f-stack/dpdk/drivers/raw/ifpga/base/opae_spi.c

304 lines
6.2 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2019 Intel Corporation
*/
#include "opae_osdep.h"
#include "opae_spi.h"
static int nios_spi_indirect_read(struct altera_spi_device *dev, u32 reg,
u32 *val)
{
u64 ctrl = 0;
u64 stat = 0;
int loops = SPI_MAX_RETRY;
ctrl = NIOS_SPI_RD | ((u64)reg << 32);
opae_writeq(ctrl, dev->regs + NIOS_SPI_CTRL);
stat = opae_readq(dev->regs + NIOS_SPI_STAT);
while (!(stat & NIOS_SPI_VALID) && --loops)
stat = opae_readq(dev->regs + NIOS_SPI_STAT);
*val = stat & NIOS_SPI_READ_DATA;
return loops ? 0 : -ETIMEDOUT;
}
static int nios_spi_indirect_write(struct altera_spi_device *dev, u32 reg,
u32 value)
{
u64 ctrl = 0;
u64 stat = 0;
int loops = SPI_MAX_RETRY;
ctrl |= NIOS_SPI_WR | (u64)reg << 32;
ctrl |= value & NIOS_SPI_WRITE_DATA;
opae_writeq(ctrl, dev->regs + NIOS_SPI_CTRL);
stat = opae_readq(dev->regs + NIOS_SPI_STAT);
while (!(stat & NIOS_SPI_VALID) && --loops)
stat = opae_readq(dev->regs + NIOS_SPI_STAT);
return loops ? 0 : -ETIMEDOUT;
}
static int spi_indirect_write(struct altera_spi_device *dev, u32 reg,
u32 value)
{
u64 ctrl;
opae_writeq(value & WRITE_DATA_MASK, dev->regs + SPI_WRITE);
ctrl = CTRL_W | (reg >> 2);
opae_writeq(ctrl, dev->regs + SPI_CTRL);
return 0;
}
static int spi_indirect_read(struct altera_spi_device *dev, u32 reg,
u32 *val)
{
u64 tmp;
u64 ctrl;
ctrl = CTRL_R | (reg >> 2);
opae_writeq(ctrl, dev->regs + SPI_CTRL);
/**
* FIXME: Read one more time to avoid HW timing issue. This is
* a short term workaround solution, and must be removed once
* hardware fixing is done.
*/
tmp = opae_readq(dev->regs + SPI_READ);
*val = (u32)tmp;
return 0;
}
int spi_reg_write(struct altera_spi_device *dev, u32 reg,
u32 value)
{
return dev->reg_write(dev, reg, value);
}
int spi_reg_read(struct altera_spi_device *dev, u32 reg,
u32 *val)
{
return dev->reg_read(dev, reg, val);
}
void spi_cs_activate(struct altera_spi_device *dev, unsigned int chip_select)
{
spi_reg_write(dev, ALTERA_SPI_SLAVE_SEL, 1 << chip_select);
spi_reg_write(dev, ALTERA_SPI_CONTROL, ALTERA_SPI_CONTROL_SSO_MSK);
}
void spi_cs_deactivate(struct altera_spi_device *dev)
{
spi_reg_write(dev, ALTERA_SPI_CONTROL, 0);
}
static int spi_flush_rx(struct altera_spi_device *dev)
{
u32 val = 0;
int ret;
ret = spi_reg_read(dev, ALTERA_SPI_STATUS, &val);
if (ret)
return ret;
if (val & ALTERA_SPI_STATUS_RRDY_MSK) {
ret = spi_reg_read(dev, ALTERA_SPI_RXDATA, &val);
if (ret)
return ret;
}
return 0;
}
static unsigned int spi_write_bytes(struct altera_spi_device *dev, int count)
{
unsigned int val = 0;
u16 *p16;
u32 *p32;
if (dev->txbuf) {
switch (dev->data_width) {
case 1:
val = dev->txbuf[count];
break;
case 2:
p16 = (u16 *)(dev->txbuf + 2*count);
val = *p16;
if (dev->endian == SPI_BIG_ENDIAN)
val = cpu_to_be16(val);
break;
case 4:
p32 = (u32 *)(dev->txbuf + 4*count);
val = *p32;
break;
}
}
return val;
}
static void spi_fill_readbuffer(struct altera_spi_device *dev,
unsigned int value, int count)
{
u16 *p16;
u32 *p32;
if (dev->rxbuf) {
switch (dev->data_width) {
case 1:
dev->rxbuf[count] = value;
break;
case 2:
p16 = (u16 *)(dev->rxbuf + 2*count);
if (dev->endian == SPI_BIG_ENDIAN)
*p16 = cpu_to_be16((u16)value);
else
*p16 = (u16)value;
break;
case 4:
p32 = (u32 *)(dev->rxbuf + 4*count);
if (dev->endian == SPI_BIG_ENDIAN)
*p32 = cpu_to_be32(value);
else
*p32 = value;
break;
}
}
}
static int spi_txrx(struct altera_spi_device *dev)
{
unsigned int count = 0;
u32 rxd;
unsigned int tx_data;
u32 status;
int ret;
while (count < dev->len) {
tx_data = spi_write_bytes(dev, count);
spi_reg_write(dev, ALTERA_SPI_TXDATA, tx_data);
while (1) {
ret = spi_reg_read(dev, ALTERA_SPI_STATUS, &status);
if (ret)
return -EIO;
if (status & ALTERA_SPI_STATUS_RRDY_MSK)
break;
}
ret = spi_reg_read(dev, ALTERA_SPI_RXDATA, &rxd);
if (ret)
return -EIO;
spi_fill_readbuffer(dev, rxd, count);
count++;
}
return 0;
}
int spi_command(struct altera_spi_device *dev, unsigned int chip_select,
unsigned int wlen, void *wdata,
unsigned int rlen, void *rdata)
{
if (((wlen > 0) && !wdata) || ((rlen > 0) && !rdata)) {
dev_err(dev, "error on spi command checking\n");
return -EINVAL;
}
wlen = wlen / dev->data_width;
rlen = rlen / dev->data_width;
/* flush rx buffer */
spi_flush_rx(dev);
spi_cs_activate(dev, chip_select);
if (wlen) {
dev->txbuf = wdata;
dev->rxbuf = rdata;
dev->len = wlen;
spi_txrx(dev);
}
if (rlen) {
dev->rxbuf = rdata;
dev->txbuf = NULL;
dev->len = rlen;
spi_txrx(dev);
}
spi_cs_deactivate(dev);
return 0;
}
struct altera_spi_device *altera_spi_alloc(void *base, int type)
{
struct altera_spi_device *spi_dev =
opae_malloc(sizeof(struct altera_spi_device));
if (!spi_dev)
return NULL;
spi_dev->regs = base;
switch (type) {
case TYPE_SPI:
spi_dev->reg_read = spi_indirect_read;
spi_dev->reg_write = spi_indirect_write;
break;
case TYPE_NIOS_SPI:
spi_dev->reg_read = nios_spi_indirect_read;
spi_dev->reg_write = nios_spi_indirect_write;
break;
default:
dev_err(dev, "%s: invalid SPI type\n", __func__);
goto error;
}
return spi_dev;
error:
altera_spi_release(spi_dev);
return NULL;
}
void altera_spi_init(struct altera_spi_device *spi_dev)
{
spi_dev->spi_param.info = opae_readq(spi_dev->regs + SPI_CORE_PARAM);
spi_dev->data_width = spi_dev->spi_param.data_width / 8;
spi_dev->endian = spi_dev->spi_param.endian;
spi_dev->num_chipselect = spi_dev->spi_param.num_chipselect;
dev_info(spi_dev, "spi param: type=%d, data width:%d, endian:%d, clock_polarity=%d, clock=%dMHz, chips=%d, cpha=%d\n",
spi_dev->spi_param.type,
spi_dev->data_width, spi_dev->endian,
spi_dev->spi_param.clock_polarity,
spi_dev->spi_param.clock,
spi_dev->num_chipselect,
spi_dev->spi_param.clock_phase);
if (spi_dev->mutex)
pthread_mutex_lock(spi_dev->mutex);
/* clear */
spi_reg_write(spi_dev, ALTERA_SPI_CONTROL, 0);
spi_reg_write(spi_dev, ALTERA_SPI_STATUS, 0);
/* flush rxdata */
spi_flush_rx(spi_dev);
if (spi_dev->mutex)
pthread_mutex_unlock(spi_dev->mutex);
}
void altera_spi_release(struct altera_spi_device *dev)
{
if (dev)
opae_free(dev);
}