f-stack/dpdk/lib/librte_eal/arm/include/rte_memcpy_32.h

306 lines
7.4 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2015 RehiveTech. All rights reserved.
*/
#ifndef _RTE_MEMCPY_ARM32_H_
#define _RTE_MEMCPY_ARM32_H_
#include <stdint.h>
#include <string.h>
#ifdef __cplusplus
extern "C" {
#endif
#include "generic/rte_memcpy.h"
#ifdef RTE_ARCH_ARM_NEON_MEMCPY
#ifndef __ARM_NEON
#error "Cannot optimize memcpy by NEON as the CPU seems to not support this"
#endif
/* ARM NEON Intrinsics are used to copy data */
#include <arm_neon.h>
static inline void
rte_mov16(uint8_t *dst, const uint8_t *src)
{
vst1q_u8(dst, vld1q_u8(src));
}
static inline void
rte_mov32(uint8_t *dst, const uint8_t *src)
{
asm volatile (
"vld1.8 {d0-d3}, [%0]\n\t"
"vst1.8 {d0-d3}, [%1]\n\t"
: "+r" (src), "+r" (dst)
: : "memory", "d0", "d1", "d2", "d3");
}
static inline void
rte_mov48(uint8_t *dst, const uint8_t *src)
{
asm volatile (
"vld1.8 {d0-d3}, [%0]!\n\t"
"vld1.8 {d4-d5}, [%0]\n\t"
"vst1.8 {d0-d3}, [%1]!\n\t"
"vst1.8 {d4-d5}, [%1]\n\t"
: "+r" (src), "+r" (dst)
:
: "memory", "d0", "d1", "d2", "d3", "d4", "d5");
}
static inline void
rte_mov64(uint8_t *dst, const uint8_t *src)
{
asm volatile (
"vld1.8 {d0-d3}, [%0]!\n\t"
"vld1.8 {d4-d7}, [%0]\n\t"
"vst1.8 {d0-d3}, [%1]!\n\t"
"vst1.8 {d4-d7}, [%1]\n\t"
: "+r" (src), "+r" (dst)
:
: "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7");
}
static inline void
rte_mov128(uint8_t *dst, const uint8_t *src)
{
asm volatile ("pld [%0, #64]" : : "r" (src));
asm volatile (
"vld1.8 {d0-d3}, [%0]!\n\t"
"vld1.8 {d4-d7}, [%0]!\n\t"
"vld1.8 {d8-d11}, [%0]!\n\t"
"vld1.8 {d12-d15}, [%0]\n\t"
"vst1.8 {d0-d3}, [%1]!\n\t"
"vst1.8 {d4-d7}, [%1]!\n\t"
"vst1.8 {d8-d11}, [%1]!\n\t"
"vst1.8 {d12-d15}, [%1]\n\t"
: "+r" (src), "+r" (dst)
:
: "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
"d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15");
}
static inline void
rte_mov256(uint8_t *dst, const uint8_t *src)
{
asm volatile ("pld [%0, #64]" : : "r" (src));
asm volatile ("pld [%0, #128]" : : "r" (src));
asm volatile ("pld [%0, #192]" : : "r" (src));
asm volatile ("pld [%0, #256]" : : "r" (src));
asm volatile ("pld [%0, #320]" : : "r" (src));
asm volatile ("pld [%0, #384]" : : "r" (src));
asm volatile ("pld [%0, #448]" : : "r" (src));
asm volatile (
"vld1.8 {d0-d3}, [%0]!\n\t"
"vld1.8 {d4-d7}, [%0]!\n\t"
"vld1.8 {d8-d11}, [%0]!\n\t"
"vld1.8 {d12-d15}, [%0]!\n\t"
"vld1.8 {d16-d19}, [%0]!\n\t"
"vld1.8 {d20-d23}, [%0]!\n\t"
"vld1.8 {d24-d27}, [%0]!\n\t"
"vld1.8 {d28-d31}, [%0]\n\t"
"vst1.8 {d0-d3}, [%1]!\n\t"
"vst1.8 {d4-d7}, [%1]!\n\t"
"vst1.8 {d8-d11}, [%1]!\n\t"
"vst1.8 {d12-d15}, [%1]!\n\t"
"vst1.8 {d16-d19}, [%1]!\n\t"
"vst1.8 {d20-d23}, [%1]!\n\t"
"vst1.8 {d24-d27}, [%1]!\n\t"
"vst1.8 {d28-d31}, [%1]!\n\t"
: "+r" (src), "+r" (dst)
:
: "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
"d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
"d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31");
}
#define rte_memcpy(dst, src, n) \
__extension__ ({ \
(__builtin_constant_p(n)) ? \
memcpy((dst), (src), (n)) : \
rte_memcpy_func((dst), (src), (n)); })
static inline void *
rte_memcpy_func(void *dst, const void *src, size_t n)
{
void *ret = dst;
/* We can't copy < 16 bytes using XMM registers so do it manually. */
if (n < 16) {
if (n & 0x01) {
*(uint8_t *)dst = *(const uint8_t *)src;
dst = (uint8_t *)dst + 1;
src = (const uint8_t *)src + 1;
}
if (n & 0x02) {
*(uint16_t *)dst = *(const uint16_t *)src;
dst = (uint16_t *)dst + 1;
src = (const uint16_t *)src + 1;
}
if (n & 0x04) {
*(uint32_t *)dst = *(const uint32_t *)src;
dst = (uint32_t *)dst + 1;
src = (const uint32_t *)src + 1;
}
if (n & 0x08) {
/* ARMv7 can not handle unaligned access to long long
* (uint64_t). Therefore two uint32_t operations are
* used.
*/
*(uint32_t *)dst = *(const uint32_t *)src;
dst = (uint32_t *)dst + 1;
src = (const uint32_t *)src + 1;
*(uint32_t *)dst = *(const uint32_t *)src;
}
return ret;
}
/* Special fast cases for <= 128 bytes */
if (n <= 32) {
rte_mov16((uint8_t *)dst, (const uint8_t *)src);
rte_mov16((uint8_t *)dst - 16 + n,
(const uint8_t *)src - 16 + n);
return ret;
}
if (n <= 64) {
rte_mov32((uint8_t *)dst, (const uint8_t *)src);
rte_mov32((uint8_t *)dst - 32 + n,
(const uint8_t *)src - 32 + n);
return ret;
}
if (n <= 128) {
rte_mov64((uint8_t *)dst, (const uint8_t *)src);
rte_mov64((uint8_t *)dst - 64 + n,
(const uint8_t *)src - 64 + n);
return ret;
}
/*
* For large copies > 128 bytes. This combination of 256, 64 and 16 byte
* copies was found to be faster than doing 128 and 32 byte copies as
* well.
*/
for ( ; n >= 256; n -= 256) {
rte_mov256((uint8_t *)dst, (const uint8_t *)src);
dst = (uint8_t *)dst + 256;
src = (const uint8_t *)src + 256;
}
/*
* We split the remaining bytes (which will be less than 256) into
* 64byte (2^6) chunks.
* Using incrementing integers in the case labels of a switch statement
* encourages the compiler to use a jump table. To get incrementing
* integers, we shift the 2 relevant bits to the LSB position to first
* get decrementing integers, and then subtract.
*/
switch (3 - (n >> 6)) {
case 0x00:
rte_mov64((uint8_t *)dst, (const uint8_t *)src);
n -= 64;
dst = (uint8_t *)dst + 64;
src = (const uint8_t *)src + 64; /* fallthrough */
case 0x01:
rte_mov64((uint8_t *)dst, (const uint8_t *)src);
n -= 64;
dst = (uint8_t *)dst + 64;
src = (const uint8_t *)src + 64; /* fallthrough */
case 0x02:
rte_mov64((uint8_t *)dst, (const uint8_t *)src);
n -= 64;
dst = (uint8_t *)dst + 64;
src = (const uint8_t *)src + 64; /* fallthrough */
default:
break;
}
/*
* We split the remaining bytes (which will be less than 64) into
* 16byte (2^4) chunks, using the same switch structure as above.
*/
switch (3 - (n >> 4)) {
case 0x00:
rte_mov16((uint8_t *)dst, (const uint8_t *)src);
n -= 16;
dst = (uint8_t *)dst + 16;
src = (const uint8_t *)src + 16; /* fallthrough */
case 0x01:
rte_mov16((uint8_t *)dst, (const uint8_t *)src);
n -= 16;
dst = (uint8_t *)dst + 16;
src = (const uint8_t *)src + 16; /* fallthrough */
case 0x02:
rte_mov16((uint8_t *)dst, (const uint8_t *)src);
n -= 16;
dst = (uint8_t *)dst + 16;
src = (const uint8_t *)src + 16; /* fallthrough */
default:
break;
}
/* Copy any remaining bytes, without going beyond end of buffers */
if (n != 0)
rte_mov16((uint8_t *)dst - 16 + n,
(const uint8_t *)src - 16 + n);
return ret;
}
#else
static inline void
rte_mov16(uint8_t *dst, const uint8_t *src)
{
memcpy(dst, src, 16);
}
static inline void
rte_mov32(uint8_t *dst, const uint8_t *src)
{
memcpy(dst, src, 32);
}
static inline void
rte_mov48(uint8_t *dst, const uint8_t *src)
{
memcpy(dst, src, 48);
}
static inline void
rte_mov64(uint8_t *dst, const uint8_t *src)
{
memcpy(dst, src, 64);
}
static inline void
rte_mov128(uint8_t *dst, const uint8_t *src)
{
memcpy(dst, src, 128);
}
static inline void
rte_mov256(uint8_t *dst, const uint8_t *src)
{
memcpy(dst, src, 256);
}
static inline void *
rte_memcpy(void *dst, const void *src, size_t n)
{
return memcpy(dst, src, n);
}
#endif /* RTE_ARCH_ARM_NEON_MEMCPY */
#ifdef __cplusplus
}
#endif
#endif /* _RTE_MEMCPY_ARM32_H_ */