f-stack/dpdk/drivers/net/txgbe/base/txgbe_hw.c

3784 lines
101 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2015-2020
*/
#include "txgbe_type.h"
#include "txgbe_mbx.h"
#include "txgbe_phy.h"
#include "txgbe_dcb.h"
#include "txgbe_eeprom.h"
#include "txgbe_mng.h"
#include "txgbe_hw.h"
#define TXGBE_RAPTOR_MAX_TX_QUEUES 128
#define TXGBE_RAPTOR_MAX_RX_QUEUES 128
#define TXGBE_RAPTOR_RAR_ENTRIES 128
#define TXGBE_RAPTOR_MC_TBL_SIZE 128
#define TXGBE_RAPTOR_VFT_TBL_SIZE 128
#define TXGBE_RAPTOR_RX_PB_SIZE 512 /*KB*/
static s32 txgbe_setup_copper_link_raptor(struct txgbe_hw *hw,
u32 speed,
bool autoneg_wait_to_complete);
static s32 txgbe_mta_vector(struct txgbe_hw *hw, u8 *mc_addr);
static s32 txgbe_get_san_mac_addr_offset(struct txgbe_hw *hw,
u16 *san_mac_offset);
/**
* txgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
* of flow control
* @hw: pointer to hardware structure
*
* This function returns true if the device supports flow control
* autonegotiation, and false if it does not.
*
**/
bool txgbe_device_supports_autoneg_fc(struct txgbe_hw *hw)
{
bool supported = false;
u32 speed;
bool link_up;
DEBUGFUNC("txgbe_device_supports_autoneg_fc");
switch (hw->phy.media_type) {
case txgbe_media_type_fiber_qsfp:
case txgbe_media_type_fiber:
hw->mac.check_link(hw, &speed, &link_up, false);
/* if link is down, assume supported */
if (link_up)
supported = speed == TXGBE_LINK_SPEED_1GB_FULL ?
true : false;
else
supported = true;
break;
case txgbe_media_type_backplane:
supported = true;
break;
case txgbe_media_type_copper:
/* only some copper devices support flow control autoneg */
switch (hw->device_id) {
case TXGBE_DEV_ID_RAPTOR_XAUI:
case TXGBE_DEV_ID_RAPTOR_SGMII:
supported = true;
break;
default:
supported = false;
}
default:
break;
}
if (!supported)
DEBUGOUT("Device %x does not support flow control autoneg",
hw->device_id);
return supported;
}
/**
* txgbe_setup_fc - Set up flow control
* @hw: pointer to hardware structure
*
* Called at init time to set up flow control.
**/
s32 txgbe_setup_fc(struct txgbe_hw *hw)
{
s32 err = 0;
u32 reg = 0;
u16 reg_cu = 0;
u32 value = 0;
u64 reg_bp = 0;
bool locked = false;
DEBUGFUNC("txgbe_setup_fc");
/* Validate the requested mode */
if (hw->fc.strict_ieee && hw->fc.requested_mode == txgbe_fc_rx_pause) {
DEBUGOUT("txgbe_fc_rx_pause not valid in strict IEEE mode\n");
err = TXGBE_ERR_INVALID_LINK_SETTINGS;
goto out;
}
/*
* 10gig parts do not have a word in the EEPROM to determine the
* default flow control setting, so we explicitly set it to full.
*/
if (hw->fc.requested_mode == txgbe_fc_default)
hw->fc.requested_mode = txgbe_fc_full;
/*
* Set up the 1G and 10G flow control advertisement registers so the
* HW will be able to do fc autoneg once the cable is plugged in. If
* we link at 10G, the 1G advertisement is harmless and vice versa.
*/
switch (hw->phy.media_type) {
case txgbe_media_type_backplane:
/* some MAC's need RMW protection on AUTOC */
err = hw->mac.prot_autoc_read(hw, &locked, &reg_bp);
if (err != 0)
goto out;
/* fall through - only backplane uses autoc */
case txgbe_media_type_fiber_qsfp:
case txgbe_media_type_fiber:
case txgbe_media_type_copper:
hw->phy.read_reg(hw, TXGBE_MD_AUTO_NEG_ADVT,
TXGBE_MD_DEV_AUTO_NEG, &reg_cu);
break;
default:
break;
}
/*
* The possible values of fc.requested_mode are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames,
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but
* we do not support receiving pause frames).
* 3: Both Rx and Tx flow control (symmetric) are enabled.
* other: Invalid.
*/
switch (hw->fc.requested_mode) {
case txgbe_fc_none:
/* Flow control completely disabled by software override. */
reg &= ~(SR_MII_MMD_AN_ADV_PAUSE_SYM |
SR_MII_MMD_AN_ADV_PAUSE_ASM);
if (hw->phy.media_type == txgbe_media_type_backplane)
reg_bp &= ~(TXGBE_AUTOC_SYM_PAUSE |
TXGBE_AUTOC_ASM_PAUSE);
else if (hw->phy.media_type == txgbe_media_type_copper)
reg_cu &= ~(TXGBE_TAF_SYM_PAUSE | TXGBE_TAF_ASM_PAUSE);
break;
case txgbe_fc_tx_pause:
/*
* Tx Flow control is enabled, and Rx Flow control is
* disabled by software override.
*/
reg |= SR_MII_MMD_AN_ADV_PAUSE_ASM;
reg &= ~SR_MII_MMD_AN_ADV_PAUSE_SYM;
if (hw->phy.media_type == txgbe_media_type_backplane) {
reg_bp |= TXGBE_AUTOC_ASM_PAUSE;
reg_bp &= ~TXGBE_AUTOC_SYM_PAUSE;
} else if (hw->phy.media_type == txgbe_media_type_copper) {
reg_cu |= TXGBE_TAF_ASM_PAUSE;
reg_cu &= ~TXGBE_TAF_SYM_PAUSE;
}
reg |= SR_MII_MMD_AN_ADV_PAUSE_ASM;
reg_bp |= SR_AN_MMD_ADV_REG1_PAUSE_ASM;
break;
case txgbe_fc_rx_pause:
/*
* Rx Flow control is enabled and Tx Flow control is
* disabled by software override. Since there really
* isn't a way to advertise that we are capable of RX
* Pause ONLY, we will advertise that we support both
* symmetric and asymmetric Rx PAUSE, as such we fall
* through to the fc_full statement. Later, we will
* disable the adapter's ability to send PAUSE frames.
*/
case txgbe_fc_full:
/* Flow control (both Rx and Tx) is enabled by SW override. */
reg |= SR_MII_MMD_AN_ADV_PAUSE_SYM |
SR_MII_MMD_AN_ADV_PAUSE_ASM;
if (hw->phy.media_type == txgbe_media_type_backplane)
reg_bp |= TXGBE_AUTOC_SYM_PAUSE |
TXGBE_AUTOC_ASM_PAUSE;
else if (hw->phy.media_type == txgbe_media_type_copper)
reg_cu |= TXGBE_TAF_SYM_PAUSE | TXGBE_TAF_ASM_PAUSE;
reg |= SR_MII_MMD_AN_ADV_PAUSE_SYM |
SR_MII_MMD_AN_ADV_PAUSE_ASM;
reg_bp |= SR_AN_MMD_ADV_REG1_PAUSE_SYM |
SR_AN_MMD_ADV_REG1_PAUSE_ASM;
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
err = TXGBE_ERR_CONFIG;
goto out;
}
/*
* Enable auto-negotiation between the MAC & PHY;
* the MAC will advertise clause 37 flow control.
*/
value = rd32_epcs(hw, SR_MII_MMD_AN_ADV);
value = (value & ~(SR_MII_MMD_AN_ADV_PAUSE_ASM |
SR_MII_MMD_AN_ADV_PAUSE_SYM)) | reg;
wr32_epcs(hw, SR_MII_MMD_AN_ADV, value);
/*
* AUTOC restart handles negotiation of 1G and 10G on backplane
* and copper. There is no need to set the PCS1GCTL register.
*
*/
if (hw->phy.media_type == txgbe_media_type_backplane) {
value = rd32_epcs(hw, SR_AN_MMD_ADV_REG1);
value = (value & ~(SR_AN_MMD_ADV_REG1_PAUSE_ASM |
SR_AN_MMD_ADV_REG1_PAUSE_SYM)) |
reg_bp;
wr32_epcs(hw, SR_AN_MMD_ADV_REG1, value);
} else if ((hw->phy.media_type == txgbe_media_type_copper) &&
(txgbe_device_supports_autoneg_fc(hw))) {
hw->phy.write_reg(hw, TXGBE_MD_AUTO_NEG_ADVT,
TXGBE_MD_DEV_AUTO_NEG, reg_cu);
}
DEBUGOUT("Set up FC; reg = 0x%08X\n", reg);
out:
return err;
}
/**
* txgbe_start_hw - Prepare hardware for Tx/Rx
* @hw: pointer to hardware structure
*
* Starts the hardware by filling the bus info structure and media type, clears
* all on chip counters, initializes receive address registers, multicast
* table, VLAN filter table, calls routine to set up link and flow control
* settings, and leaves transmit and receive units disabled and uninitialized
**/
s32 txgbe_start_hw(struct txgbe_hw *hw)
{
s32 err;
u16 device_caps;
DEBUGFUNC("txgbe_start_hw");
/* Set the media type */
hw->phy.media_type = hw->phy.get_media_type(hw);
/* Clear the VLAN filter table */
hw->mac.clear_vfta(hw);
/* Clear statistics registers */
hw->mac.clear_hw_cntrs(hw);
/* Setup flow control */
err = txgbe_setup_fc(hw);
if (err != 0 && err != TXGBE_NOT_IMPLEMENTED) {
DEBUGOUT("Flow control setup failed, returning %d\n", err);
return err;
}
/* Cache bit indicating need for crosstalk fix */
switch (hw->mac.type) {
case txgbe_mac_raptor:
hw->mac.get_device_caps(hw, &device_caps);
if (device_caps & TXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
hw->need_crosstalk_fix = false;
else
hw->need_crosstalk_fix = true;
break;
default:
hw->need_crosstalk_fix = false;
break;
}
/* Clear adapter stopped flag */
hw->adapter_stopped = false;
return 0;
}
/**
* txgbe_start_hw_gen2 - Init sequence for common device family
* @hw: pointer to hw structure
*
* Performs the init sequence common to the second generation
* of 10 GbE devices.
**/
s32 txgbe_start_hw_gen2(struct txgbe_hw *hw)
{
u32 i;
/* Clear the rate limiters */
for (i = 0; i < hw->mac.max_tx_queues; i++) {
wr32(hw, TXGBE_ARBPOOLIDX, i);
wr32(hw, TXGBE_ARBTXRATE, 0);
}
txgbe_flush(hw);
/* We need to run link autotry after the driver loads */
hw->mac.autotry_restart = true;
return 0;
}
/**
* txgbe_init_hw - Generic hardware initialization
* @hw: pointer to hardware structure
*
* Initialize the hardware by resetting the hardware, filling the bus info
* structure and media type, clears all on chip counters, initializes receive
* address registers, multicast table, VLAN filter table, calls routine to set
* up link and flow control settings, and leaves transmit and receive units
* disabled and uninitialized
**/
s32 txgbe_init_hw(struct txgbe_hw *hw)
{
s32 status;
DEBUGFUNC("txgbe_init_hw");
/* Reset the hardware */
status = hw->mac.reset_hw(hw);
if (status == 0 || status == TXGBE_ERR_SFP_NOT_PRESENT) {
/* Start the HW */
status = hw->mac.start_hw(hw);
}
if (status != 0)
DEBUGOUT("Failed to initialize HW, STATUS = %d\n", status);
return status;
}
/**
* txgbe_clear_hw_cntrs - Generic clear hardware counters
* @hw: pointer to hardware structure
*
* Clears all hardware statistics counters by reading them from the hardware
* Statistics counters are clear on read.
**/
s32 txgbe_clear_hw_cntrs(struct txgbe_hw *hw)
{
u16 i = 0;
DEBUGFUNC("txgbe_clear_hw_cntrs");
/* QP Stats */
/* don't write clear queue stats */
for (i = 0; i < TXGBE_MAX_QP; i++) {
hw->qp_last[i].rx_qp_packets = 0;
hw->qp_last[i].tx_qp_packets = 0;
hw->qp_last[i].rx_qp_bytes = 0;
hw->qp_last[i].tx_qp_bytes = 0;
hw->qp_last[i].rx_qp_mc_packets = 0;
}
/* PB Stats */
for (i = 0; i < TXGBE_MAX_UP; i++) {
rd32(hw, TXGBE_PBRXUPXON(i));
rd32(hw, TXGBE_PBRXUPXOFF(i));
rd32(hw, TXGBE_PBTXUPXON(i));
rd32(hw, TXGBE_PBTXUPXOFF(i));
rd32(hw, TXGBE_PBTXUPOFF(i));
rd32(hw, TXGBE_PBRXMISS(i));
}
rd32(hw, TXGBE_PBRXLNKXON);
rd32(hw, TXGBE_PBRXLNKXOFF);
rd32(hw, TXGBE_PBTXLNKXON);
rd32(hw, TXGBE_PBTXLNKXOFF);
/* DMA Stats */
rd32(hw, TXGBE_DMARXPKT);
rd32(hw, TXGBE_DMATXPKT);
rd64(hw, TXGBE_DMARXOCTL);
rd64(hw, TXGBE_DMATXOCTL);
/* MAC Stats */
rd64(hw, TXGBE_MACRXERRCRCL);
rd64(hw, TXGBE_MACRXMPKTL);
rd64(hw, TXGBE_MACTXMPKTL);
rd64(hw, TXGBE_MACRXPKTL);
rd64(hw, TXGBE_MACTXPKTL);
rd64(hw, TXGBE_MACRXGBOCTL);
rd64(hw, TXGBE_MACRXOCTL);
rd32(hw, TXGBE_MACTXOCTL);
rd64(hw, TXGBE_MACRX1TO64L);
rd64(hw, TXGBE_MACRX65TO127L);
rd64(hw, TXGBE_MACRX128TO255L);
rd64(hw, TXGBE_MACRX256TO511L);
rd64(hw, TXGBE_MACRX512TO1023L);
rd64(hw, TXGBE_MACRX1024TOMAXL);
rd64(hw, TXGBE_MACTX1TO64L);
rd64(hw, TXGBE_MACTX65TO127L);
rd64(hw, TXGBE_MACTX128TO255L);
rd64(hw, TXGBE_MACTX256TO511L);
rd64(hw, TXGBE_MACTX512TO1023L);
rd64(hw, TXGBE_MACTX1024TOMAXL);
rd64(hw, TXGBE_MACRXERRLENL);
rd32(hw, TXGBE_MACRXOVERSIZE);
rd32(hw, TXGBE_MACRXJABBER);
/* FCoE Stats */
rd32(hw, TXGBE_FCOECRC);
rd32(hw, TXGBE_FCOELAST);
rd32(hw, TXGBE_FCOERPDC);
rd32(hw, TXGBE_FCOEPRC);
rd32(hw, TXGBE_FCOEPTC);
rd32(hw, TXGBE_FCOEDWRC);
rd32(hw, TXGBE_FCOEDWTC);
/* Flow Director Stats */
rd32(hw, TXGBE_FDIRMATCH);
rd32(hw, TXGBE_FDIRMISS);
rd32(hw, TXGBE_FDIRUSED);
rd32(hw, TXGBE_FDIRUSED);
rd32(hw, TXGBE_FDIRFAIL);
rd32(hw, TXGBE_FDIRFAIL);
/* MACsec Stats */
rd32(hw, TXGBE_LSECTX_UTPKT);
rd32(hw, TXGBE_LSECTX_ENCPKT);
rd32(hw, TXGBE_LSECTX_PROTPKT);
rd32(hw, TXGBE_LSECTX_ENCOCT);
rd32(hw, TXGBE_LSECTX_PROTOCT);
rd32(hw, TXGBE_LSECRX_UTPKT);
rd32(hw, TXGBE_LSECRX_BTPKT);
rd32(hw, TXGBE_LSECRX_NOSCIPKT);
rd32(hw, TXGBE_LSECRX_UNSCIPKT);
rd32(hw, TXGBE_LSECRX_DECOCT);
rd32(hw, TXGBE_LSECRX_VLDOCT);
rd32(hw, TXGBE_LSECRX_UNCHKPKT);
rd32(hw, TXGBE_LSECRX_DLYPKT);
rd32(hw, TXGBE_LSECRX_LATEPKT);
for (i = 0; i < 2; i++) {
rd32(hw, TXGBE_LSECRX_OKPKT(i));
rd32(hw, TXGBE_LSECRX_INVPKT(i));
rd32(hw, TXGBE_LSECRX_BADPKT(i));
}
rd32(hw, TXGBE_LSECRX_INVSAPKT);
rd32(hw, TXGBE_LSECRX_BADSAPKT);
return 0;
}
/**
* txgbe_get_mac_addr - Generic get MAC address
* @hw: pointer to hardware structure
* @mac_addr: Adapter MAC address
*
* Reads the adapter's MAC address from first Receive Address Register (RAR0)
* A reset of the adapter must be performed prior to calling this function
* in order for the MAC address to have been loaded from the EEPROM into RAR0
**/
s32 txgbe_get_mac_addr(struct txgbe_hw *hw, u8 *mac_addr)
{
u32 rar_high;
u32 rar_low;
u16 i;
DEBUGFUNC("txgbe_get_mac_addr");
wr32(hw, TXGBE_ETHADDRIDX, 0);
rar_high = rd32(hw, TXGBE_ETHADDRH);
rar_low = rd32(hw, TXGBE_ETHADDRL);
for (i = 0; i < 2; i++)
mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
for (i = 0; i < 4; i++)
mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
return 0;
}
/**
* txgbe_set_lan_id_multi_port - Set LAN id for PCIe multiple port devices
* @hw: pointer to the HW structure
*
* Determines the LAN function id by reading memory-mapped registers and swaps
* the port value if requested, and set MAC instance for devices.
**/
void txgbe_set_lan_id_multi_port(struct txgbe_hw *hw)
{
struct txgbe_bus_info *bus = &hw->bus;
u32 reg;
DEBUGFUNC("txgbe_set_lan_id_multi_port_pcie");
reg = rd32(hw, TXGBE_PORTSTAT);
bus->lan_id = TXGBE_PORTSTAT_ID(reg);
/* check for single port */
reg = rd32(hw, TXGBE_PWR);
if (TXGBE_PWR_LANID(reg) == TXGBE_PWR_LANID_SWAP)
bus->func = 0;
else
bus->func = bus->lan_id;
}
/**
* txgbe_stop_hw - Generic stop Tx/Rx units
* @hw: pointer to hardware structure
*
* Sets the adapter_stopped flag within txgbe_hw struct. Clears interrupts,
* disables transmit and receive units. The adapter_stopped flag is used by
* the shared code and drivers to determine if the adapter is in a stopped
* state and should not touch the hardware.
**/
s32 txgbe_stop_hw(struct txgbe_hw *hw)
{
u32 reg_val;
u16 i;
DEBUGFUNC("txgbe_stop_hw");
/*
* Set the adapter_stopped flag so other driver functions stop touching
* the hardware
*/
hw->adapter_stopped = true;
/* Disable the receive unit */
txgbe_disable_rx(hw);
/* Clear interrupt mask to stop interrupts from being generated */
wr32(hw, TXGBE_IENMISC, 0);
wr32(hw, TXGBE_IMS(0), TXGBE_IMS_MASK);
wr32(hw, TXGBE_IMS(1), TXGBE_IMS_MASK);
/* Clear any pending interrupts, flush previous writes */
wr32(hw, TXGBE_ICRMISC, TXGBE_ICRMISC_MASK);
wr32(hw, TXGBE_ICR(0), TXGBE_ICR_MASK);
wr32(hw, TXGBE_ICR(1), TXGBE_ICR_MASK);
/* Disable the transmit unit. Each queue must be disabled. */
for (i = 0; i < hw->mac.max_tx_queues; i++)
wr32(hw, TXGBE_TXCFG(i), TXGBE_TXCFG_FLUSH);
/* Disable the receive unit by stopping each queue */
for (i = 0; i < hw->mac.max_rx_queues; i++) {
reg_val = rd32(hw, TXGBE_RXCFG(i));
reg_val &= ~TXGBE_RXCFG_ENA;
wr32(hw, TXGBE_RXCFG(i), reg_val);
}
/* flush all queues disables */
txgbe_flush(hw);
msec_delay(2);
return 0;
}
/**
* txgbe_led_on - Turns on the software controllable LEDs.
* @hw: pointer to hardware structure
* @index: led number to turn on
**/
s32 txgbe_led_on(struct txgbe_hw *hw, u32 index)
{
u32 led_reg = rd32(hw, TXGBE_LEDCTL);
DEBUGFUNC("txgbe_led_on");
if (index > 4)
return TXGBE_ERR_PARAM;
/* To turn on the LED, set mode to ON. */
led_reg |= TXGBE_LEDCTL_SEL(index);
led_reg |= TXGBE_LEDCTL_ORD(index);
wr32(hw, TXGBE_LEDCTL, led_reg);
txgbe_flush(hw);
return 0;
}
/**
* txgbe_led_off - Turns off the software controllable LEDs.
* @hw: pointer to hardware structure
* @index: led number to turn off
**/
s32 txgbe_led_off(struct txgbe_hw *hw, u32 index)
{
u32 led_reg = rd32(hw, TXGBE_LEDCTL);
DEBUGFUNC("txgbe_led_off");
if (index > 4)
return TXGBE_ERR_PARAM;
/* To turn off the LED, set mode to OFF. */
led_reg &= ~(TXGBE_LEDCTL_SEL(index));
led_reg &= ~(TXGBE_LEDCTL_ORD(index));
wr32(hw, TXGBE_LEDCTL, led_reg);
txgbe_flush(hw);
return 0;
}
/**
* txgbe_validate_mac_addr - Validate MAC address
* @mac_addr: pointer to MAC address.
*
* Tests a MAC address to ensure it is a valid Individual Address.
**/
s32 txgbe_validate_mac_addr(u8 *mac_addr)
{
s32 status = 0;
DEBUGFUNC("txgbe_validate_mac_addr");
/* Make sure it is not a multicast address */
if (TXGBE_IS_MULTICAST(mac_addr)) {
status = TXGBE_ERR_INVALID_MAC_ADDR;
/* Not a broadcast address */
} else if (TXGBE_IS_BROADCAST(mac_addr)) {
status = TXGBE_ERR_INVALID_MAC_ADDR;
/* Reject the zero address */
} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
status = TXGBE_ERR_INVALID_MAC_ADDR;
}
return status;
}
/**
* txgbe_set_rar - Set Rx address register
* @hw: pointer to hardware structure
* @index: Receive address register to write
* @addr: Address to put into receive address register
* @vmdq: VMDq "set" or "pool" index
* @enable_addr: set flag that address is active
*
* Puts an ethernet address into a receive address register.
**/
s32 txgbe_set_rar(struct txgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
u32 enable_addr)
{
u32 rar_low, rar_high;
u32 rar_entries = hw->mac.num_rar_entries;
DEBUGFUNC("txgbe_set_rar");
/* Make sure we are using a valid rar index range */
if (index >= rar_entries) {
DEBUGOUT("RAR index %d is out of range.\n", index);
return TXGBE_ERR_INVALID_ARGUMENT;
}
/* setup VMDq pool selection before this RAR gets enabled */
hw->mac.set_vmdq(hw, index, vmdq);
/*
* HW expects these in little endian so we reverse the byte
* order from network order (big endian) to little endian
*/
rar_low = TXGBE_ETHADDRL_AD0(addr[5]) |
TXGBE_ETHADDRL_AD1(addr[4]) |
TXGBE_ETHADDRL_AD2(addr[3]) |
TXGBE_ETHADDRL_AD3(addr[2]);
/*
* Some parts put the VMDq setting in the extra RAH bits,
* so save everything except the lower 16 bits that hold part
* of the address and the address valid bit.
*/
rar_high = rd32(hw, TXGBE_ETHADDRH);
rar_high &= ~TXGBE_ETHADDRH_AD_MASK;
rar_high |= (TXGBE_ETHADDRH_AD4(addr[1]) |
TXGBE_ETHADDRH_AD5(addr[0]));
rar_high &= ~TXGBE_ETHADDRH_VLD;
if (enable_addr != 0)
rar_high |= TXGBE_ETHADDRH_VLD;
wr32(hw, TXGBE_ETHADDRIDX, index);
wr32(hw, TXGBE_ETHADDRL, rar_low);
wr32(hw, TXGBE_ETHADDRH, rar_high);
return 0;
}
/**
* txgbe_clear_rar - Remove Rx address register
* @hw: pointer to hardware structure
* @index: Receive address register to write
*
* Clears an ethernet address from a receive address register.
**/
s32 txgbe_clear_rar(struct txgbe_hw *hw, u32 index)
{
u32 rar_high;
u32 rar_entries = hw->mac.num_rar_entries;
DEBUGFUNC("txgbe_clear_rar");
/* Make sure we are using a valid rar index range */
if (index >= rar_entries) {
DEBUGOUT("RAR index %d is out of range.\n", index);
return TXGBE_ERR_INVALID_ARGUMENT;
}
/*
* Some parts put the VMDq setting in the extra RAH bits,
* so save everything except the lower 16 bits that hold part
* of the address and the address valid bit.
*/
wr32(hw, TXGBE_ETHADDRIDX, index);
rar_high = rd32(hw, TXGBE_ETHADDRH);
rar_high &= ~(TXGBE_ETHADDRH_AD_MASK | TXGBE_ETHADDRH_VLD);
wr32(hw, TXGBE_ETHADDRL, 0);
wr32(hw, TXGBE_ETHADDRH, rar_high);
/* clear VMDq pool/queue selection for this RAR */
hw->mac.clear_vmdq(hw, index, BIT_MASK32);
return 0;
}
/**
* txgbe_init_rx_addrs - Initializes receive address filters.
* @hw: pointer to hardware structure
*
* Places the MAC address in receive address register 0 and clears the rest
* of the receive address registers. Clears the multicast table. Assumes
* the receiver is in reset when the routine is called.
**/
s32 txgbe_init_rx_addrs(struct txgbe_hw *hw)
{
u32 i;
u32 psrctl;
u32 rar_entries = hw->mac.num_rar_entries;
DEBUGFUNC("txgbe_init_rx_addrs");
/*
* If the current mac address is valid, assume it is a software override
* to the permanent address.
* Otherwise, use the permanent address from the eeprom.
*/
if (txgbe_validate_mac_addr(hw->mac.addr) ==
TXGBE_ERR_INVALID_MAC_ADDR) {
/* Get the MAC address from the RAR0 for later reference */
hw->mac.get_mac_addr(hw, hw->mac.addr);
DEBUGOUT(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
hw->mac.addr[0], hw->mac.addr[1],
hw->mac.addr[2]);
DEBUGOUT("%.2X %.2X %.2X\n", hw->mac.addr[3],
hw->mac.addr[4], hw->mac.addr[5]);
} else {
/* Setup the receive address. */
DEBUGOUT("Overriding MAC Address in RAR[0]\n");
DEBUGOUT(" New MAC Addr =%.2X %.2X %.2X ",
hw->mac.addr[0], hw->mac.addr[1],
hw->mac.addr[2]);
DEBUGOUT("%.2X %.2X %.2X\n", hw->mac.addr[3],
hw->mac.addr[4], hw->mac.addr[5]);
hw->mac.set_rar(hw, 0, hw->mac.addr, 0, true);
}
/* clear VMDq pool/queue selection for RAR 0 */
hw->mac.clear_vmdq(hw, 0, BIT_MASK32);
hw->addr_ctrl.overflow_promisc = 0;
hw->addr_ctrl.rar_used_count = 1;
/* Zero out the other receive addresses. */
DEBUGOUT("Clearing RAR[1-%d]\n", rar_entries - 1);
for (i = 1; i < rar_entries; i++) {
wr32(hw, TXGBE_ETHADDRIDX, i);
wr32(hw, TXGBE_ETHADDRL, 0);
wr32(hw, TXGBE_ETHADDRH, 0);
}
/* Clear the MTA */
hw->addr_ctrl.mta_in_use = 0;
psrctl = rd32(hw, TXGBE_PSRCTL);
psrctl &= ~(TXGBE_PSRCTL_ADHF12_MASK | TXGBE_PSRCTL_MCHFENA);
psrctl |= TXGBE_PSRCTL_ADHF12(hw->mac.mc_filter_type);
wr32(hw, TXGBE_PSRCTL, psrctl);
DEBUGOUT(" Clearing MTA\n");
for (i = 0; i < hw->mac.mcft_size; i++)
wr32(hw, TXGBE_MCADDRTBL(i), 0);
txgbe_init_uta_tables(hw);
return 0;
}
/**
* txgbe_mta_vector - Determines bit-vector in multicast table to set
* @hw: pointer to hardware structure
* @mc_addr: the multicast address
*
* Extracts the 12 bits, from a multicast address, to determine which
* bit-vector to set in the multicast table. The hardware uses 12 bits, from
* incoming rx multicast addresses, to determine the bit-vector to check in
* the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
* by the MO field of the PSRCTRL. The MO field is set during initialization
* to mc_filter_type.
**/
static s32 txgbe_mta_vector(struct txgbe_hw *hw, u8 *mc_addr)
{
u32 vector = 0;
DEBUGFUNC("txgbe_mta_vector");
switch (hw->mac.mc_filter_type) {
case 0: /* use bits [47:36] of the address */
vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
break;
case 1: /* use bits [46:35] of the address */
vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
break;
case 2: /* use bits [45:34] of the address */
vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
break;
case 3: /* use bits [43:32] of the address */
vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
break;
default: /* Invalid mc_filter_type */
DEBUGOUT("MC filter type param set incorrectly\n");
ASSERT(0);
break;
}
/* vector can only be 12-bits or boundary will be exceeded */
vector &= 0xFFF;
return vector;
}
/**
* txgbe_set_mta - Set bit-vector in multicast table
* @hw: pointer to hardware structure
* @mc_addr: Multicast address
*
* Sets the bit-vector in the multicast table.
**/
void txgbe_set_mta(struct txgbe_hw *hw, u8 *mc_addr)
{
u32 vector;
u32 vector_bit;
u32 vector_reg;
DEBUGFUNC("txgbe_set_mta");
hw->addr_ctrl.mta_in_use++;
vector = txgbe_mta_vector(hw, mc_addr);
DEBUGOUT(" bit-vector = 0x%03X\n", vector);
/*
* The MTA is a register array of 128 32-bit registers. It is treated
* like an array of 4096 bits. We want to set bit
* BitArray[vector_value]. So we figure out what register the bit is
* in, read it, OR in the new bit, then write back the new value. The
* register is determined by the upper 7 bits of the vector value and
* the bit within that register are determined by the lower 5 bits of
* the value.
*/
vector_reg = (vector >> 5) & 0x7F;
vector_bit = vector & 0x1F;
hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
}
/**
* txgbe_update_mc_addr_list - Updates MAC list of multicast addresses
* @hw: pointer to hardware structure
* @mc_addr_list: the list of new multicast addresses
* @mc_addr_count: number of addresses
* @next: iterator function to walk the multicast address list
* @clear: flag, when set clears the table beforehand
*
* When the clear flag is set, the given list replaces any existing list.
* Hashes the given addresses into the multicast table.
**/
s32 txgbe_update_mc_addr_list(struct txgbe_hw *hw, u8 *mc_addr_list,
u32 mc_addr_count, txgbe_mc_addr_itr next,
bool clear)
{
u32 i;
u32 vmdq;
DEBUGFUNC("txgbe_update_mc_addr_list");
/*
* Set the new number of MC addresses that we are being requested to
* use.
*/
hw->addr_ctrl.num_mc_addrs = mc_addr_count;
hw->addr_ctrl.mta_in_use = 0;
/* Clear mta_shadow */
if (clear) {
DEBUGOUT(" Clearing MTA\n");
memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
}
/* Update mta_shadow */
for (i = 0; i < mc_addr_count; i++) {
DEBUGOUT(" Adding the multicast addresses:\n");
txgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
}
/* Enable mta */
for (i = 0; i < hw->mac.mcft_size; i++)
wr32a(hw, TXGBE_MCADDRTBL(0), i,
hw->mac.mta_shadow[i]);
if (hw->addr_ctrl.mta_in_use > 0) {
u32 psrctl = rd32(hw, TXGBE_PSRCTL);
psrctl &= ~(TXGBE_PSRCTL_ADHF12_MASK | TXGBE_PSRCTL_MCHFENA);
psrctl |= TXGBE_PSRCTL_MCHFENA |
TXGBE_PSRCTL_ADHF12(hw->mac.mc_filter_type);
wr32(hw, TXGBE_PSRCTL, psrctl);
}
DEBUGOUT("txgbe update mc addr list complete\n");
return 0;
}
/**
* txgbe_fc_enable - Enable flow control
* @hw: pointer to hardware structure
*
* Enable flow control according to the current settings.
**/
s32 txgbe_fc_enable(struct txgbe_hw *hw)
{
s32 err = 0;
u32 mflcn_reg, fccfg_reg;
u32 pause_time;
u32 fcrtl, fcrth;
int i;
DEBUGFUNC("txgbe_fc_enable");
/* Validate the water mark configuration */
if (!hw->fc.pause_time) {
err = TXGBE_ERR_INVALID_LINK_SETTINGS;
goto out;
}
/* Low water mark of zero causes XOFF floods */
for (i = 0; i < TXGBE_DCB_TC_MAX; i++) {
if ((hw->fc.current_mode & txgbe_fc_tx_pause) &&
hw->fc.high_water[i]) {
if (!hw->fc.low_water[i] ||
hw->fc.low_water[i] >= hw->fc.high_water[i]) {
DEBUGOUT("Invalid water mark configuration\n");
err = TXGBE_ERR_INVALID_LINK_SETTINGS;
goto out;
}
}
}
/* Negotiate the fc mode to use */
hw->mac.fc_autoneg(hw);
/* Disable any previous flow control settings */
mflcn_reg = rd32(hw, TXGBE_RXFCCFG);
mflcn_reg &= ~(TXGBE_RXFCCFG_FC | TXGBE_RXFCCFG_PFC);
fccfg_reg = rd32(hw, TXGBE_TXFCCFG);
fccfg_reg &= ~(TXGBE_TXFCCFG_FC | TXGBE_TXFCCFG_PFC);
/*
* The possible values of fc.current_mode are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames,
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but
* we do not support receiving pause frames).
* 3: Both Rx and Tx flow control (symmetric) are enabled.
* other: Invalid.
*/
switch (hw->fc.current_mode) {
case txgbe_fc_none:
/*
* Flow control is disabled by software override or autoneg.
* The code below will actually disable it in the HW.
*/
break;
case txgbe_fc_rx_pause:
/*
* Rx Flow control is enabled and Tx Flow control is
* disabled by software override. Since there really
* isn't a way to advertise that we are capable of RX
* Pause ONLY, we will advertise that we support both
* symmetric and asymmetric Rx PAUSE. Later, we will
* disable the adapter's ability to send PAUSE frames.
*/
mflcn_reg |= TXGBE_RXFCCFG_FC;
break;
case txgbe_fc_tx_pause:
/*
* Tx Flow control is enabled, and Rx Flow control is
* disabled by software override.
*/
fccfg_reg |= TXGBE_TXFCCFG_FC;
break;
case txgbe_fc_full:
/* Flow control (both Rx and Tx) is enabled by SW override. */
mflcn_reg |= TXGBE_RXFCCFG_FC;
fccfg_reg |= TXGBE_TXFCCFG_FC;
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
err = TXGBE_ERR_CONFIG;
goto out;
}
/* Set 802.3x based flow control settings. */
wr32(hw, TXGBE_RXFCCFG, mflcn_reg);
wr32(hw, TXGBE_TXFCCFG, fccfg_reg);
/* Set up and enable Rx high/low water mark thresholds, enable XON. */
for (i = 0; i < TXGBE_DCB_TC_MAX; i++) {
if ((hw->fc.current_mode & txgbe_fc_tx_pause) &&
hw->fc.high_water[i]) {
fcrtl = TXGBE_FCWTRLO_TH(hw->fc.low_water[i]) |
TXGBE_FCWTRLO_XON;
fcrth = TXGBE_FCWTRHI_TH(hw->fc.high_water[i]) |
TXGBE_FCWTRHI_XOFF;
} else {
/*
* In order to prevent Tx hangs when the internal Tx
* switch is enabled we must set the high water mark
* to the Rx packet buffer size - 24KB. This allows
* the Tx switch to function even under heavy Rx
* workloads.
*/
fcrtl = 0;
fcrth = rd32(hw, TXGBE_PBRXSIZE(i)) - 24576;
}
wr32(hw, TXGBE_FCWTRLO(i), fcrtl);
wr32(hw, TXGBE_FCWTRHI(i), fcrth);
}
/* Configure pause time (2 TCs per register) */
pause_time = TXGBE_RXFCFSH_TIME(hw->fc.pause_time);
for (i = 0; i < (TXGBE_DCB_TC_MAX / 2); i++)
wr32(hw, TXGBE_FCXOFFTM(i), pause_time * 0x00010001);
/* Configure flow control refresh threshold value */
wr32(hw, TXGBE_RXFCRFSH, hw->fc.pause_time / 2);
out:
return err;
}
/**
* txgbe_negotiate_fc - Negotiate flow control
* @hw: pointer to hardware structure
* @adv_reg: flow control advertised settings
* @lp_reg: link partner's flow control settings
* @adv_sym: symmetric pause bit in advertisement
* @adv_asm: asymmetric pause bit in advertisement
* @lp_sym: symmetric pause bit in link partner advertisement
* @lp_asm: asymmetric pause bit in link partner advertisement
*
* Find the intersection between advertised settings and link partner's
* advertised settings
**/
s32 txgbe_negotiate_fc(struct txgbe_hw *hw, u32 adv_reg, u32 lp_reg,
u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
{
if ((!(adv_reg)) || (!(lp_reg))) {
DEBUGOUT("Local or link partner's advertised flow control "
"settings are NULL. Local: %x, link partner: %x\n",
adv_reg, lp_reg);
return TXGBE_ERR_FC_NOT_NEGOTIATED;
}
if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
/*
* Now we need to check if the user selected Rx ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise RX
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->fc.requested_mode == txgbe_fc_full) {
hw->fc.current_mode = txgbe_fc_full;
DEBUGOUT("Flow Control = FULL.\n");
} else {
hw->fc.current_mode = txgbe_fc_rx_pause;
DEBUGOUT("Flow Control=RX PAUSE frames only\n");
}
} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
hw->fc.current_mode = txgbe_fc_tx_pause;
DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
!(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
hw->fc.current_mode = txgbe_fc_rx_pause;
DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
} else {
hw->fc.current_mode = txgbe_fc_none;
DEBUGOUT("Flow Control = NONE.\n");
}
return 0;
}
/**
* txgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
* @hw: pointer to hardware structure
*
* Enable flow control according on 1 gig fiber.
**/
STATIC s32 txgbe_fc_autoneg_fiber(struct txgbe_hw *hw)
{
u32 pcs_anadv_reg, pcs_lpab_reg;
s32 err = TXGBE_ERR_FC_NOT_NEGOTIATED;
/*
* On multispeed fiber at 1g, bail out if
* - link is up but AN did not complete, or if
* - link is up and AN completed but timed out
*/
pcs_anadv_reg = rd32_epcs(hw, SR_MII_MMD_AN_ADV);
pcs_lpab_reg = rd32_epcs(hw, SR_MII_MMD_LP_BABL);
err = txgbe_negotiate_fc(hw, pcs_anadv_reg,
pcs_lpab_reg,
SR_MII_MMD_AN_ADV_PAUSE_SYM,
SR_MII_MMD_AN_ADV_PAUSE_ASM,
SR_MII_MMD_AN_ADV_PAUSE_SYM,
SR_MII_MMD_AN_ADV_PAUSE_ASM);
return err;
}
/**
* txgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
* @hw: pointer to hardware structure
*
* Enable flow control according to IEEE clause 37.
**/
STATIC s32 txgbe_fc_autoneg_backplane(struct txgbe_hw *hw)
{
u32 anlp1_reg, autoc_reg;
s32 err = TXGBE_ERR_FC_NOT_NEGOTIATED;
/*
* Read the 10g AN autoc and LP ability registers and resolve
* local flow control settings accordingly
*/
autoc_reg = rd32_epcs(hw, SR_AN_MMD_ADV_REG1);
anlp1_reg = rd32_epcs(hw, SR_AN_MMD_LP_ABL1);
err = txgbe_negotiate_fc(hw, autoc_reg,
anlp1_reg,
SR_AN_MMD_ADV_REG1_PAUSE_SYM,
SR_AN_MMD_ADV_REG1_PAUSE_ASM,
SR_AN_MMD_ADV_REG1_PAUSE_SYM,
SR_AN_MMD_ADV_REG1_PAUSE_ASM);
return err;
}
/**
* txgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
* @hw: pointer to hardware structure
*
* Enable flow control according to IEEE clause 37.
**/
STATIC s32 txgbe_fc_autoneg_copper(struct txgbe_hw *hw)
{
u16 technology_ability_reg = 0;
u16 lp_technology_ability_reg = 0;
hw->phy.read_reg(hw, TXGBE_MD_AUTO_NEG_ADVT,
TXGBE_MD_DEV_AUTO_NEG,
&technology_ability_reg);
hw->phy.read_reg(hw, TXGBE_MD_AUTO_NEG_LP,
TXGBE_MD_DEV_AUTO_NEG,
&lp_technology_ability_reg);
return txgbe_negotiate_fc(hw, (u32)technology_ability_reg,
(u32)lp_technology_ability_reg,
TXGBE_TAF_SYM_PAUSE, TXGBE_TAF_ASM_PAUSE,
TXGBE_TAF_SYM_PAUSE, TXGBE_TAF_ASM_PAUSE);
}
/**
* txgbe_fc_autoneg - Configure flow control
* @hw: pointer to hardware structure
*
* Compares our advertised flow control capabilities to those advertised by
* our link partner, and determines the proper flow control mode to use.
**/
void txgbe_fc_autoneg(struct txgbe_hw *hw)
{
s32 err = TXGBE_ERR_FC_NOT_NEGOTIATED;
u32 speed;
bool link_up;
DEBUGFUNC("txgbe_fc_autoneg");
/*
* AN should have completed when the cable was plugged in.
* Look for reasons to bail out. Bail out if:
* - FC autoneg is disabled, or if
* - link is not up.
*/
if (hw->fc.disable_fc_autoneg) {
DEBUGOUT("Flow control autoneg is disabled");
goto out;
}
hw->mac.check_link(hw, &speed, &link_up, false);
if (!link_up) {
DEBUGOUT("The link is down");
goto out;
}
switch (hw->phy.media_type) {
/* Autoneg flow control on fiber adapters */
case txgbe_media_type_fiber_qsfp:
case txgbe_media_type_fiber:
if (speed == TXGBE_LINK_SPEED_1GB_FULL)
err = txgbe_fc_autoneg_fiber(hw);
break;
/* Autoneg flow control on backplane adapters */
case txgbe_media_type_backplane:
err = txgbe_fc_autoneg_backplane(hw);
break;
/* Autoneg flow control on copper adapters */
case txgbe_media_type_copper:
if (txgbe_device_supports_autoneg_fc(hw))
err = txgbe_fc_autoneg_copper(hw);
break;
default:
break;
}
out:
if (err == 0) {
hw->fc.fc_was_autonegged = true;
} else {
hw->fc.fc_was_autonegged = false;
hw->fc.current_mode = hw->fc.requested_mode;
}
}
/**
* txgbe_acquire_swfw_sync - Acquire SWFW semaphore
* @hw: pointer to hardware structure
* @mask: Mask to specify which semaphore to acquire
*
* Acquires the SWFW semaphore through the MNGSEM register for the specified
* function (CSR, PHY0, PHY1, EEPROM, Flash)
**/
s32 txgbe_acquire_swfw_sync(struct txgbe_hw *hw, u32 mask)
{
u32 mngsem = 0;
u32 swmask = TXGBE_MNGSEM_SW(mask);
u32 fwmask = TXGBE_MNGSEM_FW(mask);
u32 timeout = 200;
u32 i;
DEBUGFUNC("txgbe_acquire_swfw_sync");
for (i = 0; i < timeout; i++) {
/*
* SW NVM semaphore bit is used for access to all
* SW_FW_SYNC bits (not just NVM)
*/
if (txgbe_get_eeprom_semaphore(hw))
return TXGBE_ERR_SWFW_SYNC;
mngsem = rd32(hw, TXGBE_MNGSEM);
if (mngsem & (fwmask | swmask)) {
/* Resource is currently in use by FW or SW */
txgbe_release_eeprom_semaphore(hw);
msec_delay(5);
} else {
mngsem |= swmask;
wr32(hw, TXGBE_MNGSEM, mngsem);
txgbe_release_eeprom_semaphore(hw);
return 0;
}
}
/* If time expired clear the bits holding the lock and retry */
if (mngsem & (fwmask | swmask))
txgbe_release_swfw_sync(hw, mngsem & (fwmask | swmask));
msec_delay(5);
return TXGBE_ERR_SWFW_SYNC;
}
/**
* txgbe_release_swfw_sync - Release SWFW semaphore
* @hw: pointer to hardware structure
* @mask: Mask to specify which semaphore to release
*
* Releases the SWFW semaphore through the MNGSEM register for the specified
* function (CSR, PHY0, PHY1, EEPROM, Flash)
**/
void txgbe_release_swfw_sync(struct txgbe_hw *hw, u32 mask)
{
u32 mngsem;
u32 swmask = mask;
DEBUGFUNC("txgbe_release_swfw_sync");
txgbe_get_eeprom_semaphore(hw);
mngsem = rd32(hw, TXGBE_MNGSEM);
mngsem &= ~swmask;
wr32(hw, TXGBE_MNGSEM, mngsem);
txgbe_release_eeprom_semaphore(hw);
}
/**
* txgbe_disable_sec_rx_path - Stops the receive data path
* @hw: pointer to hardware structure
*
* Stops the receive data path and waits for the HW to internally empty
* the Rx security block
**/
s32 txgbe_disable_sec_rx_path(struct txgbe_hw *hw)
{
#define TXGBE_MAX_SECRX_POLL 4000
int i;
u32 secrxreg;
DEBUGFUNC("txgbe_disable_sec_rx_path");
secrxreg = rd32(hw, TXGBE_SECRXCTL);
secrxreg |= TXGBE_SECRXCTL_XDSA;
wr32(hw, TXGBE_SECRXCTL, secrxreg);
for (i = 0; i < TXGBE_MAX_SECRX_POLL; i++) {
secrxreg = rd32(hw, TXGBE_SECRXSTAT);
if (!(secrxreg & TXGBE_SECRXSTAT_RDY))
/* Use interrupt-safe sleep just in case */
usec_delay(10);
else
break;
}
/* For informational purposes only */
if (i >= TXGBE_MAX_SECRX_POLL)
DEBUGOUT("Rx unit being enabled before security "
"path fully disabled. Continuing with init.\n");
return 0;
}
/**
* txgbe_enable_sec_rx_path - Enables the receive data path
* @hw: pointer to hardware structure
*
* Enables the receive data path.
**/
s32 txgbe_enable_sec_rx_path(struct txgbe_hw *hw)
{
u32 secrxreg;
DEBUGFUNC("txgbe_enable_sec_rx_path");
secrxreg = rd32(hw, TXGBE_SECRXCTL);
secrxreg &= ~TXGBE_SECRXCTL_XDSA;
wr32(hw, TXGBE_SECRXCTL, secrxreg);
txgbe_flush(hw);
return 0;
}
/**
* txgbe_disable_sec_tx_path - Stops the transmit data path
* @hw: pointer to hardware structure
*
* Stops the transmit data path and waits for the HW to internally empty
* the Tx security block
**/
int txgbe_disable_sec_tx_path(struct txgbe_hw *hw)
{
#define TXGBE_MAX_SECTX_POLL 40
int i;
u32 sectxreg;
sectxreg = rd32(hw, TXGBE_SECTXCTL);
sectxreg |= TXGBE_SECTXCTL_XDSA;
wr32(hw, TXGBE_SECTXCTL, sectxreg);
for (i = 0; i < TXGBE_MAX_SECTX_POLL; i++) {
sectxreg = rd32(hw, TXGBE_SECTXSTAT);
if (sectxreg & TXGBE_SECTXSTAT_RDY)
break;
/* Use interrupt-safe sleep just in case */
usec_delay(1000);
}
/* For informational purposes only */
if (i >= TXGBE_MAX_SECTX_POLL)
PMD_DRV_LOG(DEBUG, "Tx unit being enabled before security "
"path fully disabled. Continuing with init.");
return 0;
}
/**
* txgbe_enable_sec_tx_path - Enables the transmit data path
* @hw: pointer to hardware structure
*
* Enables the transmit data path.
**/
int txgbe_enable_sec_tx_path(struct txgbe_hw *hw)
{
uint32_t sectxreg;
sectxreg = rd32(hw, TXGBE_SECTXCTL);
sectxreg &= ~TXGBE_SECTXCTL_XDSA;
wr32(hw, TXGBE_SECTXCTL, sectxreg);
txgbe_flush(hw);
return 0;
}
/**
* txgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
* @hw: pointer to hardware structure
* @san_mac_offset: SAN MAC address offset
*
* This function will read the EEPROM location for the SAN MAC address
* pointer, and returns the value at that location. This is used in both
* get and set mac_addr routines.
**/
static s32 txgbe_get_san_mac_addr_offset(struct txgbe_hw *hw,
u16 *san_mac_offset)
{
s32 err;
DEBUGFUNC("txgbe_get_san_mac_addr_offset");
/*
* First read the EEPROM pointer to see if the MAC addresses are
* available.
*/
err = hw->rom.readw_sw(hw, TXGBE_SAN_MAC_ADDR_PTR,
san_mac_offset);
if (err) {
DEBUGOUT("eeprom at offset %d failed",
TXGBE_SAN_MAC_ADDR_PTR);
}
return err;
}
/**
* txgbe_get_san_mac_addr - SAN MAC address retrieval from the EEPROM
* @hw: pointer to hardware structure
* @san_mac_addr: SAN MAC address
*
* Reads the SAN MAC address from the EEPROM, if it's available. This is
* per-port, so set_lan_id() must be called before reading the addresses.
* set_lan_id() is called by identify_sfp(), but this cannot be relied
* upon for non-SFP connections, so we must call it here.
**/
s32 txgbe_get_san_mac_addr(struct txgbe_hw *hw, u8 *san_mac_addr)
{
u16 san_mac_data, san_mac_offset;
u8 i;
s32 err;
DEBUGFUNC("txgbe_get_san_mac_addr");
/*
* First read the EEPROM pointer to see if the MAC addresses are
* available. If they're not, no point in calling set_lan_id() here.
*/
err = txgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
if (err || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
goto san_mac_addr_out;
/* apply the port offset to the address offset */
(hw->bus.func) ? (san_mac_offset += TXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
(san_mac_offset += TXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
for (i = 0; i < 3; i++) {
err = hw->rom.read16(hw, san_mac_offset,
&san_mac_data);
if (err) {
DEBUGOUT("eeprom read at offset %d failed",
san_mac_offset);
goto san_mac_addr_out;
}
san_mac_addr[i * 2] = (u8)(san_mac_data);
san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
san_mac_offset++;
}
return 0;
san_mac_addr_out:
/*
* No addresses available in this EEPROM. It's not an
* error though, so just wipe the local address and return.
*/
for (i = 0; i < 6; i++)
san_mac_addr[i] = 0xFF;
return 0;
}
/**
* txgbe_set_san_mac_addr - Write the SAN MAC address to the EEPROM
* @hw: pointer to hardware structure
* @san_mac_addr: SAN MAC address
*
* Write a SAN MAC address to the EEPROM.
**/
s32 txgbe_set_san_mac_addr(struct txgbe_hw *hw, u8 *san_mac_addr)
{
s32 err;
u16 san_mac_data, san_mac_offset;
u8 i;
DEBUGFUNC("txgbe_set_san_mac_addr");
/* Look for SAN mac address pointer. If not defined, return */
err = txgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
if (err || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
return TXGBE_ERR_NO_SAN_ADDR_PTR;
/* Apply the port offset to the address offset */
(hw->bus.func) ? (san_mac_offset += TXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
(san_mac_offset += TXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
for (i = 0; i < 3; i++) {
san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
san_mac_data |= (u16)(san_mac_addr[i * 2]);
hw->rom.write16(hw, san_mac_offset, san_mac_data);
san_mac_offset++;
}
return 0;
}
/**
* txgbe_clear_vmdq - Disassociate a VMDq pool index from a rx address
* @hw: pointer to hardware struct
* @rar: receive address register index to disassociate
* @vmdq: VMDq pool index to remove from the rar
**/
s32 txgbe_clear_vmdq(struct txgbe_hw *hw, u32 rar, u32 vmdq)
{
u32 mpsar_lo, mpsar_hi;
u32 rar_entries = hw->mac.num_rar_entries;
DEBUGFUNC("txgbe_clear_vmdq");
/* Make sure we are using a valid rar index range */
if (rar >= rar_entries) {
DEBUGOUT("RAR index %d is out of range.\n", rar);
return TXGBE_ERR_INVALID_ARGUMENT;
}
wr32(hw, TXGBE_ETHADDRIDX, rar);
mpsar_lo = rd32(hw, TXGBE_ETHADDRASSL);
mpsar_hi = rd32(hw, TXGBE_ETHADDRASSH);
if (TXGBE_REMOVED(hw->hw_addr))
goto done;
if (!mpsar_lo && !mpsar_hi)
goto done;
if (vmdq == BIT_MASK32) {
if (mpsar_lo) {
wr32(hw, TXGBE_ETHADDRASSL, 0);
mpsar_lo = 0;
}
if (mpsar_hi) {
wr32(hw, TXGBE_ETHADDRASSH, 0);
mpsar_hi = 0;
}
} else if (vmdq < 32) {
mpsar_lo &= ~(1 << vmdq);
wr32(hw, TXGBE_ETHADDRASSL, mpsar_lo);
} else {
mpsar_hi &= ~(1 << (vmdq - 32));
wr32(hw, TXGBE_ETHADDRASSH, mpsar_hi);
}
/* was that the last pool using this rar? */
if (mpsar_lo == 0 && mpsar_hi == 0 &&
rar != 0 && rar != hw->mac.san_mac_rar_index)
hw->mac.clear_rar(hw, rar);
done:
return 0;
}
/**
* txgbe_set_vmdq - Associate a VMDq pool index with a rx address
* @hw: pointer to hardware struct
* @rar: receive address register index to associate with a VMDq index
* @vmdq: VMDq pool index
**/
s32 txgbe_set_vmdq(struct txgbe_hw *hw, u32 rar, u32 vmdq)
{
u32 mpsar;
u32 rar_entries = hw->mac.num_rar_entries;
DEBUGFUNC("txgbe_set_vmdq");
/* Make sure we are using a valid rar index range */
if (rar >= rar_entries) {
DEBUGOUT("RAR index %d is out of range.\n", rar);
return TXGBE_ERR_INVALID_ARGUMENT;
}
wr32(hw, TXGBE_ETHADDRIDX, rar);
if (vmdq < 32) {
mpsar = rd32(hw, TXGBE_ETHADDRASSL);
mpsar |= 1 << vmdq;
wr32(hw, TXGBE_ETHADDRASSL, mpsar);
} else {
mpsar = rd32(hw, TXGBE_ETHADDRASSH);
mpsar |= 1 << (vmdq - 32);
wr32(hw, TXGBE_ETHADDRASSH, mpsar);
}
return 0;
}
/**
* txgbe_init_uta_tables - Initialize the Unicast Table Array
* @hw: pointer to hardware structure
**/
s32 txgbe_init_uta_tables(struct txgbe_hw *hw)
{
int i;
DEBUGFUNC("txgbe_init_uta_tables");
DEBUGOUT(" Clearing UTA\n");
for (i = 0; i < 128; i++)
wr32(hw, TXGBE_UCADDRTBL(i), 0);
return 0;
}
/**
* txgbe_find_vlvf_slot - find the vlanid or the first empty slot
* @hw: pointer to hardware structure
* @vlan: VLAN id to write to VLAN filter
* @vlvf_bypass: true to find vlanid only, false returns first empty slot if
* vlanid not found
*
*
* return the VLVF index where this VLAN id should be placed
*
**/
s32 txgbe_find_vlvf_slot(struct txgbe_hw *hw, u32 vlan, bool vlvf_bypass)
{
s32 regindex, first_empty_slot;
u32 bits;
/* short cut the special case */
if (vlan == 0)
return 0;
/* if vlvf_bypass is set we don't want to use an empty slot, we
* will simply bypass the VLVF if there are no entries present in the
* VLVF that contain our VLAN
*/
first_empty_slot = vlvf_bypass ? TXGBE_ERR_NO_SPACE : 0;
/* add VLAN enable bit for comparison */
vlan |= TXGBE_PSRVLAN_EA;
/* Search for the vlan id in the VLVF entries. Save off the first empty
* slot found along the way.
*
* pre-decrement loop covering (TXGBE_NUM_POOL - 1) .. 1
*/
for (regindex = TXGBE_NUM_POOL; --regindex;) {
wr32(hw, TXGBE_PSRVLANIDX, regindex);
bits = rd32(hw, TXGBE_PSRVLAN);
if (bits == vlan)
return regindex;
if (!first_empty_slot && !bits)
first_empty_slot = regindex;
}
/* If we are here then we didn't find the VLAN. Return first empty
* slot we found during our search, else error.
*/
if (!first_empty_slot)
DEBUGOUT("No space in VLVF.\n");
return first_empty_slot ? first_empty_slot : TXGBE_ERR_NO_SPACE;
}
/**
* txgbe_set_vfta - Set VLAN filter table
* @hw: pointer to hardware structure
* @vlan: VLAN id to write to VLAN filter
* @vind: VMDq output index that maps queue to VLAN id in VLVFB
* @vlan_on: boolean flag to turn on/off VLAN
* @vlvf_bypass: boolean flag indicating updating default pool is okay
*
* Turn on/off specified VLAN in the VLAN filter table.
**/
s32 txgbe_set_vfta(struct txgbe_hw *hw, u32 vlan, u32 vind,
bool vlan_on, bool vlvf_bypass)
{
u32 regidx, vfta_delta, vfta;
s32 err;
DEBUGFUNC("txgbe_set_vfta");
if (vlan > 4095 || vind > 63)
return TXGBE_ERR_PARAM;
/*
* this is a 2 part operation - first the VFTA, then the
* VLVF and VLVFB if VT Mode is set
* We don't write the VFTA until we know the VLVF part succeeded.
*/
/* Part 1
* The VFTA is a bitstring made up of 128 32-bit registers
* that enable the particular VLAN id, much like the MTA:
* bits[11-5]: which register
* bits[4-0]: which bit in the register
*/
regidx = vlan / 32;
vfta_delta = 1 << (vlan % 32);
vfta = rd32(hw, TXGBE_VLANTBL(regidx));
/*
* vfta_delta represents the difference between the current value
* of vfta and the value we want in the register. Since the diff
* is an XOR mask we can just update the vfta using an XOR
*/
vfta_delta &= vlan_on ? ~vfta : vfta;
vfta ^= vfta_delta;
/* Part 2
* Call txgbe_set_vlvf to set VLVFB and VLVF
*/
err = txgbe_set_vlvf(hw, vlan, vind, vlan_on, &vfta_delta,
vfta, vlvf_bypass);
if (err != 0) {
if (vlvf_bypass)
goto vfta_update;
return err;
}
vfta_update:
/* Update VFTA now that we are ready for traffic */
if (vfta_delta)
wr32(hw, TXGBE_VLANTBL(regidx), vfta);
return 0;
}
/**
* txgbe_set_vlvf - Set VLAN Pool Filter
* @hw: pointer to hardware structure
* @vlan: VLAN id to write to VLAN filter
* @vind: VMDq output index that maps queue to VLAN id in PSRVLANPLM
* @vlan_on: boolean flag to turn on/off VLAN in PSRVLAN
* @vfta_delta: pointer to the difference between the current value
* of PSRVLANPLM and the desired value
* @vfta: the desired value of the VFTA
* @vlvf_bypass: boolean flag indicating updating default pool is okay
*
* Turn on/off specified bit in VLVF table.
**/
s32 txgbe_set_vlvf(struct txgbe_hw *hw, u32 vlan, u32 vind,
bool vlan_on, u32 *vfta_delta, u32 vfta,
bool vlvf_bypass)
{
u32 bits;
u32 portctl;
s32 vlvf_index;
DEBUGFUNC("txgbe_set_vlvf");
if (vlan > 4095 || vind > 63)
return TXGBE_ERR_PARAM;
/* If VT Mode is set
* Either vlan_on
* make sure the vlan is in PSRVLAN
* set the vind bit in the matching PSRVLANPLM
* Or !vlan_on
* clear the pool bit and possibly the vind
*/
portctl = rd32(hw, TXGBE_PORTCTL);
if (!(portctl & TXGBE_PORTCTL_NUMVT_MASK))
return 0;
vlvf_index = txgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
if (vlvf_index < 0)
return vlvf_index;
wr32(hw, TXGBE_PSRVLANIDX, vlvf_index);
bits = rd32(hw, TXGBE_PSRVLANPLM(vind / 32));
/* set the pool bit */
bits |= 1 << (vind % 32);
if (vlan_on)
goto vlvf_update;
/* clear the pool bit */
bits ^= 1 << (vind % 32);
if (!bits &&
!rd32(hw, TXGBE_PSRVLANPLM(vind / 32))) {
/* Clear PSRVLANPLM first, then disable PSRVLAN. Otherwise
* we run the risk of stray packets leaking into
* the PF via the default pool
*/
if (*vfta_delta)
wr32(hw, TXGBE_PSRVLANPLM(vlan / 32), vfta);
/* disable VLVF and clear remaining bit from pool */
wr32(hw, TXGBE_PSRVLAN, 0);
wr32(hw, TXGBE_PSRVLANPLM(vind / 32), 0);
return 0;
}
/* If there are still bits set in the PSRVLANPLM registers
* for the VLAN ID indicated we need to see if the
* caller is requesting that we clear the PSRVLANPLM entry bit.
* If the caller has requested that we clear the PSRVLANPLM
* entry bit but there are still pools/VFs using this VLAN
* ID entry then ignore the request. We're not worried
* about the case where we're turning the PSRVLANPLM VLAN ID
* entry bit on, only when requested to turn it off as
* there may be multiple pools and/or VFs using the
* VLAN ID entry. In that case we cannot clear the
* PSRVLANPLM bit until all pools/VFs using that VLAN ID have also
* been cleared. This will be indicated by "bits" being
* zero.
*/
*vfta_delta = 0;
vlvf_update:
/* record pool change and enable VLAN ID if not already enabled */
wr32(hw, TXGBE_PSRVLANPLM(vind / 32), bits);
wr32(hw, TXGBE_PSRVLAN, TXGBE_PSRVLAN_EA | vlan);
return 0;
}
/**
* txgbe_clear_vfta - Clear VLAN filter table
* @hw: pointer to hardware structure
*
* Clears the VLAN filer table, and the VMDq index associated with the filter
**/
s32 txgbe_clear_vfta(struct txgbe_hw *hw)
{
u32 offset;
DEBUGFUNC("txgbe_clear_vfta");
for (offset = 0; offset < hw->mac.vft_size; offset++)
wr32(hw, TXGBE_VLANTBL(offset), 0);
for (offset = 0; offset < TXGBE_NUM_POOL; offset++) {
wr32(hw, TXGBE_PSRVLANIDX, offset);
wr32(hw, TXGBE_PSRVLAN, 0);
wr32(hw, TXGBE_PSRVLANPLM(0), 0);
wr32(hw, TXGBE_PSRVLANPLM(1), 0);
}
return 0;
}
/**
* txgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
* @hw: pointer to hardware structure
*
* Contains the logic to identify if we need to verify link for the
* crosstalk fix
**/
static bool txgbe_need_crosstalk_fix(struct txgbe_hw *hw)
{
/* Does FW say we need the fix */
if (!hw->need_crosstalk_fix)
return false;
/* Only consider SFP+ PHYs i.e. media type fiber */
switch (hw->phy.media_type) {
case txgbe_media_type_fiber:
case txgbe_media_type_fiber_qsfp:
break;
default:
return false;
}
return true;
}
/**
* txgbe_check_mac_link - Determine link and speed status
* @hw: pointer to hardware structure
* @speed: pointer to link speed
* @link_up: true when link is up
* @link_up_wait_to_complete: bool used to wait for link up or not
*
* Reads the links register to determine if link is up and the current speed
**/
s32 txgbe_check_mac_link(struct txgbe_hw *hw, u32 *speed,
bool *link_up, bool link_up_wait_to_complete)
{
u32 links_reg, links_orig;
u32 i;
DEBUGFUNC("txgbe_check_mac_link");
/* If Crosstalk fix enabled do the sanity check of making sure
* the SFP+ cage is full.
*/
if (txgbe_need_crosstalk_fix(hw)) {
u32 sfp_cage_full;
switch (hw->mac.type) {
case txgbe_mac_raptor:
sfp_cage_full = !rd32m(hw, TXGBE_GPIODATA,
TXGBE_GPIOBIT_2);
break;
default:
/* sanity check - No SFP+ devices here */
sfp_cage_full = false;
break;
}
if (!sfp_cage_full) {
*link_up = false;
*speed = TXGBE_LINK_SPEED_UNKNOWN;
return 0;
}
}
/* clear the old state */
links_orig = rd32(hw, TXGBE_PORTSTAT);
links_reg = rd32(hw, TXGBE_PORTSTAT);
if (links_orig != links_reg) {
DEBUGOUT("LINKS changed from %08X to %08X\n",
links_orig, links_reg);
}
if (link_up_wait_to_complete) {
for (i = 0; i < hw->mac.max_link_up_time; i++) {
if (!(links_reg & TXGBE_PORTSTAT_UP)) {
*link_up = false;
} else {
*link_up = true;
break;
}
msec_delay(100);
links_reg = rd32(hw, TXGBE_PORTSTAT);
}
} else {
if (links_reg & TXGBE_PORTSTAT_UP)
*link_up = true;
else
*link_up = false;
}
switch (links_reg & TXGBE_PORTSTAT_BW_MASK) {
case TXGBE_PORTSTAT_BW_10G:
*speed = TXGBE_LINK_SPEED_10GB_FULL;
break;
case TXGBE_PORTSTAT_BW_1G:
*speed = TXGBE_LINK_SPEED_1GB_FULL;
break;
case TXGBE_PORTSTAT_BW_100M:
*speed = TXGBE_LINK_SPEED_100M_FULL;
break;
default:
*speed = TXGBE_LINK_SPEED_UNKNOWN;
}
return 0;
}
/**
* txgbe_get_wwn_prefix - Get alternative WWNN/WWPN prefix from
* the EEPROM
* @hw: pointer to hardware structure
* @wwnn_prefix: the alternative WWNN prefix
* @wwpn_prefix: the alternative WWPN prefix
*
* This function will read the EEPROM from the alternative SAN MAC address
* block to check the support for the alternative WWNN/WWPN prefix support.
**/
s32 txgbe_get_wwn_prefix(struct txgbe_hw *hw, u16 *wwnn_prefix,
u16 *wwpn_prefix)
{
u16 offset, caps;
u16 alt_san_mac_blk_offset;
DEBUGFUNC("txgbe_get_wwn_prefix");
/* clear output first */
*wwnn_prefix = 0xFFFF;
*wwpn_prefix = 0xFFFF;
/* check if alternative SAN MAC is supported */
offset = TXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
if (hw->rom.readw_sw(hw, offset, &alt_san_mac_blk_offset))
goto wwn_prefix_err;
if (alt_san_mac_blk_offset == 0 || alt_san_mac_blk_offset == 0xFFFF)
goto wwn_prefix_out;
/* check capability in alternative san mac address block */
offset = alt_san_mac_blk_offset + TXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
if (hw->rom.read16(hw, offset, &caps))
goto wwn_prefix_err;
if (!(caps & TXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
goto wwn_prefix_out;
/* get the corresponding prefix for WWNN/WWPN */
offset = alt_san_mac_blk_offset + TXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
if (hw->rom.read16(hw, offset, wwnn_prefix))
DEBUGOUT("eeprom read at offset %d failed", offset);
offset = alt_san_mac_blk_offset + TXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
if (hw->rom.read16(hw, offset, wwpn_prefix))
goto wwn_prefix_err;
wwn_prefix_out:
return 0;
wwn_prefix_err:
DEBUGOUT("eeprom read at offset %d failed", offset);
return 0;
}
/**
* txgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
* @hw: pointer to hardware structure
* @enable: enable or disable switch for MAC anti-spoofing
* @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
*
**/
void txgbe_set_mac_anti_spoofing(struct txgbe_hw *hw, bool enable, int vf)
{
int vf_target_reg = vf >> 3;
int vf_target_shift = vf % 8;
u32 pfvfspoof;
pfvfspoof = rd32(hw, TXGBE_POOLTXASMAC(vf_target_reg));
if (enable)
pfvfspoof |= (1 << vf_target_shift);
else
pfvfspoof &= ~(1 << vf_target_shift);
wr32(hw, TXGBE_POOLTXASMAC(vf_target_reg), pfvfspoof);
}
/**
* txgbe_set_ethertype_anti_spoofing - Configure Ethertype anti-spoofing
* @hw: pointer to hardware structure
* @enable: enable or disable switch for Ethertype anti-spoofing
* @vf: Virtual Function pool - VF Pool to set for Ethertype anti-spoofing
*
**/
void txgbe_set_ethertype_anti_spoofing(struct txgbe_hw *hw,
bool enable, int vf)
{
int vf_target_reg = vf >> 3;
int vf_target_shift = vf % 8;
u32 pfvfspoof;
pfvfspoof = rd32(hw, TXGBE_POOLTXASET(vf_target_reg));
if (enable)
pfvfspoof |= (1 << vf_target_shift);
else
pfvfspoof &= ~(1 << vf_target_shift);
wr32(hw, TXGBE_POOLTXASET(vf_target_reg), pfvfspoof);
}
/**
* txgbe_get_device_caps - Get additional device capabilities
* @hw: pointer to hardware structure
* @device_caps: the EEPROM word with the extra device capabilities
*
* This function will read the EEPROM location for the device capabilities,
* and return the word through device_caps.
**/
s32 txgbe_get_device_caps(struct txgbe_hw *hw, u16 *device_caps)
{
DEBUGFUNC("txgbe_get_device_caps");
hw->rom.readw_sw(hw, TXGBE_DEVICE_CAPS, device_caps);
return 0;
}
/**
* txgbe_set_pba - Initialize Rx packet buffer
* @hw: pointer to hardware structure
* @num_pb: number of packet buffers to allocate
* @headroom: reserve n KB of headroom
* @strategy: packet buffer allocation strategy
**/
void txgbe_set_pba(struct txgbe_hw *hw, int num_pb, u32 headroom,
int strategy)
{
u32 pbsize = hw->mac.rx_pb_size;
int i = 0;
u32 rxpktsize, txpktsize, txpbthresh;
UNREFERENCED_PARAMETER(hw);
/* Reserve headroom */
pbsize -= headroom;
if (!num_pb)
num_pb = 1;
/* Divide remaining packet buffer space amongst the number of packet
* buffers requested using supplied strategy.
*/
switch (strategy) {
case PBA_STRATEGY_WEIGHTED:
/* txgbe_dcb_pba_80_48 strategy weight first half of packet
* buffer with 5/8 of the packet buffer space.
*/
rxpktsize = (pbsize * 5) / (num_pb * 4);
pbsize -= rxpktsize * (num_pb / 2);
rxpktsize <<= 10;
for (; i < (num_pb / 2); i++)
wr32(hw, TXGBE_PBRXSIZE(i), rxpktsize);
/* fall through - configure remaining packet buffers */
case PBA_STRATEGY_EQUAL:
rxpktsize = (pbsize / (num_pb - i));
rxpktsize <<= 10;
for (; i < num_pb; i++)
wr32(hw, TXGBE_PBRXSIZE(i), rxpktsize);
break;
default:
break;
}
/* Only support an equally distributed Tx packet buffer strategy. */
txpktsize = TXGBE_PBTXSIZE_MAX / num_pb;
txpbthresh = (txpktsize / 1024) - TXGBE_TXPKT_SIZE_MAX;
for (i = 0; i < num_pb; i++) {
wr32(hw, TXGBE_PBTXSIZE(i), txpktsize);
wr32(hw, TXGBE_PBTXDMATH(i), txpbthresh);
}
/* Clear unused TCs, if any, to zero buffer size*/
for (; i < TXGBE_MAX_UP; i++) {
wr32(hw, TXGBE_PBRXSIZE(i), 0);
wr32(hw, TXGBE_PBTXSIZE(i), 0);
wr32(hw, TXGBE_PBTXDMATH(i), 0);
}
}
/**
* txgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
* @hw: pointer to the hardware structure
*
* The MACs can experience issues if TX work is still pending
* when a reset occurs. This function prevents this by flushing the PCIe
* buffers on the system.
**/
void txgbe_clear_tx_pending(struct txgbe_hw *hw)
{
u32 hlreg0, i, poll;
/*
* If double reset is not requested then all transactions should
* already be clear and as such there is no work to do
*/
if (!(hw->mac.flags & TXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
return;
hlreg0 = rd32(hw, TXGBE_PSRCTL);
wr32(hw, TXGBE_PSRCTL, hlreg0 | TXGBE_PSRCTL_LBENA);
/* Wait for a last completion before clearing buffers */
txgbe_flush(hw);
msec_delay(3);
/*
* Before proceeding, make sure that the PCIe block does not have
* transactions pending.
*/
poll = (800 * 11) / 10;
for (i = 0; i < poll; i++)
usec_delay(100);
/* Flush all writes and allow 20usec for all transactions to clear */
txgbe_flush(hw);
usec_delay(20);
/* restore previous register values */
wr32(hw, TXGBE_PSRCTL, hlreg0);
}
/**
* txgbe_get_thermal_sensor_data - Gathers thermal sensor data
* @hw: pointer to hardware structure
*
* Returns the thermal sensor data structure
**/
s32 txgbe_get_thermal_sensor_data(struct txgbe_hw *hw)
{
struct txgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
s64 tsv;
u32 ts_stat;
DEBUGFUNC("txgbe_get_thermal_sensor_data");
/* Only support thermal sensors attached to physical port 0 */
if (hw->bus.lan_id != 0)
return TXGBE_NOT_IMPLEMENTED;
ts_stat = rd32(hw, TXGBE_TSSTAT);
tsv = (s64)TXGBE_TSSTAT_DATA(ts_stat);
tsv = tsv > 1200 ? tsv : 1200;
tsv = -(48380 << 8) / 1000
+ tsv * (31020 << 8) / 100000
- tsv * tsv * (18201 << 8) / 100000000
+ tsv * tsv * tsv * (81542 << 8) / 1000000000000
- tsv * tsv * tsv * tsv * (16743 << 8) / 1000000000000000;
tsv >>= 8;
data->sensor[0].temp = (s16)tsv;
return 0;
}
/**
* txgbe_init_thermal_sensor_thresh - Inits thermal sensor thresholds
* @hw: pointer to hardware structure
*
* Inits the thermal sensor thresholds according to the NVM map
* and save off the threshold and location values into mac.thermal_sensor_data
**/
s32 txgbe_init_thermal_sensor_thresh(struct txgbe_hw *hw)
{
struct txgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
DEBUGFUNC("txgbe_init_thermal_sensor_thresh");
memset(data, 0, sizeof(struct txgbe_thermal_sensor_data));
if (hw->bus.lan_id != 0)
return TXGBE_NOT_IMPLEMENTED;
wr32(hw, TXGBE_TSCTRL, TXGBE_TSCTRL_EVALMD);
wr32(hw, TXGBE_TSINTR,
TXGBE_TSINTR_AEN | TXGBE_TSINTR_DEN);
wr32(hw, TXGBE_TSEN, TXGBE_TSEN_ENA);
data->sensor[0].alarm_thresh = 100;
wr32(hw, TXGBE_TSATHRE, 677);
data->sensor[0].dalarm_thresh = 90;
wr32(hw, TXGBE_TSDTHRE, 614);
return 0;
}
void txgbe_disable_rx(struct txgbe_hw *hw)
{
u32 pfdtxgswc;
pfdtxgswc = rd32(hw, TXGBE_PSRCTL);
if (pfdtxgswc & TXGBE_PSRCTL_LBENA) {
pfdtxgswc &= ~TXGBE_PSRCTL_LBENA;
wr32(hw, TXGBE_PSRCTL, pfdtxgswc);
hw->mac.set_lben = true;
} else {
hw->mac.set_lben = false;
}
wr32m(hw, TXGBE_PBRXCTL, TXGBE_PBRXCTL_ENA, 0);
wr32m(hw, TXGBE_MACRXCFG, TXGBE_MACRXCFG_ENA, 0);
}
void txgbe_enable_rx(struct txgbe_hw *hw)
{
u32 pfdtxgswc;
wr32m(hw, TXGBE_MACRXCFG, TXGBE_MACRXCFG_ENA, TXGBE_MACRXCFG_ENA);
wr32m(hw, TXGBE_PBRXCTL, TXGBE_PBRXCTL_ENA, TXGBE_PBRXCTL_ENA);
if (hw->mac.set_lben) {
pfdtxgswc = rd32(hw, TXGBE_PSRCTL);
pfdtxgswc |= TXGBE_PSRCTL_LBENA;
wr32(hw, TXGBE_PSRCTL, pfdtxgswc);
hw->mac.set_lben = false;
}
}
/**
* txgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
* @hw: pointer to hardware structure
* @speed: new link speed
* @autoneg_wait_to_complete: true when waiting for completion is needed
*
* Set the link speed in the MAC and/or PHY register and restarts link.
**/
s32 txgbe_setup_mac_link_multispeed_fiber(struct txgbe_hw *hw,
u32 speed,
bool autoneg_wait_to_complete)
{
u32 link_speed = TXGBE_LINK_SPEED_UNKNOWN;
u32 highest_link_speed = TXGBE_LINK_SPEED_UNKNOWN;
s32 status = 0;
u32 speedcnt = 0;
u32 i = 0;
bool autoneg, link_up = false;
DEBUGFUNC("txgbe_setup_mac_link_multispeed_fiber");
/* Mask off requested but non-supported speeds */
status = hw->mac.get_link_capabilities(hw, &link_speed, &autoneg);
if (status != 0)
return status;
speed &= link_speed;
/* Try each speed one by one, highest priority first. We do this in
* software because 10Gb fiber doesn't support speed autonegotiation.
*/
if (speed & TXGBE_LINK_SPEED_10GB_FULL) {
speedcnt++;
highest_link_speed = TXGBE_LINK_SPEED_10GB_FULL;
/* Set the module link speed */
switch (hw->phy.media_type) {
case txgbe_media_type_fiber:
hw->mac.set_rate_select_speed(hw,
TXGBE_LINK_SPEED_10GB_FULL);
break;
case txgbe_media_type_fiber_qsfp:
/* QSFP module automatically detects MAC link speed */
break;
default:
DEBUGOUT("Unexpected media type.\n");
break;
}
/* Allow module to change analog characteristics (1G->10G) */
msec_delay(40);
status = hw->mac.setup_mac_link(hw,
TXGBE_LINK_SPEED_10GB_FULL,
autoneg_wait_to_complete);
if (status != 0)
return status;
/* Flap the Tx laser if it has not already been done */
hw->mac.flap_tx_laser(hw);
/* Wait for the controller to acquire link. Per IEEE 802.3ap,
* Section 73.10.2, we may have to wait up to 500ms if KR is
* attempted. uses the same timing for 10g SFI.
*/
for (i = 0; i < 5; i++) {
/* Wait for the link partner to also set speed */
msec_delay(100);
/* If we have link, just jump out */
status = hw->mac.check_link(hw, &link_speed,
&link_up, false);
if (status != 0)
return status;
if (link_up)
goto out;
}
}
if (speed & TXGBE_LINK_SPEED_1GB_FULL) {
speedcnt++;
if (highest_link_speed == TXGBE_LINK_SPEED_UNKNOWN)
highest_link_speed = TXGBE_LINK_SPEED_1GB_FULL;
/* Set the module link speed */
switch (hw->phy.media_type) {
case txgbe_media_type_fiber:
hw->mac.set_rate_select_speed(hw,
TXGBE_LINK_SPEED_1GB_FULL);
break;
case txgbe_media_type_fiber_qsfp:
/* QSFP module automatically detects link speed */
break;
default:
DEBUGOUT("Unexpected media type.\n");
break;
}
/* Allow module to change analog characteristics (10G->1G) */
msec_delay(40);
status = hw->mac.setup_mac_link(hw,
TXGBE_LINK_SPEED_1GB_FULL,
autoneg_wait_to_complete);
if (status != 0)
return status;
/* Flap the Tx laser if it has not already been done */
hw->mac.flap_tx_laser(hw);
/* Wait for the link partner to also set speed */
msec_delay(100);
/* If we have link, just jump out */
status = hw->mac.check_link(hw, &link_speed, &link_up, false);
if (status != 0)
return status;
if (link_up)
goto out;
}
/* We didn't get link. Configure back to the highest speed we tried,
* (if there was more than one). We call ourselves back with just the
* single highest speed that the user requested.
*/
if (speedcnt > 1)
status = txgbe_setup_mac_link_multispeed_fiber(hw,
highest_link_speed,
autoneg_wait_to_complete);
out:
/* Set autoneg_advertised value based on input link speed */
hw->phy.autoneg_advertised = 0;
if (speed & TXGBE_LINK_SPEED_10GB_FULL)
hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_10GB_FULL;
if (speed & TXGBE_LINK_SPEED_1GB_FULL)
hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_1GB_FULL;
return status;
}
/**
* txgbe_init_shared_code - Initialize the shared code
* @hw: pointer to hardware structure
*
* This will assign function pointers and assign the MAC type and PHY code.
* Does not touch the hardware. This function must be called prior to any
* other function in the shared code. The txgbe_hw structure should be
* memset to 0 prior to calling this function. The following fields in
* hw structure should be filled in prior to calling this function:
* hw_addr, back, device_id, vendor_id, subsystem_device_id,
* subsystem_vendor_id, and revision_id
**/
s32 txgbe_init_shared_code(struct txgbe_hw *hw)
{
s32 status;
DEBUGFUNC("txgbe_init_shared_code");
/*
* Set the mac type
*/
txgbe_set_mac_type(hw);
txgbe_init_ops_dummy(hw);
switch (hw->mac.type) {
case txgbe_mac_raptor:
status = txgbe_init_ops_pf(hw);
break;
default:
status = TXGBE_ERR_DEVICE_NOT_SUPPORTED;
break;
}
hw->mac.max_link_up_time = TXGBE_LINK_UP_TIME;
hw->bus.set_lan_id(hw);
return status;
}
/**
* txgbe_set_mac_type - Sets MAC type
* @hw: pointer to the HW structure
*
* This function sets the mac type of the adapter based on the
* vendor ID and device ID stored in the hw structure.
**/
s32 txgbe_set_mac_type(struct txgbe_hw *hw)
{
s32 err = 0;
DEBUGFUNC("txgbe_set_mac_type");
if (hw->vendor_id != PCI_VENDOR_ID_WANGXUN) {
DEBUGOUT("Unsupported vendor id: %x", hw->vendor_id);
return TXGBE_ERR_DEVICE_NOT_SUPPORTED;
}
switch (hw->device_id) {
case TXGBE_DEV_ID_RAPTOR_KR_KX_KX4:
hw->phy.media_type = txgbe_media_type_backplane;
hw->mac.type = txgbe_mac_raptor;
break;
case TXGBE_DEV_ID_RAPTOR_XAUI:
case TXGBE_DEV_ID_RAPTOR_SGMII:
hw->phy.media_type = txgbe_media_type_copper;
hw->mac.type = txgbe_mac_raptor;
break;
case TXGBE_DEV_ID_RAPTOR_SFP:
case TXGBE_DEV_ID_WX1820_SFP:
hw->phy.media_type = txgbe_media_type_fiber;
hw->mac.type = txgbe_mac_raptor;
break;
case TXGBE_DEV_ID_RAPTOR_QSFP:
hw->phy.media_type = txgbe_media_type_fiber_qsfp;
hw->mac.type = txgbe_mac_raptor;
break;
case TXGBE_DEV_ID_RAPTOR_VF:
case TXGBE_DEV_ID_RAPTOR_VF_HV:
hw->phy.media_type = txgbe_media_type_virtual;
hw->mac.type = txgbe_mac_raptor_vf;
break;
default:
err = TXGBE_ERR_DEVICE_NOT_SUPPORTED;
DEBUGOUT("Unsupported device id: %x", hw->device_id);
break;
}
DEBUGOUT("found mac: %d media: %d, returns: %d\n",
hw->mac.type, hw->phy.media_type, err);
return err;
}
void txgbe_init_mac_link_ops(struct txgbe_hw *hw)
{
struct txgbe_mac_info *mac = &hw->mac;
DEBUGFUNC("txgbe_init_mac_link_ops");
/*
* enable the laser control functions for SFP+ fiber
* and MNG not enabled
*/
if (hw->phy.media_type == txgbe_media_type_fiber &&
!txgbe_mng_enabled(hw)) {
mac->disable_tx_laser =
txgbe_disable_tx_laser_multispeed_fiber;
mac->enable_tx_laser =
txgbe_enable_tx_laser_multispeed_fiber;
mac->flap_tx_laser =
txgbe_flap_tx_laser_multispeed_fiber;
}
if ((hw->phy.media_type == txgbe_media_type_fiber ||
hw->phy.media_type == txgbe_media_type_fiber_qsfp) &&
hw->phy.multispeed_fiber) {
/* Set up dual speed SFP+ support */
mac->setup_link = txgbe_setup_mac_link_multispeed_fiber;
mac->setup_mac_link = txgbe_setup_mac_link;
mac->set_rate_select_speed = txgbe_set_hard_rate_select_speed;
} else if ((hw->phy.media_type == txgbe_media_type_backplane) &&
(hw->phy.smart_speed == txgbe_smart_speed_auto ||
hw->phy.smart_speed == txgbe_smart_speed_on) &&
!txgbe_verify_lesm_fw_enabled_raptor(hw)) {
mac->setup_link = txgbe_setup_mac_link_smartspeed;
} else {
mac->setup_link = txgbe_setup_mac_link;
}
}
/**
* txgbe_init_phy_raptor - PHY/SFP specific init
* @hw: pointer to hardware structure
*
* Initialize any function pointers that were not able to be
* set during init_shared_code because the PHY/SFP type was
* not known. Perform the SFP init if necessary.
*
**/
s32 txgbe_init_phy_raptor(struct txgbe_hw *hw)
{
struct txgbe_mac_info *mac = &hw->mac;
struct txgbe_phy_info *phy = &hw->phy;
s32 err = 0;
DEBUGFUNC("txgbe_init_phy_raptor");
if (hw->device_id == TXGBE_DEV_ID_RAPTOR_QSFP) {
/* Store flag indicating I2C bus access control unit. */
hw->phy.qsfp_shared_i2c_bus = TRUE;
/* Initialize access to QSFP+ I2C bus */
txgbe_flush(hw);
}
/* Identify the PHY or SFP module */
err = phy->identify(hw);
if (err == TXGBE_ERR_SFP_NOT_SUPPORTED)
goto init_phy_ops_out;
/* Setup function pointers based on detected SFP module and speeds */
txgbe_init_mac_link_ops(hw);
/* If copper media, overwrite with copper function pointers */
if (phy->media_type == txgbe_media_type_copper) {
mac->setup_link = txgbe_setup_copper_link_raptor;
mac->get_link_capabilities =
txgbe_get_copper_link_capabilities;
}
/* Set necessary function pointers based on PHY type */
switch (hw->phy.type) {
case txgbe_phy_tn:
phy->setup_link = txgbe_setup_phy_link_tnx;
phy->check_link = txgbe_check_phy_link_tnx;
break;
default:
break;
}
init_phy_ops_out:
return err;
}
s32 txgbe_setup_sfp_modules(struct txgbe_hw *hw)
{
s32 err = 0;
DEBUGFUNC("txgbe_setup_sfp_modules");
if (hw->phy.sfp_type == txgbe_sfp_type_unknown)
return 0;
txgbe_init_mac_link_ops(hw);
/* PHY config will finish before releasing the semaphore */
err = hw->mac.acquire_swfw_sync(hw, TXGBE_MNGSEM_SWPHY);
if (err != 0)
return TXGBE_ERR_SWFW_SYNC;
/* Release the semaphore */
hw->mac.release_swfw_sync(hw, TXGBE_MNGSEM_SWPHY);
/* Delay obtaining semaphore again to allow FW access
* prot_autoc_write uses the semaphore too.
*/
msec_delay(hw->rom.semaphore_delay);
if (err) {
DEBUGOUT("sfp module setup not complete\n");
return TXGBE_ERR_SFP_SETUP_NOT_COMPLETE;
}
return err;
}
/**
* txgbe_prot_autoc_read_raptor - Hides MAC differences needed for AUTOC read
* @hw: pointer to hardware structure
* @locked: Return the if we locked for this read.
* @value: Value we read from AUTOC
*
* For this part we need to wrap read-modify-writes with a possible
* FW/SW lock. It is assumed this lock will be freed with the next
* prot_autoc_write_raptor().
*/
s32 txgbe_prot_autoc_read_raptor(struct txgbe_hw *hw, bool *locked, u64 *value)
{
s32 err;
bool lock_state = false;
/* If LESM is on then we need to hold the SW/FW semaphore. */
if (txgbe_verify_lesm_fw_enabled_raptor(hw)) {
err = hw->mac.acquire_swfw_sync(hw,
TXGBE_MNGSEM_SWPHY);
if (err != 0)
return TXGBE_ERR_SWFW_SYNC;
lock_state = true;
}
if (locked)
*locked = lock_state;
*value = txgbe_autoc_read(hw);
return 0;
}
/**
* txgbe_prot_autoc_write_raptor - Hides MAC differences needed for AUTOC write
* @hw: pointer to hardware structure
* @autoc: value to write to AUTOC
* @locked: bool to indicate whether the SW/FW lock was already taken by
* previous prot_autoc_read_raptor.
*
* This part may need to hold the SW/FW lock around all writes to
* AUTOC. Likewise after a write we need to do a pipeline reset.
*/
s32 txgbe_prot_autoc_write_raptor(struct txgbe_hw *hw, bool locked, u64 autoc)
{
int err = 0;
/* Blocked by MNG FW so bail */
if (txgbe_check_reset_blocked(hw))
goto out;
/* We only need to get the lock if:
* - We didn't do it already (in the read part of a read-modify-write)
* - LESM is enabled.
*/
if (!locked && txgbe_verify_lesm_fw_enabled_raptor(hw)) {
err = hw->mac.acquire_swfw_sync(hw,
TXGBE_MNGSEM_SWPHY);
if (err != 0)
return TXGBE_ERR_SWFW_SYNC;
locked = true;
}
txgbe_autoc_write(hw, autoc);
err = txgbe_reset_pipeline_raptor(hw);
out:
/* Free the SW/FW semaphore as we either grabbed it here or
* already had it when this function was called.
*/
if (locked)
hw->mac.release_swfw_sync(hw, TXGBE_MNGSEM_SWPHY);
return err;
}
/**
* txgbe_init_ops_pf - Inits func ptrs and MAC type
* @hw: pointer to hardware structure
*
* Initialize the function pointers and assign the MAC type.
* Does not touch the hardware.
**/
s32 txgbe_init_ops_pf(struct txgbe_hw *hw)
{
struct txgbe_bus_info *bus = &hw->bus;
struct txgbe_mac_info *mac = &hw->mac;
struct txgbe_phy_info *phy = &hw->phy;
struct txgbe_rom_info *rom = &hw->rom;
struct txgbe_mbx_info *mbx = &hw->mbx;
DEBUGFUNC("txgbe_init_ops_pf");
/* BUS */
bus->set_lan_id = txgbe_set_lan_id_multi_port;
/* PHY */
phy->get_media_type = txgbe_get_media_type_raptor;
phy->identify = txgbe_identify_phy;
phy->init = txgbe_init_phy_raptor;
phy->read_reg = txgbe_read_phy_reg;
phy->write_reg = txgbe_write_phy_reg;
phy->read_reg_mdi = txgbe_read_phy_reg_mdi;
phy->write_reg_mdi = txgbe_write_phy_reg_mdi;
phy->setup_link = txgbe_setup_phy_link;
phy->setup_link_speed = txgbe_setup_phy_link_speed;
phy->read_i2c_byte = txgbe_read_i2c_byte;
phy->write_i2c_byte = txgbe_write_i2c_byte;
phy->read_i2c_sff8472 = txgbe_read_i2c_sff8472;
phy->read_i2c_eeprom = txgbe_read_i2c_eeprom;
phy->write_i2c_eeprom = txgbe_write_i2c_eeprom;
phy->identify_sfp = txgbe_identify_module;
phy->read_i2c_byte_unlocked = txgbe_read_i2c_byte_unlocked;
phy->write_i2c_byte_unlocked = txgbe_write_i2c_byte_unlocked;
phy->reset = txgbe_reset_phy;
/* MAC */
mac->init_hw = txgbe_init_hw;
mac->start_hw = txgbe_start_hw_raptor;
mac->clear_hw_cntrs = txgbe_clear_hw_cntrs;
mac->enable_rx_dma = txgbe_enable_rx_dma_raptor;
mac->get_mac_addr = txgbe_get_mac_addr;
mac->stop_hw = txgbe_stop_hw;
mac->acquire_swfw_sync = txgbe_acquire_swfw_sync;
mac->release_swfw_sync = txgbe_release_swfw_sync;
mac->reset_hw = txgbe_reset_hw;
mac->disable_sec_rx_path = txgbe_disable_sec_rx_path;
mac->enable_sec_rx_path = txgbe_enable_sec_rx_path;
mac->disable_sec_tx_path = txgbe_disable_sec_tx_path;
mac->enable_sec_tx_path = txgbe_enable_sec_tx_path;
mac->get_san_mac_addr = txgbe_get_san_mac_addr;
mac->set_san_mac_addr = txgbe_set_san_mac_addr;
mac->get_device_caps = txgbe_get_device_caps;
mac->get_wwn_prefix = txgbe_get_wwn_prefix;
mac->autoc_read = txgbe_autoc_read;
mac->autoc_write = txgbe_autoc_write;
mac->prot_autoc_read = txgbe_prot_autoc_read_raptor;
mac->prot_autoc_write = txgbe_prot_autoc_write_raptor;
/* RAR, Multicast, VLAN */
mac->set_rar = txgbe_set_rar;
mac->clear_rar = txgbe_clear_rar;
mac->init_rx_addrs = txgbe_init_rx_addrs;
mac->enable_rx = txgbe_enable_rx;
mac->disable_rx = txgbe_disable_rx;
mac->set_vmdq = txgbe_set_vmdq;
mac->clear_vmdq = txgbe_clear_vmdq;
mac->set_vfta = txgbe_set_vfta;
mac->set_vlvf = txgbe_set_vlvf;
mac->clear_vfta = txgbe_clear_vfta;
mac->init_uta_tables = txgbe_init_uta_tables;
mac->setup_sfp = txgbe_setup_sfp_modules;
mac->set_mac_anti_spoofing = txgbe_set_mac_anti_spoofing;
mac->set_ethertype_anti_spoofing = txgbe_set_ethertype_anti_spoofing;
/* Flow Control */
mac->fc_enable = txgbe_fc_enable;
mac->setup_fc = txgbe_setup_fc;
mac->fc_autoneg = txgbe_fc_autoneg;
/* Link */
mac->get_link_capabilities = txgbe_get_link_capabilities_raptor;
mac->check_link = txgbe_check_mac_link;
mac->setup_pba = txgbe_set_pba;
/* Manageability interface */
mac->set_fw_drv_ver = txgbe_hic_set_drv_ver;
mac->get_thermal_sensor_data = txgbe_get_thermal_sensor_data;
mac->init_thermal_sensor_thresh = txgbe_init_thermal_sensor_thresh;
mbx->init_params = txgbe_init_mbx_params_pf;
mbx->read = txgbe_read_mbx_pf;
mbx->write = txgbe_write_mbx_pf;
mbx->check_for_msg = txgbe_check_for_msg_pf;
mbx->check_for_ack = txgbe_check_for_ack_pf;
mbx->check_for_rst = txgbe_check_for_rst_pf;
/* EEPROM */
rom->init_params = txgbe_init_eeprom_params;
rom->read16 = txgbe_ee_read16;
rom->readw_buffer = txgbe_ee_readw_buffer;
rom->readw_sw = txgbe_ee_readw_sw;
rom->read32 = txgbe_ee_read32;
rom->write16 = txgbe_ee_write16;
rom->writew_buffer = txgbe_ee_writew_buffer;
rom->writew_sw = txgbe_ee_writew_sw;
rom->write32 = txgbe_ee_write32;
rom->validate_checksum = txgbe_validate_eeprom_checksum;
rom->update_checksum = txgbe_update_eeprom_checksum;
rom->calc_checksum = txgbe_calc_eeprom_checksum;
mac->mcft_size = TXGBE_RAPTOR_MC_TBL_SIZE;
mac->vft_size = TXGBE_RAPTOR_VFT_TBL_SIZE;
mac->num_rar_entries = TXGBE_RAPTOR_RAR_ENTRIES;
mac->rx_pb_size = TXGBE_RAPTOR_RX_PB_SIZE;
mac->max_rx_queues = TXGBE_RAPTOR_MAX_RX_QUEUES;
mac->max_tx_queues = TXGBE_RAPTOR_MAX_TX_QUEUES;
return 0;
}
/**
* txgbe_get_link_capabilities_raptor - Determines link capabilities
* @hw: pointer to hardware structure
* @speed: pointer to link speed
* @autoneg: true when autoneg or autotry is enabled
*
* Determines the link capabilities by reading the AUTOC register.
**/
s32 txgbe_get_link_capabilities_raptor(struct txgbe_hw *hw,
u32 *speed,
bool *autoneg)
{
s32 status = 0;
u32 autoc = 0;
DEBUGFUNC("txgbe_get_link_capabilities_raptor");
/* Check if 1G SFP module. */
if (hw->phy.sfp_type == txgbe_sfp_type_1g_cu_core0 ||
hw->phy.sfp_type == txgbe_sfp_type_1g_cu_core1 ||
hw->phy.sfp_type == txgbe_sfp_type_1g_lx_core0 ||
hw->phy.sfp_type == txgbe_sfp_type_1g_lx_core1 ||
hw->phy.sfp_type == txgbe_sfp_type_1g_sx_core0 ||
hw->phy.sfp_type == txgbe_sfp_type_1g_sx_core1) {
*speed = TXGBE_LINK_SPEED_1GB_FULL;
*autoneg = true;
return 0;
}
/*
* Determine link capabilities based on the stored value of AUTOC,
* which represents EEPROM defaults. If AUTOC value has not
* been stored, use the current register values.
*/
if (hw->mac.orig_link_settings_stored)
autoc = hw->mac.orig_autoc;
else
autoc = hw->mac.autoc_read(hw);
switch (autoc & TXGBE_AUTOC_LMS_MASK) {
case TXGBE_AUTOC_LMS_1G_LINK_NO_AN:
*speed = TXGBE_LINK_SPEED_1GB_FULL;
*autoneg = false;
break;
case TXGBE_AUTOC_LMS_10G_LINK_NO_AN:
*speed = TXGBE_LINK_SPEED_10GB_FULL;
*autoneg = false;
break;
case TXGBE_AUTOC_LMS_1G_AN:
*speed = TXGBE_LINK_SPEED_1GB_FULL;
*autoneg = true;
break;
case TXGBE_AUTOC_LMS_10G:
*speed = TXGBE_LINK_SPEED_10GB_FULL;
*autoneg = false;
break;
case TXGBE_AUTOC_LMS_KX4_KX_KR:
case TXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN:
*speed = TXGBE_LINK_SPEED_UNKNOWN;
if (autoc & TXGBE_AUTOC_KR_SUPP)
*speed |= TXGBE_LINK_SPEED_10GB_FULL;
if (autoc & TXGBE_AUTOC_KX4_SUPP)
*speed |= TXGBE_LINK_SPEED_10GB_FULL;
if (autoc & TXGBE_AUTOC_KX_SUPP)
*speed |= TXGBE_LINK_SPEED_1GB_FULL;
*autoneg = true;
break;
case TXGBE_AUTOC_LMS_KX4_KX_KR_SGMII:
*speed = TXGBE_LINK_SPEED_100M_FULL;
if (autoc & TXGBE_AUTOC_KR_SUPP)
*speed |= TXGBE_LINK_SPEED_10GB_FULL;
if (autoc & TXGBE_AUTOC_KX4_SUPP)
*speed |= TXGBE_LINK_SPEED_10GB_FULL;
if (autoc & TXGBE_AUTOC_KX_SUPP)
*speed |= TXGBE_LINK_SPEED_1GB_FULL;
*autoneg = true;
break;
case TXGBE_AUTOC_LMS_SGMII_1G_100M:
*speed = TXGBE_LINK_SPEED_1GB_FULL |
TXGBE_LINK_SPEED_100M_FULL |
TXGBE_LINK_SPEED_10M_FULL;
*autoneg = false;
break;
default:
return TXGBE_ERR_LINK_SETUP;
}
if (hw->phy.multispeed_fiber) {
*speed |= TXGBE_LINK_SPEED_10GB_FULL |
TXGBE_LINK_SPEED_1GB_FULL;
/* QSFP must not enable full auto-negotiation
* Limited autoneg is enabled at 1G
*/
if (hw->phy.media_type == txgbe_media_type_fiber_qsfp)
*autoneg = false;
else
*autoneg = true;
}
return status;
}
/**
* txgbe_get_media_type_raptor - Get media type
* @hw: pointer to hardware structure
*
* Returns the media type (fiber, copper, backplane)
**/
u32 txgbe_get_media_type_raptor(struct txgbe_hw *hw)
{
u32 media_type;
DEBUGFUNC("txgbe_get_media_type_raptor");
/* Detect if there is a copper PHY attached. */
switch (hw->phy.type) {
case txgbe_phy_cu_unknown:
case txgbe_phy_tn:
media_type = txgbe_media_type_copper;
return media_type;
default:
break;
}
switch (hw->device_id) {
case TXGBE_DEV_ID_RAPTOR_KR_KX_KX4:
/* Default device ID is mezzanine card KX/KX4 */
media_type = txgbe_media_type_backplane;
break;
case TXGBE_DEV_ID_RAPTOR_SFP:
case TXGBE_DEV_ID_WX1820_SFP:
media_type = txgbe_media_type_fiber;
break;
case TXGBE_DEV_ID_RAPTOR_QSFP:
media_type = txgbe_media_type_fiber_qsfp;
break;
case TXGBE_DEV_ID_RAPTOR_XAUI:
case TXGBE_DEV_ID_RAPTOR_SGMII:
media_type = txgbe_media_type_copper;
break;
default:
media_type = txgbe_media_type_unknown;
break;
}
return media_type;
}
/**
* txgbe_start_mac_link_raptor - Setup MAC link settings
* @hw: pointer to hardware structure
* @autoneg_wait_to_complete: true when waiting for completion is needed
*
* Configures link settings based on values in the txgbe_hw struct.
* Restarts the link. Performs autonegotiation if needed.
**/
s32 txgbe_start_mac_link_raptor(struct txgbe_hw *hw,
bool autoneg_wait_to_complete)
{
s32 status = 0;
bool got_lock = false;
DEBUGFUNC("txgbe_start_mac_link_raptor");
UNREFERENCED_PARAMETER(autoneg_wait_to_complete);
/* reset_pipeline requires us to hold this lock as it writes to
* AUTOC.
*/
if (txgbe_verify_lesm_fw_enabled_raptor(hw)) {
status = hw->mac.acquire_swfw_sync(hw, TXGBE_MNGSEM_SWPHY);
if (status != 0)
goto out;
got_lock = true;
}
/* Restart link */
txgbe_reset_pipeline_raptor(hw);
if (got_lock)
hw->mac.release_swfw_sync(hw, TXGBE_MNGSEM_SWPHY);
/* Add delay to filter out noises during initial link setup */
msec_delay(50);
out:
return status;
}
/**
* txgbe_disable_tx_laser_multispeed_fiber - Disable Tx laser
* @hw: pointer to hardware structure
*
* The base drivers may require better control over SFP+ module
* PHY states. This includes selectively shutting down the Tx
* laser on the PHY, effectively halting physical link.
**/
void txgbe_disable_tx_laser_multispeed_fiber(struct txgbe_hw *hw)
{
u32 esdp_reg = rd32(hw, TXGBE_GPIODATA);
/* Blocked by MNG FW so bail */
if (txgbe_check_reset_blocked(hw))
return;
/* Disable Tx laser; allow 100us to go dark per spec */
esdp_reg |= (TXGBE_GPIOBIT_0 | TXGBE_GPIOBIT_1);
wr32(hw, TXGBE_GPIODATA, esdp_reg);
txgbe_flush(hw);
usec_delay(100);
}
/**
* txgbe_enable_tx_laser_multispeed_fiber - Enable Tx laser
* @hw: pointer to hardware structure
*
* The base drivers may require better control over SFP+ module
* PHY states. This includes selectively turning on the Tx
* laser on the PHY, effectively starting physical link.
**/
void txgbe_enable_tx_laser_multispeed_fiber(struct txgbe_hw *hw)
{
u32 esdp_reg = rd32(hw, TXGBE_GPIODATA);
/* Enable Tx laser; allow 100ms to light up */
esdp_reg &= ~(TXGBE_GPIOBIT_0 | TXGBE_GPIOBIT_1);
wr32(hw, TXGBE_GPIODATA, esdp_reg);
txgbe_flush(hw);
msec_delay(100);
}
/**
* txgbe_flap_tx_laser_multispeed_fiber - Flap Tx laser
* @hw: pointer to hardware structure
*
* When the driver changes the link speeds that it can support,
* it sets autotry_restart to true to indicate that we need to
* initiate a new autotry session with the link partner. To do
* so, we set the speed then disable and re-enable the Tx laser, to
* alert the link partner that it also needs to restart autotry on its
* end. This is consistent with true clause 37 autoneg, which also
* involves a loss of signal.
**/
void txgbe_flap_tx_laser_multispeed_fiber(struct txgbe_hw *hw)
{
DEBUGFUNC("txgbe_flap_tx_laser_multispeed_fiber");
/* Blocked by MNG FW so bail */
if (txgbe_check_reset_blocked(hw))
return;
if (hw->mac.autotry_restart) {
txgbe_disable_tx_laser_multispeed_fiber(hw);
txgbe_enable_tx_laser_multispeed_fiber(hw);
hw->mac.autotry_restart = false;
}
}
/**
* txgbe_set_hard_rate_select_speed - Set module link speed
* @hw: pointer to hardware structure
* @speed: link speed to set
*
* Set module link speed via RS0/RS1 rate select pins.
*/
void txgbe_set_hard_rate_select_speed(struct txgbe_hw *hw,
u32 speed)
{
u32 esdp_reg = rd32(hw, TXGBE_GPIODATA);
switch (speed) {
case TXGBE_LINK_SPEED_10GB_FULL:
esdp_reg |= (TXGBE_GPIOBIT_4 | TXGBE_GPIOBIT_5);
break;
case TXGBE_LINK_SPEED_1GB_FULL:
esdp_reg &= ~(TXGBE_GPIOBIT_4 | TXGBE_GPIOBIT_5);
break;
default:
DEBUGOUT("Invalid fixed module speed\n");
return;
}
wr32(hw, TXGBE_GPIODATA, esdp_reg);
txgbe_flush(hw);
}
/**
* txgbe_setup_mac_link_smartspeed - Set MAC link speed using SmartSpeed
* @hw: pointer to hardware structure
* @speed: new link speed
* @autoneg_wait_to_complete: true when waiting for completion is needed
*
* Implements the Intel SmartSpeed algorithm.
**/
s32 txgbe_setup_mac_link_smartspeed(struct txgbe_hw *hw,
u32 speed,
bool autoneg_wait_to_complete)
{
s32 status = 0;
u32 link_speed = TXGBE_LINK_SPEED_UNKNOWN;
s32 i, j;
bool link_up = false;
u32 autoc_reg = rd32_epcs(hw, SR_AN_MMD_ADV_REG1);
DEBUGFUNC("txgbe_setup_mac_link_smartspeed");
/* Set autoneg_advertised value based on input link speed */
hw->phy.autoneg_advertised = 0;
if (speed & TXGBE_LINK_SPEED_10GB_FULL)
hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_10GB_FULL;
if (speed & TXGBE_LINK_SPEED_1GB_FULL)
hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_1GB_FULL;
if (speed & TXGBE_LINK_SPEED_100M_FULL)
hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_100M_FULL;
/*
* Implement Intel SmartSpeed algorithm. SmartSpeed will reduce the
* autoneg advertisement if link is unable to be established at the
* highest negotiated rate. This can sometimes happen due to integrity
* issues with the physical media connection.
*/
/* First, try to get link with full advertisement */
hw->phy.smart_speed_active = false;
for (j = 0; j < TXGBE_SMARTSPEED_MAX_RETRIES; j++) {
status = txgbe_setup_mac_link(hw, speed,
autoneg_wait_to_complete);
if (status != 0)
goto out;
/*
* Wait for the controller to acquire link. Per IEEE 802.3ap,
* Section 73.10.2, we may have to wait up to 500ms if KR is
* attempted, or 200ms if KX/KX4/BX/BX4 is attempted, per
* Table 9 in the AN MAS.
*/
for (i = 0; i < 5; i++) {
msec_delay(100);
/* If we have link, just jump out */
status = hw->mac.check_link(hw, &link_speed, &link_up,
false);
if (status != 0)
goto out;
if (link_up)
goto out;
}
}
/*
* We didn't get link. If we advertised KR plus one of KX4/KX
* (or BX4/BX), then disable KR and try again.
*/
if (((autoc_reg & TXGBE_AUTOC_KR_SUPP) == 0) ||
((autoc_reg & TXGBE_AUTOC_KX_SUPP) == 0 &&
(autoc_reg & TXGBE_AUTOC_KX4_SUPP) == 0))
goto out;
/* Turn SmartSpeed on to disable KR support */
hw->phy.smart_speed_active = true;
status = txgbe_setup_mac_link(hw, speed,
autoneg_wait_to_complete);
if (status != 0)
goto out;
/*
* Wait for the controller to acquire link. 600ms will allow for
* the AN link_fail_inhibit_timer as well for multiple cycles of
* parallel detect, both 10g and 1g. This allows for the maximum
* connect attempts as defined in the AN MAS table 73-7.
*/
for (i = 0; i < 6; i++) {
msec_delay(100);
/* If we have link, just jump out */
status = hw->mac.check_link(hw, &link_speed, &link_up, false);
if (status != 0)
goto out;
if (link_up)
goto out;
}
/* We didn't get link. Turn SmartSpeed back off. */
hw->phy.smart_speed_active = false;
status = txgbe_setup_mac_link(hw, speed,
autoneg_wait_to_complete);
out:
if (link_up && link_speed == TXGBE_LINK_SPEED_1GB_FULL)
DEBUGOUT("Smartspeed has downgraded the link speed "
"from the maximum advertised\n");
return status;
}
/**
* txgbe_setup_mac_link - Set MAC link speed
* @hw: pointer to hardware structure
* @speed: new link speed
* @autoneg_wait_to_complete: true when waiting for completion is needed
*
* Set the link speed in the AUTOC register and restarts link.
**/
s32 txgbe_setup_mac_link(struct txgbe_hw *hw,
u32 speed,
bool autoneg_wait_to_complete)
{
bool autoneg = false;
s32 status = 0;
u64 autoc = hw->mac.autoc_read(hw);
u64 pma_pmd_10gs = autoc & TXGBE_AUTOC_10GS_PMA_PMD_MASK;
u64 pma_pmd_1g = autoc & TXGBE_AUTOC_1G_PMA_PMD_MASK;
u64 link_mode = autoc & TXGBE_AUTOC_LMS_MASK;
u64 current_autoc = autoc;
u64 orig_autoc = 0;
u32 links_reg;
u32 i;
u32 link_capabilities = TXGBE_LINK_SPEED_UNKNOWN;
DEBUGFUNC("txgbe_setup_mac_link");
/* Check to see if speed passed in is supported. */
status = hw->mac.get_link_capabilities(hw,
&link_capabilities, &autoneg);
if (status)
return status;
speed &= link_capabilities;
if (speed == TXGBE_LINK_SPEED_UNKNOWN)
return TXGBE_ERR_LINK_SETUP;
/* Use stored value (EEPROM defaults) of AUTOC to find KR/KX4 support*/
if (hw->mac.orig_link_settings_stored)
orig_autoc = hw->mac.orig_autoc;
else
orig_autoc = autoc;
link_mode = autoc & TXGBE_AUTOC_LMS_MASK;
pma_pmd_1g = autoc & TXGBE_AUTOC_1G_PMA_PMD_MASK;
if (link_mode == TXGBE_AUTOC_LMS_KX4_KX_KR ||
link_mode == TXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
link_mode == TXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
/* Set KX4/KX/KR support according to speed requested */
autoc &= ~(TXGBE_AUTOC_KX_SUPP |
TXGBE_AUTOC_KX4_SUPP |
TXGBE_AUTOC_KR_SUPP);
if (speed & TXGBE_LINK_SPEED_10GB_FULL) {
if (orig_autoc & TXGBE_AUTOC_KX4_SUPP)
autoc |= TXGBE_AUTOC_KX4_SUPP;
if ((orig_autoc & TXGBE_AUTOC_KR_SUPP) &&
!hw->phy.smart_speed_active)
autoc |= TXGBE_AUTOC_KR_SUPP;
}
if (speed & TXGBE_LINK_SPEED_1GB_FULL)
autoc |= TXGBE_AUTOC_KX_SUPP;
} else if ((pma_pmd_1g == TXGBE_AUTOC_1G_SFI) &&
(link_mode == TXGBE_AUTOC_LMS_1G_LINK_NO_AN ||
link_mode == TXGBE_AUTOC_LMS_1G_AN)) {
/* Switch from 1G SFI to 10G SFI if requested */
if (speed == TXGBE_LINK_SPEED_10GB_FULL &&
pma_pmd_10gs == TXGBE_AUTOC_10GS_SFI) {
autoc &= ~TXGBE_AUTOC_LMS_MASK;
autoc |= TXGBE_AUTOC_LMS_10G;
}
} else if ((pma_pmd_10gs == TXGBE_AUTOC_10GS_SFI) &&
(link_mode == TXGBE_AUTOC_LMS_10G)) {
/* Switch from 10G SFI to 1G SFI if requested */
if (speed == TXGBE_LINK_SPEED_1GB_FULL &&
pma_pmd_1g == TXGBE_AUTOC_1G_SFI) {
autoc &= ~TXGBE_AUTOC_LMS_MASK;
if (autoneg || hw->phy.type == txgbe_phy_qsfp_intel)
autoc |= TXGBE_AUTOC_LMS_1G_AN;
else
autoc |= TXGBE_AUTOC_LMS_1G_LINK_NO_AN;
}
}
if (autoc == current_autoc)
return status;
autoc &= ~TXGBE_AUTOC_SPEED_MASK;
autoc |= TXGBE_AUTOC_SPEED(speed);
autoc |= (autoneg ? TXGBE_AUTOC_AUTONEG : 0);
/* Restart link */
hw->mac.autoc_write(hw, autoc);
/* Only poll for autoneg to complete if specified to do so */
if (autoneg_wait_to_complete) {
if (link_mode == TXGBE_AUTOC_LMS_KX4_KX_KR ||
link_mode == TXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
link_mode == TXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
links_reg = 0; /*Just in case Autoneg time=0*/
for (i = 0; i < TXGBE_AUTO_NEG_TIME; i++) {
links_reg = rd32(hw, TXGBE_PORTSTAT);
if (links_reg & TXGBE_PORTSTAT_UP)
break;
msec_delay(100);
}
if (!(links_reg & TXGBE_PORTSTAT_UP)) {
status = TXGBE_ERR_AUTONEG_NOT_COMPLETE;
DEBUGOUT("Autoneg did not complete.\n");
}
}
}
/* Add delay to filter out noises during initial link setup */
msec_delay(50);
return status;
}
/**
* txgbe_setup_copper_link_raptor - Set the PHY autoneg advertised field
* @hw: pointer to hardware structure
* @speed: new link speed
* @autoneg_wait_to_complete: true if waiting is needed to complete
*
* Restarts link on PHY and MAC based on settings passed in.
**/
static s32 txgbe_setup_copper_link_raptor(struct txgbe_hw *hw,
u32 speed,
bool autoneg_wait_to_complete)
{
s32 status;
DEBUGFUNC("txgbe_setup_copper_link_raptor");
/* Setup the PHY according to input speed */
status = hw->phy.setup_link_speed(hw, speed,
autoneg_wait_to_complete);
/* Set up MAC */
txgbe_start_mac_link_raptor(hw, autoneg_wait_to_complete);
return status;
}
static int
txgbe_check_flash_load(struct txgbe_hw *hw, u32 check_bit)
{
u32 reg = 0;
u32 i;
int err = 0;
/* if there's flash existing */
if (!(rd32(hw, TXGBE_SPISTAT) & TXGBE_SPISTAT_BPFLASH)) {
/* wait hw load flash done */
for (i = 0; i < 10; i++) {
reg = rd32(hw, TXGBE_ILDRSTAT);
if (!(reg & check_bit)) {
/* done */
break;
}
msleep(100);
}
if (i == 10)
err = TXGBE_ERR_FLASH_LOADING_FAILED;
}
return err;
}
static void
txgbe_reset_misc(struct txgbe_hw *hw)
{
int i;
u32 value;
wr32(hw, TXGBE_ISBADDRL, hw->isb_dma & 0x00000000FFFFFFFF);
wr32(hw, TXGBE_ISBADDRH, hw->isb_dma >> 32);
value = rd32_epcs(hw, SR_XS_PCS_CTRL2);
if ((value & 0x3) != SR_PCS_CTRL2_TYPE_SEL_X)
hw->link_status = TXGBE_LINK_STATUS_NONE;
/* receive packets that size > 2048 */
wr32m(hw, TXGBE_MACRXCFG,
TXGBE_MACRXCFG_JUMBO, TXGBE_MACRXCFG_JUMBO);
wr32m(hw, TXGBE_FRMSZ, TXGBE_FRMSZ_MAX_MASK,
TXGBE_FRMSZ_MAX(TXGBE_FRAME_SIZE_DFT));
/* clear counters on read */
wr32m(hw, TXGBE_MACCNTCTL,
TXGBE_MACCNTCTL_RC, TXGBE_MACCNTCTL_RC);
wr32m(hw, TXGBE_RXFCCFG,
TXGBE_RXFCCFG_FC, TXGBE_RXFCCFG_FC);
wr32m(hw, TXGBE_TXFCCFG,
TXGBE_TXFCCFG_FC, TXGBE_TXFCCFG_FC);
wr32m(hw, TXGBE_MACRXFLT,
TXGBE_MACRXFLT_PROMISC, TXGBE_MACRXFLT_PROMISC);
wr32m(hw, TXGBE_RSTSTAT,
TXGBE_RSTSTAT_TMRINIT_MASK, TXGBE_RSTSTAT_TMRINIT(30));
/* errata 4: initialize mng flex tbl and wakeup flex tbl*/
wr32(hw, TXGBE_MNGFLEXSEL, 0);
for (i = 0; i < 16; i++) {
wr32(hw, TXGBE_MNGFLEXDWL(i), 0);
wr32(hw, TXGBE_MNGFLEXDWH(i), 0);
wr32(hw, TXGBE_MNGFLEXMSK(i), 0);
}
wr32(hw, TXGBE_LANFLEXSEL, 0);
for (i = 0; i < 16; i++) {
wr32(hw, TXGBE_LANFLEXDWL(i), 0);
wr32(hw, TXGBE_LANFLEXDWH(i), 0);
wr32(hw, TXGBE_LANFLEXMSK(i), 0);
}
/* set pause frame dst mac addr */
wr32(hw, TXGBE_RXPBPFCDMACL, 0xC2000001);
wr32(hw, TXGBE_RXPBPFCDMACH, 0x0180);
hw->mac.init_thermal_sensor_thresh(hw);
/* enable mac transmitter */
wr32m(hw, TXGBE_MACTXCFG, TXGBE_MACTXCFG_TXE, TXGBE_MACTXCFG_TXE);
for (i = 0; i < 4; i++)
wr32m(hw, TXGBE_IVAR(i), 0x80808080, 0);
}
/**
* txgbe_reset_hw - Perform hardware reset
* @hw: pointer to hardware structure
*
* Resets the hardware by resetting the transmit and receive units, masks
* and clears all interrupts, perform a PHY reset, and perform a link (MAC)
* reset.
**/
s32 txgbe_reset_hw(struct txgbe_hw *hw)
{
s32 status;
u32 autoc;
DEBUGFUNC("txgbe_reset_hw");
/* Call adapter stop to disable tx/rx and clear interrupts */
status = hw->mac.stop_hw(hw);
if (status != 0)
return status;
/* flush pending Tx transactions */
txgbe_clear_tx_pending(hw);
/* Identify PHY and related function pointers */
status = hw->phy.init(hw);
if (status == TXGBE_ERR_SFP_NOT_SUPPORTED)
return status;
/* Setup SFP module if there is one present. */
if (hw->phy.sfp_setup_needed) {
status = hw->mac.setup_sfp(hw);
hw->phy.sfp_setup_needed = false;
}
if (status == TXGBE_ERR_SFP_NOT_SUPPORTED)
return status;
/* Reset PHY */
if (!hw->phy.reset_disable)
hw->phy.reset(hw);
/* remember AUTOC from before we reset */
autoc = hw->mac.autoc_read(hw);
mac_reset_top:
/*
* Issue global reset to the MAC. Needs to be SW reset if link is up.
* If link reset is used when link is up, it might reset the PHY when
* mng is using it. If link is down or the flag to force full link
* reset is set, then perform link reset.
*/
if (txgbe_mng_present(hw)) {
txgbe_hic_reset(hw);
} else {
wr32(hw, TXGBE_RST, TXGBE_RST_LAN(hw->bus.lan_id));
txgbe_flush(hw);
}
usec_delay(10);
txgbe_reset_misc(hw);
if (hw->bus.lan_id == 0) {
status = txgbe_check_flash_load(hw,
TXGBE_ILDRSTAT_SWRST_LAN0);
} else {
status = txgbe_check_flash_load(hw,
TXGBE_ILDRSTAT_SWRST_LAN1);
}
if (status != 0)
return status;
msec_delay(50);
/*
* Double resets are required for recovery from certain error
* conditions. Between resets, it is necessary to stall to
* allow time for any pending HW events to complete.
*/
if (hw->mac.flags & TXGBE_FLAGS_DOUBLE_RESET_REQUIRED) {
hw->mac.flags &= ~TXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
goto mac_reset_top;
}
/*
* Store the original AUTOC/AUTOC2 values if they have not been
* stored off yet. Otherwise restore the stored original
* values since the reset operation sets back to defaults.
*/
if (!hw->mac.orig_link_settings_stored) {
hw->mac.orig_autoc = hw->mac.autoc_read(hw);
hw->mac.autoc_write(hw, hw->mac.orig_autoc);
hw->mac.orig_link_settings_stored = true;
} else {
hw->mac.orig_autoc = autoc;
}
/* Store the permanent mac address */
hw->mac.get_mac_addr(hw, hw->mac.perm_addr);
/*
* Store MAC address from RAR0, clear receive address registers, and
* clear the multicast table. Also reset num_rar_entries to 128,
* since we modify this value when programming the SAN MAC address.
*/
hw->mac.num_rar_entries = 128;
hw->mac.init_rx_addrs(hw);
/* Store the permanent SAN mac address */
hw->mac.get_san_mac_addr(hw, hw->mac.san_addr);
/* Add the SAN MAC address to the RAR only if it's a valid address */
if (txgbe_validate_mac_addr(hw->mac.san_addr) == 0) {
/* Save the SAN MAC RAR index */
hw->mac.san_mac_rar_index = hw->mac.num_rar_entries - 1;
hw->mac.set_rar(hw, hw->mac.san_mac_rar_index,
hw->mac.san_addr, 0, true);
/* clear VMDq pool/queue selection for this RAR */
hw->mac.clear_vmdq(hw, hw->mac.san_mac_rar_index,
BIT_MASK32);
/* Reserve the last RAR for the SAN MAC address */
hw->mac.num_rar_entries--;
}
/* Store the alternative WWNN/WWPN prefix */
hw->mac.get_wwn_prefix(hw, &hw->mac.wwnn_prefix,
&hw->mac.wwpn_prefix);
return status;
}
/**
* txgbe_start_hw_raptor - Prepare hardware for Tx/Rx
* @hw: pointer to hardware structure
*
* Starts the hardware using the generic start_hw function
* and the generation start_hw function.
* Then performs revision-specific operations, if any.
**/
s32 txgbe_start_hw_raptor(struct txgbe_hw *hw)
{
s32 err = 0;
DEBUGFUNC("txgbe_start_hw_raptor");
err = txgbe_start_hw(hw);
if (err != 0)
goto out;
err = txgbe_start_hw_gen2(hw);
if (err != 0)
goto out;
/* We need to run link autotry after the driver loads */
hw->mac.autotry_restart = true;
out:
return err;
}
/**
* txgbe_enable_rx_dma_raptor - Enable the Rx DMA unit
* @hw: pointer to hardware structure
* @regval: register value to write to RXCTRL
*
* Enables the Rx DMA unit
**/
s32 txgbe_enable_rx_dma_raptor(struct txgbe_hw *hw, u32 regval)
{
DEBUGFUNC("txgbe_enable_rx_dma_raptor");
/*
* Workaround silicon errata when enabling the Rx datapath.
* If traffic is incoming before we enable the Rx unit, it could hang
* the Rx DMA unit. Therefore, make sure the security engine is
* completely disabled prior to enabling the Rx unit.
*/
hw->mac.disable_sec_rx_path(hw);
if (regval & TXGBE_PBRXCTL_ENA)
txgbe_enable_rx(hw);
else
txgbe_disable_rx(hw);
hw->mac.enable_sec_rx_path(hw);
return 0;
}
/**
* txgbe_verify_lesm_fw_enabled_raptor - Checks LESM FW module state.
* @hw: pointer to hardware structure
*
* Returns true if the LESM FW module is present and enabled. Otherwise
* returns false. Smart Speed must be disabled if LESM FW module is enabled.
**/
bool txgbe_verify_lesm_fw_enabled_raptor(struct txgbe_hw *hw)
{
bool lesm_enabled = false;
u16 fw_offset, fw_lesm_param_offset, fw_lesm_state;
s32 status;
DEBUGFUNC("txgbe_verify_lesm_fw_enabled_raptor");
/* get the offset to the Firmware Module block */
status = hw->rom.read16(hw, TXGBE_FW_PTR, &fw_offset);
if (status != 0 || fw_offset == 0 || fw_offset == 0xFFFF)
goto out;
/* get the offset to the LESM Parameters block */
status = hw->rom.read16(hw, (fw_offset +
TXGBE_FW_LESM_PARAMETERS_PTR),
&fw_lesm_param_offset);
if (status != 0 ||
fw_lesm_param_offset == 0 || fw_lesm_param_offset == 0xFFFF)
goto out;
/* get the LESM state word */
status = hw->rom.read16(hw, (fw_lesm_param_offset +
TXGBE_FW_LESM_STATE_1),
&fw_lesm_state);
if (status == 0 && (fw_lesm_state & TXGBE_FW_LESM_STATE_ENABLED))
lesm_enabled = true;
out:
lesm_enabled = false;
return lesm_enabled;
}
/**
* txgbe_reset_pipeline_raptor - perform pipeline reset
*
* @hw: pointer to hardware structure
*
* Reset pipeline by asserting Restart_AN together with LMS change to ensure
* full pipeline reset. This function assumes the SW/FW lock is held.
**/
s32 txgbe_reset_pipeline_raptor(struct txgbe_hw *hw)
{
s32 err = 0;
u64 autoc;
autoc = hw->mac.autoc_read(hw);
/* Enable link if disabled in NVM */
if (autoc & TXGBE_AUTOC_LINK_DIA_MASK)
autoc &= ~TXGBE_AUTOC_LINK_DIA_MASK;
autoc |= TXGBE_AUTOC_AN_RESTART;
/* Write AUTOC register with toggled LMS[2] bit and Restart_AN */
hw->mac.autoc_write(hw, autoc ^ TXGBE_AUTOC_LMS_AN);
/* Write AUTOC register with original LMS field and Restart_AN */
hw->mac.autoc_write(hw, autoc);
txgbe_flush(hw);
return err;
}