f-stack/dpdk/drivers/raw/ifpga/base/ifpga_fme.c

1470 lines
35 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2018 Intel Corporation
*/
#include "ifpga_feature_dev.h"
#include "opae_spi.h"
#include "opae_intel_max10.h"
#include "opae_i2c.h"
#include "opae_at24_eeprom.h"
#define PWR_THRESHOLD_MAX 0x7F
int fme_get_prop(struct ifpga_fme_hw *fme, struct feature_prop *prop)
{
struct ifpga_feature *feature;
if (!fme)
return -ENOENT;
feature = get_fme_feature_by_id(fme, prop->feature_id);
if (feature && feature->ops && feature->ops->get_prop)
return feature->ops->get_prop(feature, prop);
return -ENOENT;
}
int fme_set_prop(struct ifpga_fme_hw *fme, struct feature_prop *prop)
{
struct ifpga_feature *feature;
if (!fme)
return -ENOENT;
feature = get_fme_feature_by_id(fme, prop->feature_id);
if (feature && feature->ops && feature->ops->set_prop)
return feature->ops->set_prop(feature, prop);
return -ENOENT;
}
int fme_set_irq(struct ifpga_fme_hw *fme, u32 feature_id, void *irq_set)
{
struct ifpga_feature *feature;
if (!fme)
return -ENOENT;
feature = get_fme_feature_by_id(fme, feature_id);
if (feature && feature->ops && feature->ops->set_irq)
return feature->ops->set_irq(feature, irq_set);
return -ENOENT;
}
/* fme private feature head */
static int fme_hdr_init(struct ifpga_feature *feature)
{
struct feature_fme_header *fme_hdr;
fme_hdr = (struct feature_fme_header *)feature->addr;
dev_info(NULL, "FME HDR Init.\n");
dev_info(NULL, "FME cap %llx.\n",
(unsigned long long)fme_hdr->capability.csr);
return 0;
}
static void fme_hdr_uinit(struct ifpga_feature *feature)
{
UNUSED(feature);
dev_info(NULL, "FME HDR UInit.\n");
}
static int fme_hdr_get_revision(struct ifpga_fme_hw *fme, u64 *revision)
{
struct feature_fme_header *fme_hdr
= get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
struct feature_header header;
header.csr = readq(&fme_hdr->header);
*revision = header.revision;
return 0;
}
static int fme_hdr_get_ports_num(struct ifpga_fme_hw *fme, u64 *ports_num)
{
struct feature_fme_header *fme_hdr
= get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
struct feature_fme_capability fme_capability;
fme_capability.csr = readq(&fme_hdr->capability);
*ports_num = fme_capability.num_ports;
return 0;
}
static int fme_hdr_get_cache_size(struct ifpga_fme_hw *fme, u64 *cache_size)
{
struct feature_fme_header *fme_hdr
= get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
struct feature_fme_capability fme_capability;
fme_capability.csr = readq(&fme_hdr->capability);
*cache_size = fme_capability.cache_size;
return 0;
}
static int fme_hdr_get_version(struct ifpga_fme_hw *fme, u64 *version)
{
struct feature_fme_header *fme_hdr
= get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
struct feature_fme_capability fme_capability;
fme_capability.csr = readq(&fme_hdr->capability);
*version = fme_capability.fabric_verid;
return 0;
}
static int fme_hdr_get_socket_id(struct ifpga_fme_hw *fme, u64 *socket_id)
{
struct feature_fme_header *fme_hdr
= get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
struct feature_fme_capability fme_capability;
fme_capability.csr = readq(&fme_hdr->capability);
*socket_id = fme_capability.socket_id;
return 0;
}
static int fme_hdr_get_bitstream_id(struct ifpga_fme_hw *fme,
u64 *bitstream_id)
{
struct feature_fme_header *fme_hdr
= get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
*bitstream_id = readq(&fme_hdr->bitstream_id);
return 0;
}
static int fme_hdr_get_bitstream_metadata(struct ifpga_fme_hw *fme,
u64 *bitstream_metadata)
{
struct feature_fme_header *fme_hdr
= get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
*bitstream_metadata = readq(&fme_hdr->bitstream_md);
return 0;
}
static int
fme_hdr_get_prop(struct ifpga_feature *feature, struct feature_prop *prop)
{
struct ifpga_fme_hw *fme = feature->parent;
switch (prop->prop_id) {
case FME_HDR_PROP_REVISION:
return fme_hdr_get_revision(fme, &prop->data);
case FME_HDR_PROP_PORTS_NUM:
return fme_hdr_get_ports_num(fme, &prop->data);
case FME_HDR_PROP_CACHE_SIZE:
return fme_hdr_get_cache_size(fme, &prop->data);
case FME_HDR_PROP_VERSION:
return fme_hdr_get_version(fme, &prop->data);
case FME_HDR_PROP_SOCKET_ID:
return fme_hdr_get_socket_id(fme, &prop->data);
case FME_HDR_PROP_BITSTREAM_ID:
return fme_hdr_get_bitstream_id(fme, &prop->data);
case FME_HDR_PROP_BITSTREAM_METADATA:
return fme_hdr_get_bitstream_metadata(fme, &prop->data);
}
return -ENOENT;
}
struct ifpga_feature_ops fme_hdr_ops = {
.init = fme_hdr_init,
.uinit = fme_hdr_uinit,
.get_prop = fme_hdr_get_prop,
};
/* thermal management */
static int fme_thermal_get_threshold1(struct ifpga_fme_hw *fme, u64 *thres1)
{
struct feature_fme_thermal *thermal;
struct feature_fme_tmp_threshold temp_threshold;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
temp_threshold.csr = readq(&thermal->threshold);
*thres1 = temp_threshold.tmp_thshold1;
return 0;
}
static int fme_thermal_set_threshold1(struct ifpga_fme_hw *fme, u64 thres1)
{
struct feature_fme_thermal *thermal;
struct feature_fme_header *fme_hdr;
struct feature_fme_tmp_threshold tmp_threshold;
struct feature_fme_capability fme_capability;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
fme_hdr = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
spinlock_lock(&fme->lock);
tmp_threshold.csr = readq(&thermal->threshold);
fme_capability.csr = readq(&fme_hdr->capability);
if (fme_capability.lock_bit == 1) {
spinlock_unlock(&fme->lock);
return -EBUSY;
} else if (thres1 > 100) {
spinlock_unlock(&fme->lock);
return -EINVAL;
} else if (thres1 == 0) {
tmp_threshold.tmp_thshold1_enable = 0;
tmp_threshold.tmp_thshold1 = thres1;
} else {
tmp_threshold.tmp_thshold1_enable = 1;
tmp_threshold.tmp_thshold1 = thres1;
}
writeq(tmp_threshold.csr, &thermal->threshold);
spinlock_unlock(&fme->lock);
return 0;
}
static int fme_thermal_get_threshold2(struct ifpga_fme_hw *fme, u64 *thres2)
{
struct feature_fme_thermal *thermal;
struct feature_fme_tmp_threshold temp_threshold;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
temp_threshold.csr = readq(&thermal->threshold);
*thres2 = temp_threshold.tmp_thshold2;
return 0;
}
static int fme_thermal_set_threshold2(struct ifpga_fme_hw *fme, u64 thres2)
{
struct feature_fme_thermal *thermal;
struct feature_fme_header *fme_hdr;
struct feature_fme_tmp_threshold tmp_threshold;
struct feature_fme_capability fme_capability;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
fme_hdr = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
spinlock_lock(&fme->lock);
tmp_threshold.csr = readq(&thermal->threshold);
fme_capability.csr = readq(&fme_hdr->capability);
if (fme_capability.lock_bit == 1) {
spinlock_unlock(&fme->lock);
return -EBUSY;
} else if (thres2 > 100) {
spinlock_unlock(&fme->lock);
return -EINVAL;
} else if (thres2 == 0) {
tmp_threshold.tmp_thshold2_enable = 0;
tmp_threshold.tmp_thshold2 = thres2;
} else {
tmp_threshold.tmp_thshold2_enable = 1;
tmp_threshold.tmp_thshold2 = thres2;
}
writeq(tmp_threshold.csr, &thermal->threshold);
spinlock_unlock(&fme->lock);
return 0;
}
static int fme_thermal_get_threshold_trip(struct ifpga_fme_hw *fme,
u64 *thres_trip)
{
struct feature_fme_thermal *thermal;
struct feature_fme_tmp_threshold temp_threshold;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
temp_threshold.csr = readq(&thermal->threshold);
*thres_trip = temp_threshold.therm_trip_thshold;
return 0;
}
static int fme_thermal_get_threshold1_reached(struct ifpga_fme_hw *fme,
u64 *thres1_reached)
{
struct feature_fme_thermal *thermal;
struct feature_fme_tmp_threshold temp_threshold;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
temp_threshold.csr = readq(&thermal->threshold);
*thres1_reached = temp_threshold.thshold1_status;
return 0;
}
static int fme_thermal_get_threshold2_reached(struct ifpga_fme_hw *fme,
u64 *thres1_reached)
{
struct feature_fme_thermal *thermal;
struct feature_fme_tmp_threshold temp_threshold;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
temp_threshold.csr = readq(&thermal->threshold);
*thres1_reached = temp_threshold.thshold2_status;
return 0;
}
static int fme_thermal_get_threshold1_policy(struct ifpga_fme_hw *fme,
u64 *thres1_policy)
{
struct feature_fme_thermal *thermal;
struct feature_fme_tmp_threshold temp_threshold;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
temp_threshold.csr = readq(&thermal->threshold);
*thres1_policy = temp_threshold.thshold_policy;
return 0;
}
static int fme_thermal_set_threshold1_policy(struct ifpga_fme_hw *fme,
u64 thres1_policy)
{
struct feature_fme_thermal *thermal;
struct feature_fme_tmp_threshold tmp_threshold;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
spinlock_lock(&fme->lock);
tmp_threshold.csr = readq(&thermal->threshold);
if (thres1_policy == 0) {
tmp_threshold.thshold_policy = 0;
} else if (thres1_policy == 1) {
tmp_threshold.thshold_policy = 1;
} else {
spinlock_unlock(&fme->lock);
return -EINVAL;
}
writeq(tmp_threshold.csr, &thermal->threshold);
spinlock_unlock(&fme->lock);
return 0;
}
static int fme_thermal_get_temperature(struct ifpga_fme_hw *fme, u64 *temp)
{
struct feature_fme_thermal *thermal;
struct feature_fme_temp_rdsensor_fmt1 temp_rdsensor_fmt1;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
temp_rdsensor_fmt1.csr = readq(&thermal->rdsensor_fm1);
*temp = temp_rdsensor_fmt1.fpga_temp;
return 0;
}
static int fme_thermal_get_revision(struct ifpga_fme_hw *fme, u64 *revision)
{
struct feature_fme_thermal *fme_thermal
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
struct feature_header header;
header.csr = readq(&fme_thermal->header);
*revision = header.revision;
return 0;
}
#define FME_THERMAL_CAP_NO_TMP_THRESHOLD 0x1
static int fme_thermal_mgmt_init(struct ifpga_feature *feature)
{
struct feature_fme_thermal *fme_thermal;
struct feature_fme_tmp_threshold_cap thermal_cap;
UNUSED(feature);
dev_info(NULL, "FME thermal mgmt Init.\n");
fme_thermal = (struct feature_fme_thermal *)feature->addr;
thermal_cap.csr = readq(&fme_thermal->threshold_cap);
dev_info(NULL, "FME thermal cap %llx.\n",
(unsigned long long)fme_thermal->threshold_cap.csr);
if (thermal_cap.tmp_thshold_disabled)
feature->cap |= FME_THERMAL_CAP_NO_TMP_THRESHOLD;
return 0;
}
static void fme_thermal_mgmt_uinit(struct ifpga_feature *feature)
{
UNUSED(feature);
dev_info(NULL, "FME thermal mgmt UInit.\n");
}
static int
fme_thermal_set_prop(struct ifpga_feature *feature, struct feature_prop *prop)
{
struct ifpga_fme_hw *fme = feature->parent;
if (feature->cap & FME_THERMAL_CAP_NO_TMP_THRESHOLD)
return -ENOENT;
switch (prop->prop_id) {
case FME_THERMAL_PROP_THRESHOLD1:
return fme_thermal_set_threshold1(fme, prop->data);
case FME_THERMAL_PROP_THRESHOLD2:
return fme_thermal_set_threshold2(fme, prop->data);
case FME_THERMAL_PROP_THRESHOLD1_POLICY:
return fme_thermal_set_threshold1_policy(fme, prop->data);
}
return -ENOENT;
}
static int
fme_thermal_get_prop(struct ifpga_feature *feature, struct feature_prop *prop)
{
struct ifpga_fme_hw *fme = feature->parent;
if (feature->cap & FME_THERMAL_CAP_NO_TMP_THRESHOLD &&
prop->prop_id != FME_THERMAL_PROP_TEMPERATURE &&
prop->prop_id != FME_THERMAL_PROP_REVISION)
return -ENOENT;
switch (prop->prop_id) {
case FME_THERMAL_PROP_THRESHOLD1:
return fme_thermal_get_threshold1(fme, &prop->data);
case FME_THERMAL_PROP_THRESHOLD2:
return fme_thermal_get_threshold2(fme, &prop->data);
case FME_THERMAL_PROP_THRESHOLD_TRIP:
return fme_thermal_get_threshold_trip(fme, &prop->data);
case FME_THERMAL_PROP_THRESHOLD1_REACHED:
return fme_thermal_get_threshold1_reached(fme, &prop->data);
case FME_THERMAL_PROP_THRESHOLD2_REACHED:
return fme_thermal_get_threshold2_reached(fme, &prop->data);
case FME_THERMAL_PROP_THRESHOLD1_POLICY:
return fme_thermal_get_threshold1_policy(fme, &prop->data);
case FME_THERMAL_PROP_TEMPERATURE:
return fme_thermal_get_temperature(fme, &prop->data);
case FME_THERMAL_PROP_REVISION:
return fme_thermal_get_revision(fme, &prop->data);
}
return -ENOENT;
}
struct ifpga_feature_ops fme_thermal_mgmt_ops = {
.init = fme_thermal_mgmt_init,
.uinit = fme_thermal_mgmt_uinit,
.get_prop = fme_thermal_get_prop,
.set_prop = fme_thermal_set_prop,
};
static int fme_pwr_get_consumed(struct ifpga_fme_hw *fme, u64 *consumed)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_status pm_status;
pm_status.csr = readq(&fme_power->status);
*consumed = pm_status.pwr_consumed;
return 0;
}
static int fme_pwr_get_threshold1(struct ifpga_fme_hw *fme, u64 *threshold)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_ap_threshold pm_ap_threshold;
pm_ap_threshold.csr = readq(&fme_power->threshold);
*threshold = pm_ap_threshold.threshold1;
return 0;
}
static int fme_pwr_set_threshold1(struct ifpga_fme_hw *fme, u64 threshold)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_ap_threshold pm_ap_threshold;
spinlock_lock(&fme->lock);
pm_ap_threshold.csr = readq(&fme_power->threshold);
if (threshold <= PWR_THRESHOLD_MAX) {
pm_ap_threshold.threshold1 = threshold;
} else {
spinlock_unlock(&fme->lock);
return -EINVAL;
}
writeq(pm_ap_threshold.csr, &fme_power->threshold);
spinlock_unlock(&fme->lock);
return 0;
}
static int fme_pwr_get_threshold2(struct ifpga_fme_hw *fme, u64 *threshold)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_ap_threshold pm_ap_threshold;
pm_ap_threshold.csr = readq(&fme_power->threshold);
*threshold = pm_ap_threshold.threshold2;
return 0;
}
static int fme_pwr_set_threshold2(struct ifpga_fme_hw *fme, u64 threshold)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_ap_threshold pm_ap_threshold;
spinlock_lock(&fme->lock);
pm_ap_threshold.csr = readq(&fme_power->threshold);
if (threshold <= PWR_THRESHOLD_MAX) {
pm_ap_threshold.threshold2 = threshold;
} else {
spinlock_unlock(&fme->lock);
return -EINVAL;
}
writeq(pm_ap_threshold.csr, &fme_power->threshold);
spinlock_unlock(&fme->lock);
return 0;
}
static int fme_pwr_get_threshold1_status(struct ifpga_fme_hw *fme,
u64 *threshold_status)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_ap_threshold pm_ap_threshold;
pm_ap_threshold.csr = readq(&fme_power->threshold);
*threshold_status = pm_ap_threshold.threshold1_status;
return 0;
}
static int fme_pwr_get_threshold2_status(struct ifpga_fme_hw *fme,
u64 *threshold_status)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_ap_threshold pm_ap_threshold;
pm_ap_threshold.csr = readq(&fme_power->threshold);
*threshold_status = pm_ap_threshold.threshold2_status;
return 0;
}
static int fme_pwr_get_rtl(struct ifpga_fme_hw *fme, u64 *rtl)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_status pm_status;
pm_status.csr = readq(&fme_power->status);
*rtl = pm_status.fpga_latency_report;
return 0;
}
static int fme_pwr_get_xeon_limit(struct ifpga_fme_hw *fme, u64 *limit)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_xeon_limit xeon_limit;
xeon_limit.csr = readq(&fme_power->xeon_limit);
if (!xeon_limit.enable)
xeon_limit.pwr_limit = 0;
*limit = xeon_limit.pwr_limit;
return 0;
}
static int fme_pwr_get_fpga_limit(struct ifpga_fme_hw *fme, u64 *limit)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_fpga_limit fpga_limit;
fpga_limit.csr = readq(&fme_power->fpga_limit);
if (!fpga_limit.enable)
fpga_limit.pwr_limit = 0;
*limit = fpga_limit.pwr_limit;
return 0;
}
static int fme_pwr_get_revision(struct ifpga_fme_hw *fme, u64 *revision)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_header header;
header.csr = readq(&fme_power->header);
*revision = header.revision;
return 0;
}
static int fme_power_mgmt_init(struct ifpga_feature *feature)
{
UNUSED(feature);
dev_info(NULL, "FME power mgmt Init.\n");
return 0;
}
static void fme_power_mgmt_uinit(struct ifpga_feature *feature)
{
UNUSED(feature);
dev_info(NULL, "FME power mgmt UInit.\n");
}
static int fme_power_mgmt_get_prop(struct ifpga_feature *feature,
struct feature_prop *prop)
{
struct ifpga_fme_hw *fme = feature->parent;
switch (prop->prop_id) {
case FME_PWR_PROP_CONSUMED:
return fme_pwr_get_consumed(fme, &prop->data);
case FME_PWR_PROP_THRESHOLD1:
return fme_pwr_get_threshold1(fme, &prop->data);
case FME_PWR_PROP_THRESHOLD2:
return fme_pwr_get_threshold2(fme, &prop->data);
case FME_PWR_PROP_THRESHOLD1_STATUS:
return fme_pwr_get_threshold1_status(fme, &prop->data);
case FME_PWR_PROP_THRESHOLD2_STATUS:
return fme_pwr_get_threshold2_status(fme, &prop->data);
case FME_PWR_PROP_RTL:
return fme_pwr_get_rtl(fme, &prop->data);
case FME_PWR_PROP_XEON_LIMIT:
return fme_pwr_get_xeon_limit(fme, &prop->data);
case FME_PWR_PROP_FPGA_LIMIT:
return fme_pwr_get_fpga_limit(fme, &prop->data);
case FME_PWR_PROP_REVISION:
return fme_pwr_get_revision(fme, &prop->data);
}
return -ENOENT;
}
static int fme_power_mgmt_set_prop(struct ifpga_feature *feature,
struct feature_prop *prop)
{
struct ifpga_fme_hw *fme = feature->parent;
switch (prop->prop_id) {
case FME_PWR_PROP_THRESHOLD1:
return fme_pwr_set_threshold1(fme, prop->data);
case FME_PWR_PROP_THRESHOLD2:
return fme_pwr_set_threshold2(fme, prop->data);
}
return -ENOENT;
}
struct ifpga_feature_ops fme_power_mgmt_ops = {
.init = fme_power_mgmt_init,
.uinit = fme_power_mgmt_uinit,
.get_prop = fme_power_mgmt_get_prop,
.set_prop = fme_power_mgmt_set_prop,
};
static int fme_hssi_eth_init(struct ifpga_feature *feature)
{
UNUSED(feature);
return 0;
}
static void fme_hssi_eth_uinit(struct ifpga_feature *feature)
{
UNUSED(feature);
}
struct ifpga_feature_ops fme_hssi_eth_ops = {
.init = fme_hssi_eth_init,
.uinit = fme_hssi_eth_uinit,
};
static int fme_emif_init(struct ifpga_feature *feature)
{
UNUSED(feature);
return 0;
}
static void fme_emif_uinit(struct ifpga_feature *feature)
{
UNUSED(feature);
}
struct ifpga_feature_ops fme_emif_ops = {
.init = fme_emif_init,
.uinit = fme_emif_uinit,
};
static const char *board_type_to_string(u32 type)
{
switch (type) {
case VC_8_10G:
return "VC_8x10G";
case VC_4_25G:
return "VC_4x25G";
case VC_2_1_25:
return "VC_2x1x25G";
case VC_4_25G_2_25G:
return "VC_4x25G+2x25G";
case VC_2_2_25G:
return "VC_2x2x25G";
}
return "unknown";
}
static const char *board_major_to_string(u32 major)
{
switch (major) {
case VISTA_CREEK:
return "VISTA_CREEK";
case RUSH_CREEK:
return "RUSH_CREEK";
case DARBY_CREEK:
return "DARBY_CREEK";
}
return "unknown";
}
static int board_type_to_info(u32 type,
struct opae_board_info *info)
{
switch (type) {
case VC_8_10G:
info->nums_of_retimer = 2;
info->ports_per_retimer = 4;
info->nums_of_fvl = 2;
info->ports_per_fvl = 4;
break;
case VC_4_25G:
info->nums_of_retimer = 1;
info->ports_per_retimer = 4;
info->nums_of_fvl = 2;
info->ports_per_fvl = 2;
break;
case VC_2_1_25:
info->nums_of_retimer = 2;
info->ports_per_retimer = 1;
info->nums_of_fvl = 1;
info->ports_per_fvl = 2;
break;
case VC_2_2_25G:
info->nums_of_retimer = 2;
info->ports_per_retimer = 2;
info->nums_of_fvl = 2;
info->ports_per_fvl = 2;
break;
default:
return -EINVAL;
}
return 0;
}
static int fme_get_board_interface(struct ifpga_fme_hw *fme)
{
struct fme_bitstream_id id;
struct ifpga_hw *hw;
u32 val;
hw = fme->parent;
if (!hw)
return -ENODEV;
if (fme_hdr_get_bitstream_id(fme, &id.id))
return -EINVAL;
fme->board_info.major = id.major;
fme->board_info.minor = id.minor;
fme->board_info.type = id.interface;
fme->board_info.fvl_bypass = id.fvl_bypass;
fme->board_info.mac_lightweight = id.mac_lightweight;
fme->board_info.lightweight = id.lightweiht;
fme->board_info.disaggregate = id.disagregate;
fme->board_info.seu = id.seu;
fme->board_info.ptp = id.ptp;
dev_info(fme, "found: PCI dev: %02x:%02x:%x board: %s type: %s\n",
hw->pci_data->bus,
hw->pci_data->devid,
hw->pci_data->function,
board_major_to_string(fme->board_info.major),
board_type_to_string(fme->board_info.type));
dev_info(fme, "support feature:\n"
"fvl_bypass:%s\n"
"mac_lightweight:%s\n"
"lightweight:%s\n"
"disaggregate:%s\n"
"seu:%s\n"
"ptp1588:%s\n",
check_support(fme->board_info.fvl_bypass),
check_support(fme->board_info.mac_lightweight),
check_support(fme->board_info.lightweight),
check_support(fme->board_info.disaggregate),
check_support(fme->board_info.seu),
check_support(fme->board_info.ptp));
if (board_type_to_info(fme->board_info.type, &fme->board_info))
return -EINVAL;
dev_info(fme, "get board info: nums_retimers %d ports_per_retimer %d nums_fvl %d ports_per_fvl %d\n",
fme->board_info.nums_of_retimer,
fme->board_info.ports_per_retimer,
fme->board_info.nums_of_fvl,
fme->board_info.ports_per_fvl);
if (max10_sys_read(fme->max10_dev, MAX10_BUILD_VER, &val))
return -EINVAL;
fme->board_info.max10_version = val & 0xffffff;
if (max10_sys_read(fme->max10_dev, NIOS2_FW_VERSION, &val))
return -EINVAL;
fme->board_info.nios_fw_version = val & 0xffffff;
dev_info(fme, "max10 version 0x%x, nios fw version 0x%x\n",
fme->board_info.max10_version,
fme->board_info.nios_fw_version);
return 0;
}
static int spi_self_checking(struct intel_max10_device *dev)
{
u32 val;
int ret;
ret = max10_sys_read(dev, MAX10_TEST_REG, &val);
if (ret)
return -EIO;
dev_info(NULL, "Read MAX10 test register 0x%x\n", val);
return 0;
}
static void init_spi_share_data(struct ifpga_fme_hw *fme,
struct altera_spi_device *spi)
{
struct ifpga_hw *hw = (struct ifpga_hw *)fme->parent;
opae_share_data *sd = NULL;
if (hw && hw->adapter && hw->adapter->shm.ptr) {
dev_info(NULL, "transfer share data to spi\n");
sd = (opae_share_data *)hw->adapter->shm.ptr;
spi->mutex = &sd->spi_mutex;
spi->dtb_sz_ptr = &sd->dtb_size;
spi->dtb = sd->dtb;
} else {
spi->mutex = NULL;
spi->dtb_sz_ptr = NULL;
spi->dtb = NULL;
}
}
static int fme_spi_init(struct ifpga_feature *feature)
{
struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
struct altera_spi_device *spi_master;
struct intel_max10_device *max10;
int ret = 0;
dev_info(fme, "FME SPI Master (Max10) Init.\n");
dev_debug(fme, "FME SPI base addr %p.\n",
feature->addr);
dev_debug(fme, "spi param=0x%llx\n",
(unsigned long long)opae_readq(feature->addr + 0x8));
spi_master = altera_spi_alloc(feature->addr, TYPE_SPI);
if (!spi_master)
return -ENODEV;
init_spi_share_data(fme, spi_master);
altera_spi_init(spi_master);
max10 = intel_max10_device_probe(spi_master, 0);
if (!max10) {
ret = -ENODEV;
dev_err(fme, "max10 init fail\n");
goto spi_fail;
}
fme->max10_dev = max10;
/* SPI self test */
if (spi_self_checking(max10)) {
ret = -EIO;
goto max10_fail;
}
return ret;
max10_fail:
intel_max10_device_remove(fme->max10_dev);
spi_fail:
altera_spi_release(spi_master);
return ret;
}
static void fme_spi_uinit(struct ifpga_feature *feature)
{
struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
if (fme->max10_dev)
intel_max10_device_remove(fme->max10_dev);
}
struct ifpga_feature_ops fme_spi_master_ops = {
.init = fme_spi_init,
.uinit = fme_spi_uinit,
};
static int nios_spi_wait_init_done(struct altera_spi_device *dev)
{
u32 val = 0;
unsigned long timeout = rte_get_timer_cycles() +
msecs_to_timer_cycles(10000);
unsigned long ticks;
int major_version;
int fecmode = FEC_MODE_NO;
if (spi_reg_read(dev, NIOS_VERSION, &val))
return -EIO;
major_version =
(val & NIOS_VERSION_MAJOR) >> NIOS_VERSION_MAJOR_SHIFT;
dev_info(dev, "A10 NIOS FW version %d\n", major_version);
if (major_version >= 3) {
/* read NIOS_INIT to check if PKVL INIT done or not */
if (spi_reg_read(dev, NIOS_INIT, &val))
return -EIO;
dev_debug(dev, "read NIOS_INIT: 0x%x\n", val);
/* check if PKVLs are initialized already */
if (val & NIOS_INIT_DONE || val & NIOS_INIT_START)
goto nios_init_done;
/* start to config the default FEC mode */
val = fecmode | NIOS_INIT_START;
if (spi_reg_write(dev, NIOS_INIT, val))
return -EIO;
}
nios_init_done:
do {
if (spi_reg_read(dev, NIOS_INIT, &val))
return -EIO;
if (val & NIOS_INIT_DONE)
break;
ticks = rte_get_timer_cycles();
if (time_after(ticks, timeout))
return -ETIMEDOUT;
msleep(100);
} while (1);
/* get the fecmode */
if (spi_reg_read(dev, NIOS_INIT, &val))
return -EIO;
dev_debug(dev, "read NIOS_INIT: 0x%x\n", val);
fecmode = (val & REQ_FEC_MODE) >> REQ_FEC_MODE_SHIFT;
dev_info(dev, "fecmode: 0x%x, %s\n", fecmode,
(fecmode == FEC_MODE_KR) ? "kr" :
((fecmode == FEC_MODE_RS) ? "rs" : "no"));
return 0;
}
static int nios_spi_check_error(struct altera_spi_device *dev)
{
u32 value = 0;
if (spi_reg_read(dev, PKVL_A_MODE_STS, &value))
return -EIO;
dev_debug(dev, "PKVL A Mode Status 0x%x\n", value);
if (value >= 0x100)
return -EINVAL;
if (spi_reg_read(dev, PKVL_B_MODE_STS, &value))
return -EIO;
dev_debug(dev, "PKVL B Mode Status 0x%x\n", value);
if (value >= 0x100)
return -EINVAL;
return 0;
}
static int fme_nios_spi_init(struct ifpga_feature *feature)
{
struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
struct altera_spi_device *spi_master;
struct intel_max10_device *max10;
struct ifpga_hw *hw;
struct opae_manager *mgr;
int ret = 0;
hw = fme->parent;
if (!hw)
return -ENODEV;
mgr = hw->adapter->mgr;
if (!mgr)
return -ENODEV;
dev_info(fme, "FME SPI Master (NIOS) Init.\n");
dev_debug(fme, "FME SPI base addr %p.\n",
feature->addr);
dev_debug(fme, "spi param=0x%llx\n",
(unsigned long long)opae_readq(feature->addr + 0x8));
spi_master = altera_spi_alloc(feature->addr, TYPE_NIOS_SPI);
if (!spi_master)
return -ENODEV;
init_spi_share_data(fme, spi_master);
/**
* 1. wait A10 NIOS initial finished and
* release the SPI master to Host
*/
if (spi_master->mutex)
pthread_mutex_lock(spi_master->mutex);
ret = nios_spi_wait_init_done(spi_master);
if (ret != 0) {
dev_err(fme, "FME NIOS_SPI init fail\n");
if (spi_master->mutex)
pthread_mutex_unlock(spi_master->mutex);
goto release_dev;
}
dev_info(fme, "FME NIOS_SPI initial done\n");
/* 2. check if error occur? */
if (nios_spi_check_error(spi_master))
dev_info(fme, "NIOS_SPI INIT done, but found some error\n");
if (spi_master->mutex)
pthread_mutex_unlock(spi_master->mutex);
/* 3. init the spi master*/
altera_spi_init(spi_master);
/* init the max10 device */
max10 = intel_max10_device_probe(spi_master, 0);
if (!max10) {
ret = -ENODEV;
dev_err(fme, "max10 init fail\n");
goto release_dev;
}
fme->max10_dev = max10;
max10->bus = hw->pci_data->bus;
fme_get_board_interface(fme);
mgr->sensor_list = &max10->opae_sensor_list;
/* SPI self test */
if (spi_self_checking(max10))
goto spi_fail;
return ret;
spi_fail:
intel_max10_device_remove(fme->max10_dev);
release_dev:
altera_spi_release(spi_master);
return -ENODEV;
}
static void fme_nios_spi_uinit(struct ifpga_feature *feature)
{
struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
if (fme->max10_dev)
intel_max10_device_remove(fme->max10_dev);
}
struct ifpga_feature_ops fme_nios_spi_master_ops = {
.init = fme_nios_spi_init,
.uinit = fme_nios_spi_uinit,
};
static int i2c_mac_rom_test(struct altera_i2c_dev *dev)
{
char buf[20];
int ret;
char read_buf[20] = {0,};
const char *string = "1a2b3c4d5e";
opae_memcpy(buf, string, strlen(string));
ret = at24_eeprom_write(dev, AT24512_SLAVE_ADDR, 0,
(u8 *)buf, strlen(string));
if (ret < 0) {
dev_err(NULL, "write i2c error:%d\n", ret);
return ret;
}
ret = at24_eeprom_read(dev, AT24512_SLAVE_ADDR, 0,
(u8 *)read_buf, strlen(string));
if (ret < 0) {
dev_err(NULL, "read i2c error:%d\n", ret);
return ret;
}
if (memcmp(buf, read_buf, strlen(string))) {
dev_err(NULL, "%s test fail!\n", __func__);
return -EFAULT;
}
dev_info(NULL, "%s test successful\n", __func__);
return 0;
}
static void init_i2c_mutex(struct ifpga_fme_hw *fme)
{
struct ifpga_hw *hw = (struct ifpga_hw *)fme->parent;
struct altera_i2c_dev *i2c_dev;
opae_share_data *sd = NULL;
if (fme->i2c_master) {
i2c_dev = (struct altera_i2c_dev *)fme->i2c_master;
if (hw && hw->adapter && hw->adapter->shm.ptr) {
dev_info(NULL, "use multi-process mutex in i2c\n");
sd = (opae_share_data *)hw->adapter->shm.ptr;
i2c_dev->mutex = &sd->i2c_mutex;
} else {
dev_info(NULL, "use multi-thread mutex in i2c\n");
i2c_dev->mutex = &i2c_dev->lock;
}
}
}
static int fme_i2c_init(struct ifpga_feature *feature)
{
struct feature_fme_i2c *i2c;
struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
i2c = (struct feature_fme_i2c *)feature->addr;
dev_info(NULL, "FME I2C Master Init.\n");
fme->i2c_master = altera_i2c_probe(i2c);
if (!fme->i2c_master)
return -ENODEV;
init_i2c_mutex(fme);
/* MAC ROM self test */
i2c_mac_rom_test(fme->i2c_master);
return 0;
}
static void fme_i2c_uninit(struct ifpga_feature *feature)
{
struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
altera_i2c_remove(fme->i2c_master);
}
struct ifpga_feature_ops fme_i2c_master_ops = {
.init = fme_i2c_init,
.uinit = fme_i2c_uninit,
};
static int fme_eth_group_init(struct ifpga_feature *feature)
{
struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
struct eth_group_device *dev;
dev = (struct eth_group_device *)eth_group_probe(feature->addr);
if (!dev)
return -ENODEV;
fme->eth_dev[dev->group_id] = dev;
fme->eth_group_region[dev->group_id].addr =
feature->addr;
fme->eth_group_region[dev->group_id].phys_addr =
feature->phys_addr;
fme->eth_group_region[dev->group_id].len =
feature->size;
fme->nums_eth_dev++;
dev_info(NULL, "FME PHY Group %d Init.\n", dev->group_id);
dev_info(NULL, "found %d eth group, addr %p phys_addr 0x%llx len %u\n",
dev->group_id, feature->addr,
(unsigned long long)feature->phys_addr,
feature->size);
return 0;
}
static void fme_eth_group_uinit(struct ifpga_feature *feature)
{
UNUSED(feature);
}
struct ifpga_feature_ops fme_eth_group_ops = {
.init = fme_eth_group_init,
.uinit = fme_eth_group_uinit,
};
int fme_mgr_read_mac_rom(struct ifpga_fme_hw *fme, int offset,
void *buf, int size)
{
struct altera_i2c_dev *dev;
dev = fme->i2c_master;
if (!dev)
return -ENODEV;
return at24_eeprom_read(dev, AT24512_SLAVE_ADDR, offset, buf, size);
}
int fme_mgr_write_mac_rom(struct ifpga_fme_hw *fme, int offset,
void *buf, int size)
{
struct altera_i2c_dev *dev;
dev = fme->i2c_master;
if (!dev)
return -ENODEV;
return at24_eeprom_write(dev, AT24512_SLAVE_ADDR, offset, buf, size);
}
static struct eth_group_device *get_eth_group_dev(struct ifpga_fme_hw *fme,
u8 group_id)
{
struct eth_group_device *dev;
if (group_id > (MAX_ETH_GROUP_DEVICES - 1))
return NULL;
dev = (struct eth_group_device *)fme->eth_dev[group_id];
if (!dev)
return NULL;
if (dev->status != ETH_GROUP_DEV_ATTACHED)
return NULL;
return dev;
}
int fme_mgr_get_eth_group_nums(struct ifpga_fme_hw *fme)
{
return fme->nums_eth_dev;
}
int fme_mgr_get_eth_group_info(struct ifpga_fme_hw *fme,
u8 group_id, struct opae_eth_group_info *info)
{
struct eth_group_device *dev;
dev = get_eth_group_dev(fme, group_id);
if (!dev)
return -ENODEV;
info->group_id = group_id;
info->speed = dev->speed;
info->nums_of_mac = dev->mac_num;
info->nums_of_phy = dev->phy_num;
return 0;
}
int fme_mgr_eth_group_read_reg(struct ifpga_fme_hw *fme, u8 group_id,
u8 type, u8 index, u16 addr, u32 *data)
{
struct eth_group_device *dev;
dev = get_eth_group_dev(fme, group_id);
if (!dev)
return -ENODEV;
return eth_group_read_reg(dev, type, index, addr, data);
}
int fme_mgr_eth_group_write_reg(struct ifpga_fme_hw *fme, u8 group_id,
u8 type, u8 index, u16 addr, u32 data)
{
struct eth_group_device *dev;
dev = get_eth_group_dev(fme, group_id);
if (!dev)
return -ENODEV;
return eth_group_write_reg(dev, type, index, addr, data);
}
static int fme_get_eth_group_speed(struct ifpga_fme_hw *fme,
u8 group_id)
{
struct eth_group_device *dev;
dev = get_eth_group_dev(fme, group_id);
if (!dev)
return -ENODEV;
return dev->speed;
}
int fme_mgr_get_retimer_info(struct ifpga_fme_hw *fme,
struct opae_retimer_info *info)
{
struct intel_max10_device *dev;
dev = (struct intel_max10_device *)fme->max10_dev;
if (!dev)
return -ENODEV;
info->nums_retimer = fme->board_info.nums_of_retimer;
info->ports_per_retimer = fme->board_info.ports_per_retimer;
info->nums_fvl = fme->board_info.nums_of_fvl;
info->ports_per_fvl = fme->board_info.ports_per_fvl;
/* The speed of PKVL is identical the eth group's speed */
info->support_speed = fme_get_eth_group_speed(fme,
LINE_SIDE_GROUP_ID);
return 0;
}
int fme_mgr_get_retimer_status(struct ifpga_fme_hw *fme,
struct opae_retimer_status *status)
{
struct intel_max10_device *dev;
unsigned int val;
dev = (struct intel_max10_device *)fme->max10_dev;
if (!dev)
return -ENODEV;
if (max10_sys_read(dev, PKVL_LINK_STATUS, &val)) {
dev_err(dev, "%s: read pkvl status fail\n", __func__);
return -EINVAL;
}
/* The speed of PKVL is identical the eth group's speed */
status->speed = fme_get_eth_group_speed(fme,
LINE_SIDE_GROUP_ID);
status->line_link_bitmap = val;
dev_debug(dev, "get retimer status: speed:%d. line_link_bitmap:0x%x\n",
status->speed,
status->line_link_bitmap);
return 0;
}
int fme_mgr_get_sensor_value(struct ifpga_fme_hw *fme,
struct opae_sensor_info *sensor,
unsigned int *value)
{
struct intel_max10_device *dev;
dev = (struct intel_max10_device *)fme->max10_dev;
if (!dev)
return -ENODEV;
if (max10_sys_read(dev, sensor->value_reg, value)) {
dev_err(dev, "%s: read sensor value register 0x%x fail\n",
__func__, sensor->value_reg);
return -EINVAL;
}
*value *= sensor->multiplier;
return 0;
}