
* - Store is aligned
* - Load offset is <offset>, which must be within [1, 15]
* - For <src>, make sure <offset> bit backwards & <16 - offset> bit forwards are available for loading
* - <dst>, <src>, <len> must be variables
* - __m128i <xmm0> ~ <xmm8> used in MOVEUNALIGNED_LEFT47_IMM must be pre-defined
*/
#define MOVEUNALIGNED_LEFT47(dst, src, len, offset) \
__extension__ ({ \
switch (offset) { \
case 0x01: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x01); break; \
case 0x02: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x02); break; \
case 0x03: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x03); break; \
case 0x04: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x04); break; \
case 0x05: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x05); break; \
case 0x06: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x06); break; \
case 0x07: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x07); break; \
case 0x08: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x08); break; \
case 0x09: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x09); break; \
case 0x0A: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x0A); break; \
case 0x0B: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x0B); break; \
case 0x0C: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x0C); break; \
case 0x0D: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x0D); break; \
case 0x0E: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x0E); break; \
case 0x0F: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x0F); break; \
default:; \
} \
})
static __rte_always_inline void *
rte_memcpy_generic(void *dst, const void *src, size_t n)
{
__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8;
uintptr_t dstu = (uintptr_t)dst;
uintptr_t srcu = (uintptr_t)src;
void *ret = dst;
size_t dstofss;
size_t srcofs;
/**
* Copy less than 16 bytes
*/
if (n < 16) {
if (n & 0x01) {
*(uint8_t *)dstu = *(const uint8_t *)srcu;
srcu = (uintptr_t)((const uint8_t *)srcu + 1);
dstu = (uintptr_t)((uint8_t *)dstu + 1);
}
if (n & 0x02) {
*(uint16_t *)dstu = *(const uint16_t *)srcu;
srcu = (uintptr_t)((const uint16_t *)srcu + 1);
dstu = (uintptr_t)((uint16_t *)dstu + 1);
}
if (n & 0x04) {
*(uint32_t *)dstu = *(const uint32_t *)srcu;
srcu = (uintptr_t)((const uint32_t *)srcu + 1);
dstu = (uintptr_t)((uint32_t *)dstu + 1);
}
if (n & 0x08) {
*(uint64_t *)dstu = *(const uint64_t *)srcu;
}
return ret;
}
/**
* Fast way when copy size doesn't exceed 512 bytes
*/
if (n <= 32) {
rte_mov16((uint8_t *)dst, (const uint8_t *)src);
rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n);
return ret;
}
if (n <= 48) {
rte_mov32((uint8_t *)dst, (const uint8_t *)src);
rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n);
return ret;
}
if (n <= 64) {
rte_mov32((uint8_t *)dst, (const uint8_t *)src);
rte_mov16((uint8_t *)dst + 32, (const uint8_t *)src + 32);
rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n);
return ret;
}
if (n <= 128) {
goto COPY_BLOCK_128_BACK15;
}
if (n <= 512) {
if (n >= 256) {
n -= 256;
rte_mov128((uint8_t *)dst, (const uint8_t *)src);
rte_mov128((uint8_t *)dst + 128, (const uint8_t *)src + 128);
src = (const uint8_t *)src + 256;
dst = (uint8_t *)dst + 256;
}
COPY_BLOCK_255_BACK15:
if (n >= 128) {
n -= 128;
rte_mov128((uint8_t *)dst, (const uint8_t *)src);
src = (const uint8_t *)src + 128;
dst = (uint8_t *)dst + 128;
}
COPY_BLOCK_128_BACK15:
if (n >= 64) {
n -= 64;
rte_mov64((uint8_t *)dst, (const uint8_t *)src);
src = (const uint8_t *)src + 64;
dst = (uint8_t *)dst + 64;
}
COPY_BLOCK_64_BACK15:
if (n >= 32) {
n -= 32;
rte_mov32((uint8_t *)dst, (const uint8_t *)src);
src = (const uint8_t *)src + 32;
dst = (uint8_t *)dst + 32;
}
if (n > 16) {
rte_mov16((uint8_t *)dst, (const uint8_t *)src);
rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n);
return ret;
}
if (n > 0) {
rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n);
}
return ret;
}
/**
* Make store aligned when copy size exceeds 512 bytes,
* and make sure the first 15 bytes are copied, because
* unaligned copy functions require up to 15 bytes
* backwards access.
*/
dstofss = (uintptr_t)dst & 0x0F;
if (dstofss > 0) {
dstofss = 16 - dstofss + 16;
n -= dstofss;
rte_mov32((uint8_t *)dst, (const uint8_t *)src);
src = (const uint8_t *)src + dstofss;
dst = (uint8_t *)dst + dstofss;
}
srcofs = ((uintptr_t)src & 0x0F);
/**
* For aligned copy
*/
if (srcofs == 0) {
/**
* Copy 256-byte blocks
*/
for (; n >= 256; n -= 256) {
rte_mov256((uint8_t *)dst, (const uint8_t *)src);
dst = (uint8_t *)dst + 256;
src = (const uint8_t *)src + 256;
}
/**
* Copy whatever left
*/
goto COPY_BLOCK_255_BACK15;
}
/**
* For copy with unaligned load
*/
MOVEUNALIGNED_LEFT47(dst, src, n, srcofs);
/**
* Copy whatever left
*/
goto COPY_BLOCK_64_BACK15;
}
#endif /* __AVX512F__ */
static __rte_always_inline void *
rte_memcpy_aligned(void *dst, const void *src, size_t n)
{
void *ret = dst;
/* Copy size <= 16 bytes */
if (n < 16) {
if (n & 0x01) {
*(uint8_t *)dst = *(const uint8_t *)src;
src = (const uint8_t *)src + 1;
dst = (uint8_t *)dst + 1;
}
if (n & 0x02) {
*(uint16_t *)dst = *(const uint16_t *)src;
src = (const uint16_t *)src + 1;
dst = (uint16_t *)dst + 1;
}
if (n & 0x04) {
*(uint32_t *)dst = *(const uint32_t *)src;
src = (const uint32_t *)src + 1;
dst = (uint32_t *)dst + 1;
}
if (n & 0x08)
*(uint64_t *)dst = *(const uint64_t *)src;
return ret;
}
/* Copy 16 <= size <= 32 bytes */
if (n <= 32) {
rte_mov16((uint8_t *)dst, (const uint8_t *)src);
rte_mov16((uint8_t *)dst - 16 + n,
(const uint8_t *)src - 16 + n);
return ret;
}
/* Copy 32 < size <= 64 bytes */
if (n <= 64) {
rte_mov32((uint8_t *)dst, (const uint8_t *)src);
rte_mov32((uint8_t *)dst - 32 + n,
(const uint8_t *)src - 32 + n);
return ret;
}
/* Copy 64 bytes blocks */
for (; n >= 64; n -= 64) {
rte_mov64((uint8_t *)dst, (const uint8_t *)src);
dst = (uint8_t *)dst + 64;
src = (const uint8_t *)src + 64;
}
/* Copy whatever left */
rte_mov64((uint8_t *)dst - 64 + n,
(const uint8_t *)src - 64 + n);
return ret;
}
static __rte_always_inline void *
rte_memcpy(void *dst, const void *src, size_t n)
{
if (!(((uintptr_t)dst | (uintptr_t)src) & ALIGNMENT_MASK))
return rte_memcpy_aligned(dst, src, n);
else
return rte_memcpy_generic(dst, src, n);
}
#if defined(RTE_TOOLCHAIN_GCC) && (GCC_VERSION >= 100000)
#pragma GCC diagnostic pop
#endif
#ifdef __cplusplus
}
#endif
#endif /* _RTE_MEMCPY_X86_64_H_ */