mirror of https://github.com/F-Stack/f-stack.git
2807 lines
74 KiB
C
2807 lines
74 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright(c) 2019-2020 Xilinx, Inc.
|
|
* Copyright(c) 2017-2019 Solarflare Communications Inc.
|
|
*
|
|
* This software was jointly developed between OKTET Labs (under contract
|
|
* for Solarflare) and Solarflare Communications, Inc.
|
|
*/
|
|
|
|
#include <rte_byteorder.h>
|
|
#include <rte_tailq.h>
|
|
#include <rte_common.h>
|
|
#include <rte_ethdev_driver.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_flow.h>
|
|
#include <rte_flow_driver.h>
|
|
|
|
#include "efx.h"
|
|
|
|
#include "sfc.h"
|
|
#include "sfc_debug.h"
|
|
#include "sfc_rx.h"
|
|
#include "sfc_filter.h"
|
|
#include "sfc_flow.h"
|
|
#include "sfc_log.h"
|
|
#include "sfc_dp_rx.h"
|
|
|
|
struct sfc_flow_ops_by_spec {
|
|
sfc_flow_parse_cb_t *parse;
|
|
sfc_flow_verify_cb_t *verify;
|
|
sfc_flow_cleanup_cb_t *cleanup;
|
|
sfc_flow_insert_cb_t *insert;
|
|
sfc_flow_remove_cb_t *remove;
|
|
};
|
|
|
|
static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_filter;
|
|
static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_mae;
|
|
static sfc_flow_insert_cb_t sfc_flow_filter_insert;
|
|
static sfc_flow_remove_cb_t sfc_flow_filter_remove;
|
|
|
|
static const struct sfc_flow_ops_by_spec sfc_flow_ops_filter = {
|
|
.parse = sfc_flow_parse_rte_to_filter,
|
|
.verify = NULL,
|
|
.cleanup = NULL,
|
|
.insert = sfc_flow_filter_insert,
|
|
.remove = sfc_flow_filter_remove,
|
|
};
|
|
|
|
static const struct sfc_flow_ops_by_spec sfc_flow_ops_mae = {
|
|
.parse = sfc_flow_parse_rte_to_mae,
|
|
.verify = sfc_mae_flow_verify,
|
|
.cleanup = sfc_mae_flow_cleanup,
|
|
.insert = sfc_mae_flow_insert,
|
|
.remove = sfc_mae_flow_remove,
|
|
};
|
|
|
|
static const struct sfc_flow_ops_by_spec *
|
|
sfc_flow_get_ops_by_spec(struct rte_flow *flow)
|
|
{
|
|
struct sfc_flow_spec *spec = &flow->spec;
|
|
const struct sfc_flow_ops_by_spec *ops = NULL;
|
|
|
|
switch (spec->type) {
|
|
case SFC_FLOW_SPEC_FILTER:
|
|
ops = &sfc_flow_ops_filter;
|
|
break;
|
|
case SFC_FLOW_SPEC_MAE:
|
|
ops = &sfc_flow_ops_mae;
|
|
break;
|
|
default:
|
|
SFC_ASSERT(false);
|
|
break;
|
|
}
|
|
|
|
return ops;
|
|
}
|
|
|
|
/*
|
|
* Currently, filter-based (VNIC) flow API is implemented in such a manner
|
|
* that each flow rule is converted to one or more hardware filters.
|
|
* All elements of flow rule (attributes, pattern items, actions)
|
|
* correspond to one or more fields in the efx_filter_spec_s structure
|
|
* that is responsible for the hardware filter.
|
|
* If some required field is unset in the flow rule, then a handful
|
|
* of filter copies will be created to cover all possible values
|
|
* of such a field.
|
|
*/
|
|
|
|
static sfc_flow_item_parse sfc_flow_parse_void;
|
|
static sfc_flow_item_parse sfc_flow_parse_eth;
|
|
static sfc_flow_item_parse sfc_flow_parse_vlan;
|
|
static sfc_flow_item_parse sfc_flow_parse_ipv4;
|
|
static sfc_flow_item_parse sfc_flow_parse_ipv6;
|
|
static sfc_flow_item_parse sfc_flow_parse_tcp;
|
|
static sfc_flow_item_parse sfc_flow_parse_udp;
|
|
static sfc_flow_item_parse sfc_flow_parse_vxlan;
|
|
static sfc_flow_item_parse sfc_flow_parse_geneve;
|
|
static sfc_flow_item_parse sfc_flow_parse_nvgre;
|
|
|
|
typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec,
|
|
unsigned int filters_count_for_one_val,
|
|
struct rte_flow_error *error);
|
|
|
|
typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match,
|
|
efx_filter_spec_t *spec,
|
|
struct sfc_filter *filter);
|
|
|
|
struct sfc_flow_copy_flag {
|
|
/* EFX filter specification match flag */
|
|
efx_filter_match_flags_t flag;
|
|
/* Number of values of corresponding field */
|
|
unsigned int vals_count;
|
|
/* Function to set values in specifications */
|
|
sfc_flow_spec_set_vals *set_vals;
|
|
/*
|
|
* Function to check that the specification is suitable
|
|
* for adding this match flag
|
|
*/
|
|
sfc_flow_spec_check *spec_check;
|
|
};
|
|
|
|
static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags;
|
|
static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags;
|
|
static sfc_flow_spec_set_vals sfc_flow_set_ethertypes;
|
|
static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags;
|
|
static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags;
|
|
static sfc_flow_spec_set_vals sfc_flow_set_outer_vid_flag;
|
|
static sfc_flow_spec_check sfc_flow_check_outer_vid_flag;
|
|
|
|
static boolean_t
|
|
sfc_flow_is_zero(const uint8_t *buf, unsigned int size)
|
|
{
|
|
uint8_t sum = 0;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < size; i++)
|
|
sum |= buf[i];
|
|
|
|
return (sum == 0) ? B_TRUE : B_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Validate item and prepare structures spec and mask for parsing
|
|
*/
|
|
int
|
|
sfc_flow_parse_init(const struct rte_flow_item *item,
|
|
const void **spec_ptr,
|
|
const void **mask_ptr,
|
|
const void *supp_mask,
|
|
const void *def_mask,
|
|
unsigned int size,
|
|
struct rte_flow_error *error)
|
|
{
|
|
const uint8_t *spec;
|
|
const uint8_t *mask;
|
|
const uint8_t *last;
|
|
uint8_t supp;
|
|
unsigned int i;
|
|
|
|
if (item == NULL) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
|
|
"NULL item");
|
|
return -rte_errno;
|
|
}
|
|
|
|
if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Mask or last is set without spec");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/*
|
|
* If "mask" is not set, default mask is used,
|
|
* but if default mask is NULL, "mask" should be set
|
|
*/
|
|
if (item->mask == NULL) {
|
|
if (def_mask == NULL) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
|
|
"Mask should be specified");
|
|
return -rte_errno;
|
|
}
|
|
|
|
mask = def_mask;
|
|
} else {
|
|
mask = item->mask;
|
|
}
|
|
|
|
spec = item->spec;
|
|
last = item->last;
|
|
|
|
if (spec == NULL)
|
|
goto exit;
|
|
|
|
/*
|
|
* If field values in "last" are either 0 or equal to the corresponding
|
|
* values in "spec" then they are ignored
|
|
*/
|
|
if (last != NULL &&
|
|
!sfc_flow_is_zero(last, size) &&
|
|
memcmp(last, spec, size) != 0) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Ranging is not supported");
|
|
return -rte_errno;
|
|
}
|
|
|
|
if (supp_mask == NULL) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"Supported mask for item should be specified");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/* Check that mask does not ask for more match than supp_mask */
|
|
for (i = 0; i < size; i++) {
|
|
supp = ((const uint8_t *)supp_mask)[i];
|
|
|
|
if (~supp & mask[i]) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Item's field is not supported");
|
|
return -rte_errno;
|
|
}
|
|
}
|
|
|
|
exit:
|
|
*spec_ptr = spec;
|
|
*mask_ptr = mask;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Protocol parsers.
|
|
* Masking is not supported, so masks in items should be either
|
|
* full or empty (zeroed) and set only for supported fields which
|
|
* are specified in the supp_mask.
|
|
*/
|
|
|
|
static int
|
|
sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item,
|
|
__rte_unused struct sfc_flow_parse_ctx *parse_ctx,
|
|
__rte_unused struct rte_flow_error *error)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Convert Ethernet item to EFX filter specification.
|
|
*
|
|
* @param item[in]
|
|
* Item specification. Outer frame specification may only comprise
|
|
* source/destination addresses and Ethertype field.
|
|
* Inner frame specification may contain destination address only.
|
|
* There is support for individual/group mask as well as for empty and full.
|
|
* If the mask is NULL, default mask will be used. Ranging is not supported.
|
|
* @param efx_spec[in, out]
|
|
* EFX filter specification to update.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_parse_eth(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *parse_ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
efx_filter_spec_t *efx_spec = parse_ctx->filter;
|
|
const struct rte_flow_item_eth *spec = NULL;
|
|
const struct rte_flow_item_eth *mask = NULL;
|
|
const struct rte_flow_item_eth supp_mask = {
|
|
.dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
|
|
.src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
|
|
.type = 0xffff,
|
|
};
|
|
const struct rte_flow_item_eth ifrm_supp_mask = {
|
|
.dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
|
|
};
|
|
const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = {
|
|
0x01, 0x00, 0x00, 0x00, 0x00, 0x00
|
|
};
|
|
const struct rte_flow_item_eth *supp_mask_p;
|
|
const struct rte_flow_item_eth *def_mask_p;
|
|
uint8_t *loc_mac = NULL;
|
|
boolean_t is_ifrm = (efx_spec->efs_encap_type !=
|
|
EFX_TUNNEL_PROTOCOL_NONE);
|
|
|
|
if (is_ifrm) {
|
|
supp_mask_p = &ifrm_supp_mask;
|
|
def_mask_p = &ifrm_supp_mask;
|
|
loc_mac = efx_spec->efs_ifrm_loc_mac;
|
|
} else {
|
|
supp_mask_p = &supp_mask;
|
|
def_mask_p = &rte_flow_item_eth_mask;
|
|
loc_mac = efx_spec->efs_loc_mac;
|
|
}
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec,
|
|
(const void **)&mask,
|
|
supp_mask_p, def_mask_p,
|
|
sizeof(struct rte_flow_item_eth),
|
|
error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/* If "spec" is not set, could be any Ethernet */
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
if (rte_is_same_ether_addr(&mask->dst, &supp_mask.dst)) {
|
|
efx_spec->efs_match_flags |= is_ifrm ?
|
|
EFX_FILTER_MATCH_IFRM_LOC_MAC :
|
|
EFX_FILTER_MATCH_LOC_MAC;
|
|
rte_memcpy(loc_mac, spec->dst.addr_bytes,
|
|
EFX_MAC_ADDR_LEN);
|
|
} else if (memcmp(mask->dst.addr_bytes, ig_mask,
|
|
EFX_MAC_ADDR_LEN) == 0) {
|
|
if (rte_is_unicast_ether_addr(&spec->dst))
|
|
efx_spec->efs_match_flags |= is_ifrm ?
|
|
EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST :
|
|
EFX_FILTER_MATCH_UNKNOWN_UCAST_DST;
|
|
else
|
|
efx_spec->efs_match_flags |= is_ifrm ?
|
|
EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST :
|
|
EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
|
|
} else if (!rte_is_zero_ether_addr(&mask->dst)) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
/*
|
|
* ifrm_supp_mask ensures that the source address and
|
|
* ethertype masks are equal to zero in inner frame,
|
|
* so these fields are filled in only for the outer frame
|
|
*/
|
|
if (rte_is_same_ether_addr(&mask->src, &supp_mask.src)) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC;
|
|
rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes,
|
|
EFX_MAC_ADDR_LEN);
|
|
} else if (!rte_is_zero_ether_addr(&mask->src)) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
/*
|
|
* Ether type is in big-endian byte order in item and
|
|
* in little-endian in efx_spec, so byte swap is used
|
|
*/
|
|
if (mask->type == supp_mask.type) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
|
|
efx_spec->efs_ether_type = rte_bswap16(spec->type);
|
|
} else if (mask->type != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_bad_mask:
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Bad mask in the ETH pattern item");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/**
|
|
* Convert VLAN item to EFX filter specification.
|
|
*
|
|
* @param item[in]
|
|
* Item specification. Only VID field is supported.
|
|
* The mask can not be NULL. Ranging is not supported.
|
|
* @param efx_spec[in, out]
|
|
* EFX filter specification to update.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_parse_vlan(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *parse_ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
uint16_t vid;
|
|
efx_filter_spec_t *efx_spec = parse_ctx->filter;
|
|
const struct rte_flow_item_vlan *spec = NULL;
|
|
const struct rte_flow_item_vlan *mask = NULL;
|
|
const struct rte_flow_item_vlan supp_mask = {
|
|
.tci = rte_cpu_to_be_16(ETH_VLAN_ID_MAX),
|
|
.inner_type = RTE_BE16(0xffff),
|
|
};
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec,
|
|
(const void **)&mask,
|
|
&supp_mask,
|
|
NULL,
|
|
sizeof(struct rte_flow_item_vlan),
|
|
error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/*
|
|
* VID is in big-endian byte order in item and
|
|
* in little-endian in efx_spec, so byte swap is used.
|
|
* If two VLAN items are included, the first matches
|
|
* the outer tag and the next matches the inner tag.
|
|
*/
|
|
if (mask->tci == supp_mask.tci) {
|
|
/* Apply mask to keep VID only */
|
|
vid = rte_bswap16(spec->tci & mask->tci);
|
|
|
|
if (!(efx_spec->efs_match_flags &
|
|
EFX_FILTER_MATCH_OUTER_VID)) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID;
|
|
efx_spec->efs_outer_vid = vid;
|
|
} else if (!(efx_spec->efs_match_flags &
|
|
EFX_FILTER_MATCH_INNER_VID)) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID;
|
|
efx_spec->efs_inner_vid = vid;
|
|
} else {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"More than two VLAN items");
|
|
return -rte_errno;
|
|
}
|
|
} else {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"VLAN ID in TCI match is required");
|
|
return -rte_errno;
|
|
}
|
|
|
|
if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"VLAN TPID matching is not supported");
|
|
return -rte_errno;
|
|
}
|
|
if (mask->inner_type == supp_mask.inner_type) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
|
|
efx_spec->efs_ether_type = rte_bswap16(spec->inner_type);
|
|
} else if (mask->inner_type) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Bad mask for VLAN inner_type");
|
|
return -rte_errno;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Convert IPv4 item to EFX filter specification.
|
|
*
|
|
* @param item[in]
|
|
* Item specification. Only source and destination addresses and
|
|
* protocol fields are supported. If the mask is NULL, default
|
|
* mask will be used. Ranging is not supported.
|
|
* @param efx_spec[in, out]
|
|
* EFX filter specification to update.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_parse_ipv4(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *parse_ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
efx_filter_spec_t *efx_spec = parse_ctx->filter;
|
|
const struct rte_flow_item_ipv4 *spec = NULL;
|
|
const struct rte_flow_item_ipv4 *mask = NULL;
|
|
const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4);
|
|
const struct rte_flow_item_ipv4 supp_mask = {
|
|
.hdr = {
|
|
.src_addr = 0xffffffff,
|
|
.dst_addr = 0xffffffff,
|
|
.next_proto_id = 0xff,
|
|
}
|
|
};
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec,
|
|
(const void **)&mask,
|
|
&supp_mask,
|
|
&rte_flow_item_ipv4_mask,
|
|
sizeof(struct rte_flow_item_ipv4),
|
|
error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/*
|
|
* Filtering by IPv4 source and destination addresses requires
|
|
* the appropriate ETHER_TYPE in hardware filters
|
|
*/
|
|
if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
|
|
efx_spec->efs_ether_type = ether_type_ipv4;
|
|
} else if (efx_spec->efs_ether_type != ether_type_ipv4) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Ethertype in pattern with IPV4 item should be appropriate");
|
|
return -rte_errno;
|
|
}
|
|
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
/*
|
|
* IPv4 addresses are in big-endian byte order in item and in
|
|
* efx_spec
|
|
*/
|
|
if (mask->hdr.src_addr == supp_mask.hdr.src_addr) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
|
|
efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr;
|
|
} else if (mask->hdr.src_addr != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
|
|
efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr;
|
|
} else if (mask->hdr.dst_addr != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
|
|
efx_spec->efs_ip_proto = spec->hdr.next_proto_id;
|
|
} else if (mask->hdr.next_proto_id != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_bad_mask:
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Bad mask in the IPV4 pattern item");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/**
|
|
* Convert IPv6 item to EFX filter specification.
|
|
*
|
|
* @param item[in]
|
|
* Item specification. Only source and destination addresses and
|
|
* next header fields are supported. If the mask is NULL, default
|
|
* mask will be used. Ranging is not supported.
|
|
* @param efx_spec[in, out]
|
|
* EFX filter specification to update.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_parse_ipv6(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *parse_ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
efx_filter_spec_t *efx_spec = parse_ctx->filter;
|
|
const struct rte_flow_item_ipv6 *spec = NULL;
|
|
const struct rte_flow_item_ipv6 *mask = NULL;
|
|
const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6);
|
|
const struct rte_flow_item_ipv6 supp_mask = {
|
|
.hdr = {
|
|
.src_addr = { 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff },
|
|
.dst_addr = { 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff },
|
|
.proto = 0xff,
|
|
}
|
|
};
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec,
|
|
(const void **)&mask,
|
|
&supp_mask,
|
|
&rte_flow_item_ipv6_mask,
|
|
sizeof(struct rte_flow_item_ipv6),
|
|
error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/*
|
|
* Filtering by IPv6 source and destination addresses requires
|
|
* the appropriate ETHER_TYPE in hardware filters
|
|
*/
|
|
if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
|
|
efx_spec->efs_ether_type = ether_type_ipv6;
|
|
} else if (efx_spec->efs_ether_type != ether_type_ipv6) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Ethertype in pattern with IPV6 item should be appropriate");
|
|
return -rte_errno;
|
|
}
|
|
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
/*
|
|
* IPv6 addresses are in big-endian byte order in item and in
|
|
* efx_spec
|
|
*/
|
|
if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr,
|
|
sizeof(mask->hdr.src_addr)) == 0) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
|
|
|
|
RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) !=
|
|
sizeof(spec->hdr.src_addr));
|
|
rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr,
|
|
sizeof(efx_spec->efs_rem_host));
|
|
} else if (!sfc_flow_is_zero(mask->hdr.src_addr,
|
|
sizeof(mask->hdr.src_addr))) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr,
|
|
sizeof(mask->hdr.dst_addr)) == 0) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
|
|
|
|
RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) !=
|
|
sizeof(spec->hdr.dst_addr));
|
|
rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr,
|
|
sizeof(efx_spec->efs_loc_host));
|
|
} else if (!sfc_flow_is_zero(mask->hdr.dst_addr,
|
|
sizeof(mask->hdr.dst_addr))) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
if (mask->hdr.proto == supp_mask.hdr.proto) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
|
|
efx_spec->efs_ip_proto = spec->hdr.proto;
|
|
} else if (mask->hdr.proto != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_bad_mask:
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Bad mask in the IPV6 pattern item");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/**
|
|
* Convert TCP item to EFX filter specification.
|
|
*
|
|
* @param item[in]
|
|
* Item specification. Only source and destination ports fields
|
|
* are supported. If the mask is NULL, default mask will be used.
|
|
* Ranging is not supported.
|
|
* @param efx_spec[in, out]
|
|
* EFX filter specification to update.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_parse_tcp(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *parse_ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
efx_filter_spec_t *efx_spec = parse_ctx->filter;
|
|
const struct rte_flow_item_tcp *spec = NULL;
|
|
const struct rte_flow_item_tcp *mask = NULL;
|
|
const struct rte_flow_item_tcp supp_mask = {
|
|
.hdr = {
|
|
.src_port = 0xffff,
|
|
.dst_port = 0xffff,
|
|
}
|
|
};
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec,
|
|
(const void **)&mask,
|
|
&supp_mask,
|
|
&rte_flow_item_tcp_mask,
|
|
sizeof(struct rte_flow_item_tcp),
|
|
error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/*
|
|
* Filtering by TCP source and destination ports requires
|
|
* the appropriate IP_PROTO in hardware filters
|
|
*/
|
|
if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
|
|
efx_spec->efs_ip_proto = EFX_IPPROTO_TCP;
|
|
} else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"IP proto in pattern with TCP item should be appropriate");
|
|
return -rte_errno;
|
|
}
|
|
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
/*
|
|
* Source and destination ports are in big-endian byte order in item and
|
|
* in little-endian in efx_spec, so byte swap is used
|
|
*/
|
|
if (mask->hdr.src_port == supp_mask.hdr.src_port) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
|
|
efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
|
|
} else if (mask->hdr.src_port != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
|
|
efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
|
|
} else if (mask->hdr.dst_port != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_bad_mask:
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Bad mask in the TCP pattern item");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/**
|
|
* Convert UDP item to EFX filter specification.
|
|
*
|
|
* @param item[in]
|
|
* Item specification. Only source and destination ports fields
|
|
* are supported. If the mask is NULL, default mask will be used.
|
|
* Ranging is not supported.
|
|
* @param efx_spec[in, out]
|
|
* EFX filter specification to update.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_parse_udp(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *parse_ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
efx_filter_spec_t *efx_spec = parse_ctx->filter;
|
|
const struct rte_flow_item_udp *spec = NULL;
|
|
const struct rte_flow_item_udp *mask = NULL;
|
|
const struct rte_flow_item_udp supp_mask = {
|
|
.hdr = {
|
|
.src_port = 0xffff,
|
|
.dst_port = 0xffff,
|
|
}
|
|
};
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec,
|
|
(const void **)&mask,
|
|
&supp_mask,
|
|
&rte_flow_item_udp_mask,
|
|
sizeof(struct rte_flow_item_udp),
|
|
error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/*
|
|
* Filtering by UDP source and destination ports requires
|
|
* the appropriate IP_PROTO in hardware filters
|
|
*/
|
|
if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
|
|
efx_spec->efs_ip_proto = EFX_IPPROTO_UDP;
|
|
} else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"IP proto in pattern with UDP item should be appropriate");
|
|
return -rte_errno;
|
|
}
|
|
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
/*
|
|
* Source and destination ports are in big-endian byte order in item and
|
|
* in little-endian in efx_spec, so byte swap is used
|
|
*/
|
|
if (mask->hdr.src_port == supp_mask.hdr.src_port) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
|
|
efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
|
|
} else if (mask->hdr.src_port != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
|
|
efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
|
|
} else if (mask->hdr.dst_port != 0) {
|
|
goto fail_bad_mask;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_bad_mask:
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Bad mask in the UDP pattern item");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/*
|
|
* Filters for encapsulated packets match based on the EtherType and IP
|
|
* protocol in the outer frame.
|
|
*/
|
|
static int
|
|
sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item,
|
|
efx_filter_spec_t *efx_spec,
|
|
uint8_t ip_proto,
|
|
struct rte_flow_error *error)
|
|
{
|
|
if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
|
|
efx_spec->efs_ip_proto = ip_proto;
|
|
} else if (efx_spec->efs_ip_proto != ip_proto) {
|
|
switch (ip_proto) {
|
|
case EFX_IPPROTO_UDP:
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Outer IP header protocol must be UDP "
|
|
"in VxLAN/GENEVE pattern");
|
|
return -rte_errno;
|
|
|
|
case EFX_IPPROTO_GRE:
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Outer IP header protocol must be GRE "
|
|
"in NVGRE pattern");
|
|
return -rte_errno;
|
|
|
|
default:
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Only VxLAN/GENEVE/NVGRE tunneling patterns "
|
|
"are supported");
|
|
return -rte_errno;
|
|
}
|
|
}
|
|
|
|
if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE &&
|
|
efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 &&
|
|
efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Outer frame EtherType in pattern with tunneling "
|
|
"must be IPv4 or IPv6");
|
|
return -rte_errno;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec,
|
|
const uint8_t *vni_or_vsid_val,
|
|
const uint8_t *vni_or_vsid_mask,
|
|
const struct rte_flow_item *item,
|
|
struct rte_flow_error *error)
|
|
{
|
|
const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = {
|
|
0xff, 0xff, 0xff
|
|
};
|
|
|
|
if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask,
|
|
EFX_VNI_OR_VSID_LEN) == 0) {
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID;
|
|
rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val,
|
|
EFX_VNI_OR_VSID_LEN);
|
|
} else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Unsupported VNI/VSID mask");
|
|
return -rte_errno;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Convert VXLAN item to EFX filter specification.
|
|
*
|
|
* @param item[in]
|
|
* Item specification. Only VXLAN network identifier field is supported.
|
|
* If the mask is NULL, default mask will be used.
|
|
* Ranging is not supported.
|
|
* @param efx_spec[in, out]
|
|
* EFX filter specification to update.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_parse_vxlan(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *parse_ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
efx_filter_spec_t *efx_spec = parse_ctx->filter;
|
|
const struct rte_flow_item_vxlan *spec = NULL;
|
|
const struct rte_flow_item_vxlan *mask = NULL;
|
|
const struct rte_flow_item_vxlan supp_mask = {
|
|
.vni = { 0xff, 0xff, 0xff }
|
|
};
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec,
|
|
(const void **)&mask,
|
|
&supp_mask,
|
|
&rte_flow_item_vxlan_mask,
|
|
sizeof(struct rte_flow_item_vxlan),
|
|
error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
|
|
EFX_IPPROTO_UDP, error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN;
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
|
|
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
|
|
mask->vni, item, error);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* Convert GENEVE item to EFX filter specification.
|
|
*
|
|
* @param item[in]
|
|
* Item specification. Only Virtual Network Identifier and protocol type
|
|
* fields are supported. But protocol type can be only Ethernet (0x6558).
|
|
* If the mask is NULL, default mask will be used.
|
|
* Ranging is not supported.
|
|
* @param efx_spec[in, out]
|
|
* EFX filter specification to update.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_parse_geneve(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *parse_ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
efx_filter_spec_t *efx_spec = parse_ctx->filter;
|
|
const struct rte_flow_item_geneve *spec = NULL;
|
|
const struct rte_flow_item_geneve *mask = NULL;
|
|
const struct rte_flow_item_geneve supp_mask = {
|
|
.protocol = RTE_BE16(0xffff),
|
|
.vni = { 0xff, 0xff, 0xff }
|
|
};
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec,
|
|
(const void **)&mask,
|
|
&supp_mask,
|
|
&rte_flow_item_geneve_mask,
|
|
sizeof(struct rte_flow_item_geneve),
|
|
error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
|
|
EFX_IPPROTO_UDP, error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE;
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
|
|
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
if (mask->protocol == supp_mask.protocol) {
|
|
if (spec->protocol != rte_cpu_to_be_16(RTE_ETHER_TYPE_TEB)) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"GENEVE encap. protocol must be Ethernet "
|
|
"(0x6558) in the GENEVE pattern item");
|
|
return -rte_errno;
|
|
}
|
|
} else if (mask->protocol != 0) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Unsupported mask for GENEVE encap. protocol");
|
|
return -rte_errno;
|
|
}
|
|
|
|
rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
|
|
mask->vni, item, error);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* Convert NVGRE item to EFX filter specification.
|
|
*
|
|
* @param item[in]
|
|
* Item specification. Only virtual subnet ID field is supported.
|
|
* If the mask is NULL, default mask will be used.
|
|
* Ranging is not supported.
|
|
* @param efx_spec[in, out]
|
|
* EFX filter specification to update.
|
|
* @param[out] error
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_parse_nvgre(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *parse_ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
efx_filter_spec_t *efx_spec = parse_ctx->filter;
|
|
const struct rte_flow_item_nvgre *spec = NULL;
|
|
const struct rte_flow_item_nvgre *mask = NULL;
|
|
const struct rte_flow_item_nvgre supp_mask = {
|
|
.tni = { 0xff, 0xff, 0xff }
|
|
};
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec,
|
|
(const void **)&mask,
|
|
&supp_mask,
|
|
&rte_flow_item_nvgre_mask,
|
|
sizeof(struct rte_flow_item_nvgre),
|
|
error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
|
|
EFX_IPPROTO_GRE, error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE;
|
|
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
|
|
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni,
|
|
mask->tni, item, error);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static const struct sfc_flow_item sfc_flow_items[] = {
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_VOID,
|
|
.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
|
|
.layer = SFC_FLOW_ITEM_ANY_LAYER,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
|
|
.parse = sfc_flow_parse_void,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_ETH,
|
|
.prev_layer = SFC_FLOW_ITEM_START_LAYER,
|
|
.layer = SFC_FLOW_ITEM_L2,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
|
|
.parse = sfc_flow_parse_eth,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_VLAN,
|
|
.prev_layer = SFC_FLOW_ITEM_L2,
|
|
.layer = SFC_FLOW_ITEM_L2,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
|
|
.parse = sfc_flow_parse_vlan,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_IPV4,
|
|
.prev_layer = SFC_FLOW_ITEM_L2,
|
|
.layer = SFC_FLOW_ITEM_L3,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
|
|
.parse = sfc_flow_parse_ipv4,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_IPV6,
|
|
.prev_layer = SFC_FLOW_ITEM_L2,
|
|
.layer = SFC_FLOW_ITEM_L3,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
|
|
.parse = sfc_flow_parse_ipv6,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_TCP,
|
|
.prev_layer = SFC_FLOW_ITEM_L3,
|
|
.layer = SFC_FLOW_ITEM_L4,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
|
|
.parse = sfc_flow_parse_tcp,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_UDP,
|
|
.prev_layer = SFC_FLOW_ITEM_L3,
|
|
.layer = SFC_FLOW_ITEM_L4,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
|
|
.parse = sfc_flow_parse_udp,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_VXLAN,
|
|
.prev_layer = SFC_FLOW_ITEM_L4,
|
|
.layer = SFC_FLOW_ITEM_START_LAYER,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
|
|
.parse = sfc_flow_parse_vxlan,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_GENEVE,
|
|
.prev_layer = SFC_FLOW_ITEM_L4,
|
|
.layer = SFC_FLOW_ITEM_START_LAYER,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
|
|
.parse = sfc_flow_parse_geneve,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_NVGRE,
|
|
.prev_layer = SFC_FLOW_ITEM_L3,
|
|
.layer = SFC_FLOW_ITEM_START_LAYER,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
|
|
.parse = sfc_flow_parse_nvgre,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Protocol-independent flow API support
|
|
*/
|
|
static int
|
|
sfc_flow_parse_attr(struct sfc_adapter *sa,
|
|
const struct rte_flow_attr *attr,
|
|
struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_flow_spec *spec = &flow->spec;
|
|
struct sfc_flow_spec_filter *spec_filter = &spec->filter;
|
|
struct sfc_flow_spec_mae *spec_mae = &spec->mae;
|
|
struct sfc_mae *mae = &sa->mae;
|
|
|
|
if (attr == NULL) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ATTR, NULL,
|
|
"NULL attribute");
|
|
return -rte_errno;
|
|
}
|
|
if (attr->group != 0) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr,
|
|
"Groups are not supported");
|
|
return -rte_errno;
|
|
}
|
|
if (attr->egress != 0) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr,
|
|
"Egress is not supported");
|
|
return -rte_errno;
|
|
}
|
|
if (attr->ingress == 0) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr,
|
|
"Ingress is compulsory");
|
|
return -rte_errno;
|
|
}
|
|
if (attr->transfer == 0) {
|
|
if (attr->priority != 0) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
|
|
attr, "Priorities are unsupported");
|
|
return -rte_errno;
|
|
}
|
|
spec->type = SFC_FLOW_SPEC_FILTER;
|
|
spec_filter->template.efs_flags |= EFX_FILTER_FLAG_RX;
|
|
spec_filter->template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
|
|
spec_filter->template.efs_priority = EFX_FILTER_PRI_MANUAL;
|
|
} else {
|
|
if (mae->status != SFC_MAE_STATUS_SUPPORTED) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
|
|
attr, "Transfer is not supported");
|
|
return -rte_errno;
|
|
}
|
|
if (attr->priority > mae->nb_action_rule_prios_max) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
|
|
attr, "Unsupported priority level");
|
|
return -rte_errno;
|
|
}
|
|
spec->type = SFC_FLOW_SPEC_MAE;
|
|
spec_mae->priority = attr->priority;
|
|
spec_mae->match_spec = NULL;
|
|
spec_mae->action_set = NULL;
|
|
spec_mae->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Get item from array sfc_flow_items */
|
|
static const struct sfc_flow_item *
|
|
sfc_flow_get_item(const struct sfc_flow_item *items,
|
|
unsigned int nb_items,
|
|
enum rte_flow_item_type type)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < nb_items; i++)
|
|
if (items[i].type == type)
|
|
return &items[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
sfc_flow_parse_pattern(const struct sfc_flow_item *flow_items,
|
|
unsigned int nb_flow_items,
|
|
const struct rte_flow_item pattern[],
|
|
struct sfc_flow_parse_ctx *parse_ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER;
|
|
boolean_t is_ifrm = B_FALSE;
|
|
const struct sfc_flow_item *item;
|
|
|
|
if (pattern == NULL) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
|
|
"NULL pattern");
|
|
return -rte_errno;
|
|
}
|
|
|
|
for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
|
|
item = sfc_flow_get_item(flow_items, nb_flow_items,
|
|
pattern->type);
|
|
if (item == NULL) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, pattern,
|
|
"Unsupported pattern item");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/*
|
|
* Omitting one or several protocol layers at the beginning
|
|
* of pattern is supported
|
|
*/
|
|
if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
|
|
prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
|
|
item->prev_layer != prev_layer) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, pattern,
|
|
"Unexpected sequence of pattern items");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/*
|
|
* Allow only VOID and ETH pattern items in the inner frame.
|
|
* Also check that there is only one tunneling protocol.
|
|
*/
|
|
switch (item->type) {
|
|
case RTE_FLOW_ITEM_TYPE_VOID:
|
|
case RTE_FLOW_ITEM_TYPE_ETH:
|
|
break;
|
|
|
|
case RTE_FLOW_ITEM_TYPE_VXLAN:
|
|
case RTE_FLOW_ITEM_TYPE_GENEVE:
|
|
case RTE_FLOW_ITEM_TYPE_NVGRE:
|
|
if (is_ifrm) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM,
|
|
pattern,
|
|
"More than one tunneling protocol");
|
|
return -rte_errno;
|
|
}
|
|
is_ifrm = B_TRUE;
|
|
break;
|
|
|
|
default:
|
|
if (parse_ctx->type == SFC_FLOW_PARSE_CTX_FILTER &&
|
|
is_ifrm) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM,
|
|
pattern,
|
|
"There is an unsupported pattern item "
|
|
"in the inner frame");
|
|
return -rte_errno;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (parse_ctx->type != item->ctx_type) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, pattern,
|
|
"Parse context type mismatch");
|
|
return -rte_errno;
|
|
}
|
|
|
|
rc = item->parse(pattern, parse_ctx, error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
if (item->layer != SFC_FLOW_ITEM_ANY_LAYER)
|
|
prev_layer = item->layer;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_parse_queue(struct sfc_adapter *sa,
|
|
const struct rte_flow_action_queue *queue,
|
|
struct rte_flow *flow)
|
|
{
|
|
struct sfc_flow_spec *spec = &flow->spec;
|
|
struct sfc_flow_spec_filter *spec_filter = &spec->filter;
|
|
struct sfc_rxq *rxq;
|
|
struct sfc_rxq_info *rxq_info;
|
|
|
|
if (queue->index >= sfc_sa2shared(sa)->rxq_count)
|
|
return -EINVAL;
|
|
|
|
rxq = &sa->rxq_ctrl[queue->index];
|
|
spec_filter->template.efs_dmaq_id = (uint16_t)rxq->hw_index;
|
|
|
|
rxq_info = &sfc_sa2shared(sa)->rxq_info[queue->index];
|
|
spec_filter->rss_hash_required = !!(rxq_info->rxq_flags &
|
|
SFC_RXQ_FLAG_RSS_HASH);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_parse_rss(struct sfc_adapter *sa,
|
|
const struct rte_flow_action_rss *action_rss,
|
|
struct rte_flow *flow)
|
|
{
|
|
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
|
|
struct sfc_rss *rss = &sas->rss;
|
|
unsigned int rxq_sw_index;
|
|
struct sfc_rxq *rxq;
|
|
unsigned int rxq_hw_index_min;
|
|
unsigned int rxq_hw_index_max;
|
|
efx_rx_hash_type_t efx_hash_types;
|
|
const uint8_t *rss_key;
|
|
struct sfc_flow_spec *spec = &flow->spec;
|
|
struct sfc_flow_spec_filter *spec_filter = &spec->filter;
|
|
struct sfc_flow_rss *sfc_rss_conf = &spec_filter->rss_conf;
|
|
unsigned int i;
|
|
|
|
if (action_rss->queue_num == 0)
|
|
return -EINVAL;
|
|
|
|
rxq_sw_index = sfc_sa2shared(sa)->rxq_count - 1;
|
|
rxq = &sa->rxq_ctrl[rxq_sw_index];
|
|
rxq_hw_index_min = rxq->hw_index;
|
|
rxq_hw_index_max = 0;
|
|
|
|
for (i = 0; i < action_rss->queue_num; ++i) {
|
|
rxq_sw_index = action_rss->queue[i];
|
|
|
|
if (rxq_sw_index >= sfc_sa2shared(sa)->rxq_count)
|
|
return -EINVAL;
|
|
|
|
rxq = &sa->rxq_ctrl[rxq_sw_index];
|
|
|
|
if (rxq->hw_index < rxq_hw_index_min)
|
|
rxq_hw_index_min = rxq->hw_index;
|
|
|
|
if (rxq->hw_index > rxq_hw_index_max)
|
|
rxq_hw_index_max = rxq->hw_index;
|
|
}
|
|
|
|
switch (action_rss->func) {
|
|
case RTE_ETH_HASH_FUNCTION_DEFAULT:
|
|
case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (action_rss->level)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Dummy RSS action with only one queue and no specific settings
|
|
* for hash types and key does not require dedicated RSS context
|
|
* and may be simplified to single queue action.
|
|
*/
|
|
if (action_rss->queue_num == 1 && action_rss->types == 0 &&
|
|
action_rss->key_len == 0) {
|
|
spec_filter->template.efs_dmaq_id = rxq_hw_index_min;
|
|
return 0;
|
|
}
|
|
|
|
if (action_rss->types) {
|
|
int rc;
|
|
|
|
rc = sfc_rx_hf_rte_to_efx(sa, action_rss->types,
|
|
&efx_hash_types);
|
|
if (rc != 0)
|
|
return -rc;
|
|
} else {
|
|
unsigned int i;
|
|
|
|
efx_hash_types = 0;
|
|
for (i = 0; i < rss->hf_map_nb_entries; ++i)
|
|
efx_hash_types |= rss->hf_map[i].efx;
|
|
}
|
|
|
|
if (action_rss->key_len) {
|
|
if (action_rss->key_len != sizeof(rss->key))
|
|
return -EINVAL;
|
|
|
|
rss_key = action_rss->key;
|
|
} else {
|
|
rss_key = rss->key;
|
|
}
|
|
|
|
spec_filter->rss = B_TRUE;
|
|
|
|
sfc_rss_conf->rxq_hw_index_min = rxq_hw_index_min;
|
|
sfc_rss_conf->rxq_hw_index_max = rxq_hw_index_max;
|
|
sfc_rss_conf->rss_hash_types = efx_hash_types;
|
|
rte_memcpy(sfc_rss_conf->rss_key, rss_key, sizeof(rss->key));
|
|
|
|
for (i = 0; i < RTE_DIM(sfc_rss_conf->rss_tbl); ++i) {
|
|
unsigned int nb_queues = action_rss->queue_num;
|
|
unsigned int rxq_sw_index = action_rss->queue[i % nb_queues];
|
|
struct sfc_rxq *rxq = &sa->rxq_ctrl[rxq_sw_index];
|
|
|
|
sfc_rss_conf->rss_tbl[i] = rxq->hw_index - rxq_hw_index_min;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec,
|
|
unsigned int filters_count)
|
|
{
|
|
struct sfc_flow_spec_filter *spec_filter = &spec->filter;
|
|
unsigned int i;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < filters_count; i++) {
|
|
int rc;
|
|
|
|
rc = efx_filter_remove(sa->nic, &spec_filter->filters[i]);
|
|
if (ret == 0 && rc != 0) {
|
|
sfc_err(sa, "failed to remove filter specification "
|
|
"(rc = %d)", rc);
|
|
ret = rc;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
|
|
{
|
|
struct sfc_flow_spec_filter *spec_filter = &spec->filter;
|
|
unsigned int i;
|
|
int rc = 0;
|
|
|
|
for (i = 0; i < spec_filter->count; i++) {
|
|
rc = efx_filter_insert(sa->nic, &spec_filter->filters[i]);
|
|
if (rc != 0) {
|
|
sfc_flow_spec_flush(sa, spec, i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
|
|
{
|
|
struct sfc_flow_spec_filter *spec_filter = &spec->filter;
|
|
|
|
return sfc_flow_spec_flush(sa, spec, spec_filter->count);
|
|
}
|
|
|
|
static int
|
|
sfc_flow_filter_insert(struct sfc_adapter *sa,
|
|
struct rte_flow *flow)
|
|
{
|
|
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
|
|
struct sfc_rss *rss = &sas->rss;
|
|
struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
|
|
struct sfc_flow_rss *flow_rss = &spec_filter->rss_conf;
|
|
uint32_t efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
|
|
boolean_t create_context;
|
|
unsigned int i;
|
|
int rc = 0;
|
|
|
|
create_context = spec_filter->rss || (spec_filter->rss_hash_required &&
|
|
rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT);
|
|
|
|
if (create_context) {
|
|
unsigned int rss_spread;
|
|
unsigned int rss_hash_types;
|
|
uint8_t *rss_key;
|
|
|
|
if (spec_filter->rss) {
|
|
rss_spread = MIN(flow_rss->rxq_hw_index_max -
|
|
flow_rss->rxq_hw_index_min + 1,
|
|
EFX_MAXRSS);
|
|
rss_hash_types = flow_rss->rss_hash_types;
|
|
rss_key = flow_rss->rss_key;
|
|
} else {
|
|
/*
|
|
* Initialize dummy RSS context parameters to have
|
|
* valid RSS hash. Use default RSS hash function and
|
|
* key.
|
|
*/
|
|
rss_spread = 1;
|
|
rss_hash_types = rss->hash_types;
|
|
rss_key = rss->key;
|
|
}
|
|
|
|
rc = efx_rx_scale_context_alloc(sa->nic,
|
|
EFX_RX_SCALE_EXCLUSIVE,
|
|
rss_spread,
|
|
&efs_rss_context);
|
|
if (rc != 0)
|
|
goto fail_scale_context_alloc;
|
|
|
|
rc = efx_rx_scale_mode_set(sa->nic, efs_rss_context,
|
|
rss->hash_alg,
|
|
rss_hash_types, B_TRUE);
|
|
if (rc != 0)
|
|
goto fail_scale_mode_set;
|
|
|
|
rc = efx_rx_scale_key_set(sa->nic, efs_rss_context,
|
|
rss_key, sizeof(rss->key));
|
|
if (rc != 0)
|
|
goto fail_scale_key_set;
|
|
} else {
|
|
efs_rss_context = rss->dummy_rss_context;
|
|
}
|
|
|
|
if (spec_filter->rss || spec_filter->rss_hash_required) {
|
|
/*
|
|
* At this point, fully elaborated filter specifications
|
|
* have been produced from the template. To make sure that
|
|
* RSS behaviour is consistent between them, set the same
|
|
* RSS context value everywhere.
|
|
*/
|
|
for (i = 0; i < spec_filter->count; i++) {
|
|
efx_filter_spec_t *spec = &spec_filter->filters[i];
|
|
|
|
spec->efs_rss_context = efs_rss_context;
|
|
spec->efs_flags |= EFX_FILTER_FLAG_RX_RSS;
|
|
if (spec_filter->rss)
|
|
spec->efs_dmaq_id = flow_rss->rxq_hw_index_min;
|
|
}
|
|
}
|
|
|
|
rc = sfc_flow_spec_insert(sa, &flow->spec);
|
|
if (rc != 0)
|
|
goto fail_filter_insert;
|
|
|
|
if (create_context) {
|
|
unsigned int dummy_tbl[RTE_DIM(flow_rss->rss_tbl)] = {0};
|
|
unsigned int *tbl;
|
|
|
|
tbl = spec_filter->rss ? flow_rss->rss_tbl : dummy_tbl;
|
|
|
|
/*
|
|
* Scale table is set after filter insertion because
|
|
* the table entries are relative to the base RxQ ID
|
|
* and the latter is submitted to the HW by means of
|
|
* inserting a filter, so by the time of the request
|
|
* the HW knows all the information needed to verify
|
|
* the table entries, and the operation will succeed
|
|
*/
|
|
rc = efx_rx_scale_tbl_set(sa->nic, efs_rss_context,
|
|
tbl, RTE_DIM(flow_rss->rss_tbl));
|
|
if (rc != 0)
|
|
goto fail_scale_tbl_set;
|
|
|
|
/* Remember created dummy RSS context */
|
|
if (!spec_filter->rss)
|
|
rss->dummy_rss_context = efs_rss_context;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_scale_tbl_set:
|
|
sfc_flow_spec_remove(sa, &flow->spec);
|
|
|
|
fail_filter_insert:
|
|
fail_scale_key_set:
|
|
fail_scale_mode_set:
|
|
if (create_context)
|
|
efx_rx_scale_context_free(sa->nic, efs_rss_context);
|
|
|
|
fail_scale_context_alloc:
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_filter_remove(struct sfc_adapter *sa,
|
|
struct rte_flow *flow)
|
|
{
|
|
struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
|
|
int rc = 0;
|
|
|
|
rc = sfc_flow_spec_remove(sa, &flow->spec);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
if (spec_filter->rss) {
|
|
/*
|
|
* All specifications for a given flow rule have the same RSS
|
|
* context, so that RSS context value is taken from the first
|
|
* filter specification
|
|
*/
|
|
efx_filter_spec_t *spec = &spec_filter->filters[0];
|
|
|
|
rc = efx_rx_scale_context_free(sa->nic, spec->efs_rss_context);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_parse_mark(struct sfc_adapter *sa,
|
|
const struct rte_flow_action_mark *mark,
|
|
struct rte_flow *flow)
|
|
{
|
|
struct sfc_flow_spec *spec = &flow->spec;
|
|
struct sfc_flow_spec_filter *spec_filter = &spec->filter;
|
|
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
|
|
|
|
if (mark == NULL || mark->id > encp->enc_filter_action_mark_max)
|
|
return EINVAL;
|
|
|
|
spec_filter->template.efs_flags |= EFX_FILTER_FLAG_ACTION_MARK;
|
|
spec_filter->template.efs_mark = mark->id;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_parse_actions(struct sfc_adapter *sa,
|
|
const struct rte_flow_action actions[],
|
|
struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc;
|
|
struct sfc_flow_spec *spec = &flow->spec;
|
|
struct sfc_flow_spec_filter *spec_filter = &spec->filter;
|
|
const unsigned int dp_rx_features = sa->priv.dp_rx->features;
|
|
uint32_t actions_set = 0;
|
|
const uint32_t fate_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_QUEUE) |
|
|
(1UL << RTE_FLOW_ACTION_TYPE_RSS) |
|
|
(1UL << RTE_FLOW_ACTION_TYPE_DROP);
|
|
const uint32_t mark_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_MARK) |
|
|
(1UL << RTE_FLOW_ACTION_TYPE_FLAG);
|
|
|
|
if (actions == NULL) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
|
|
"NULL actions");
|
|
return -rte_errno;
|
|
}
|
|
|
|
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
|
|
switch (actions->type) {
|
|
case RTE_FLOW_ACTION_TYPE_VOID:
|
|
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VOID,
|
|
actions_set);
|
|
break;
|
|
|
|
case RTE_FLOW_ACTION_TYPE_QUEUE:
|
|
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_QUEUE,
|
|
actions_set);
|
|
if ((actions_set & fate_actions_mask) != 0)
|
|
goto fail_fate_actions;
|
|
|
|
rc = sfc_flow_parse_queue(sa, actions->conf, flow);
|
|
if (rc != 0) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, actions,
|
|
"Bad QUEUE action");
|
|
return -rte_errno;
|
|
}
|
|
break;
|
|
|
|
case RTE_FLOW_ACTION_TYPE_RSS:
|
|
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_RSS,
|
|
actions_set);
|
|
if ((actions_set & fate_actions_mask) != 0)
|
|
goto fail_fate_actions;
|
|
|
|
rc = sfc_flow_parse_rss(sa, actions->conf, flow);
|
|
if (rc != 0) {
|
|
rte_flow_error_set(error, -rc,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, actions,
|
|
"Bad RSS action");
|
|
return -rte_errno;
|
|
}
|
|
break;
|
|
|
|
case RTE_FLOW_ACTION_TYPE_DROP:
|
|
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP,
|
|
actions_set);
|
|
if ((actions_set & fate_actions_mask) != 0)
|
|
goto fail_fate_actions;
|
|
|
|
spec_filter->template.efs_dmaq_id =
|
|
EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
|
|
break;
|
|
|
|
case RTE_FLOW_ACTION_TYPE_FLAG:
|
|
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG,
|
|
actions_set);
|
|
if ((actions_set & mark_actions_mask) != 0)
|
|
goto fail_actions_overlap;
|
|
|
|
if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_FLAG) == 0) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
|
|
"FLAG action is not supported on the current Rx datapath");
|
|
return -rte_errno;
|
|
}
|
|
|
|
spec_filter->template.efs_flags |=
|
|
EFX_FILTER_FLAG_ACTION_FLAG;
|
|
break;
|
|
|
|
case RTE_FLOW_ACTION_TYPE_MARK:
|
|
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK,
|
|
actions_set);
|
|
if ((actions_set & mark_actions_mask) != 0)
|
|
goto fail_actions_overlap;
|
|
|
|
if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_MARK) == 0) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
|
|
"MARK action is not supported on the current Rx datapath");
|
|
return -rte_errno;
|
|
}
|
|
|
|
rc = sfc_flow_parse_mark(sa, actions->conf, flow);
|
|
if (rc != 0) {
|
|
rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, actions,
|
|
"Bad MARK action");
|
|
return -rte_errno;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, actions,
|
|
"Action is not supported");
|
|
return -rte_errno;
|
|
}
|
|
|
|
actions_set |= (1UL << actions->type);
|
|
}
|
|
|
|
/* When fate is unknown, drop traffic. */
|
|
if ((actions_set & fate_actions_mask) == 0) {
|
|
spec_filter->template.efs_dmaq_id =
|
|
EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_fate_actions:
|
|
rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
|
|
"Cannot combine several fate-deciding actions, "
|
|
"choose between QUEUE, RSS or DROP");
|
|
return -rte_errno;
|
|
|
|
fail_actions_overlap:
|
|
rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
|
|
"Overlapping actions are not supported");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/**
|
|
* Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST
|
|
* and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same
|
|
* specifications after copying.
|
|
*
|
|
* @param spec[in, out]
|
|
* SFC flow specification to update.
|
|
* @param filters_count_for_one_val[in]
|
|
* How many specifications should have the same match flag, what is the
|
|
* number of specifications before copying.
|
|
* @param error[out]
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec,
|
|
unsigned int filters_count_for_one_val,
|
|
struct rte_flow_error *error)
|
|
{
|
|
unsigned int i;
|
|
struct sfc_flow_spec_filter *spec_filter = &spec->filter;
|
|
static const efx_filter_match_flags_t vals[] = {
|
|
EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
|
|
EFX_FILTER_MATCH_UNKNOWN_MCAST_DST
|
|
};
|
|
|
|
if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"Number of specifications is incorrect while copying "
|
|
"by unknown destination flags");
|
|
return -rte_errno;
|
|
}
|
|
|
|
for (i = 0; i < spec_filter->count; i++) {
|
|
/* The check above ensures that divisor can't be zero here */
|
|
spec_filter->filters[i].efs_match_flags |=
|
|
vals[i / filters_count_for_one_val];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Check that the following conditions are met:
|
|
* - the list of supported filters has a filter
|
|
* with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of
|
|
* EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also
|
|
* be inserted.
|
|
*
|
|
* @param match[in]
|
|
* The match flags of filter.
|
|
* @param spec[in]
|
|
* Specification to be supplemented.
|
|
* @param filter[in]
|
|
* SFC filter with list of supported filters.
|
|
*/
|
|
static boolean_t
|
|
sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match,
|
|
__rte_unused efx_filter_spec_t *spec,
|
|
struct sfc_filter *filter)
|
|
{
|
|
unsigned int i;
|
|
efx_filter_match_flags_t match_mcast_dst;
|
|
|
|
match_mcast_dst =
|
|
(match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) |
|
|
EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
|
|
for (i = 0; i < filter->supported_match_num; i++) {
|
|
if (match_mcast_dst == filter->supported_match[i])
|
|
return B_TRUE;
|
|
}
|
|
|
|
return B_FALSE;
|
|
}
|
|
|
|
/**
|
|
* Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and
|
|
* EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same
|
|
* specifications after copying.
|
|
*
|
|
* @param spec[in, out]
|
|
* SFC flow specification to update.
|
|
* @param filters_count_for_one_val[in]
|
|
* How many specifications should have the same EtherType value, what is the
|
|
* number of specifications before copying.
|
|
* @param error[out]
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_set_ethertypes(struct sfc_flow_spec *spec,
|
|
unsigned int filters_count_for_one_val,
|
|
struct rte_flow_error *error)
|
|
{
|
|
unsigned int i;
|
|
struct sfc_flow_spec_filter *spec_filter = &spec->filter;
|
|
static const uint16_t vals[] = {
|
|
EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6
|
|
};
|
|
|
|
if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"Number of specifications is incorrect "
|
|
"while copying by Ethertype");
|
|
return -rte_errno;
|
|
}
|
|
|
|
for (i = 0; i < spec_filter->count; i++) {
|
|
spec_filter->filters[i].efs_match_flags |=
|
|
EFX_FILTER_MATCH_ETHER_TYPE;
|
|
|
|
/*
|
|
* The check above ensures that
|
|
* filters_count_for_one_val is not 0
|
|
*/
|
|
spec_filter->filters[i].efs_ether_type =
|
|
vals[i / filters_count_for_one_val];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Set the EFX_FILTER_MATCH_OUTER_VID match flag with value 0
|
|
* in the same specifications after copying.
|
|
*
|
|
* @param spec[in, out]
|
|
* SFC flow specification to update.
|
|
* @param filters_count_for_one_val[in]
|
|
* How many specifications should have the same match flag, what is the
|
|
* number of specifications before copying.
|
|
* @param error[out]
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_set_outer_vid_flag(struct sfc_flow_spec *spec,
|
|
unsigned int filters_count_for_one_val,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_flow_spec_filter *spec_filter = &spec->filter;
|
|
unsigned int i;
|
|
|
|
if (filters_count_for_one_val != spec_filter->count) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"Number of specifications is incorrect "
|
|
"while copying by outer VLAN ID");
|
|
return -rte_errno;
|
|
}
|
|
|
|
for (i = 0; i < spec_filter->count; i++) {
|
|
spec_filter->filters[i].efs_match_flags |=
|
|
EFX_FILTER_MATCH_OUTER_VID;
|
|
|
|
spec_filter->filters[i].efs_outer_vid = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and
|
|
* EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same
|
|
* specifications after copying.
|
|
*
|
|
* @param spec[in, out]
|
|
* SFC flow specification to update.
|
|
* @param filters_count_for_one_val[in]
|
|
* How many specifications should have the same match flag, what is the
|
|
* number of specifications before copying.
|
|
* @param error[out]
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec,
|
|
unsigned int filters_count_for_one_val,
|
|
struct rte_flow_error *error)
|
|
{
|
|
unsigned int i;
|
|
struct sfc_flow_spec_filter *spec_filter = &spec->filter;
|
|
static const efx_filter_match_flags_t vals[] = {
|
|
EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
|
|
EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST
|
|
};
|
|
|
|
if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"Number of specifications is incorrect while copying "
|
|
"by inner frame unknown destination flags");
|
|
return -rte_errno;
|
|
}
|
|
|
|
for (i = 0; i < spec_filter->count; i++) {
|
|
/* The check above ensures that divisor can't be zero here */
|
|
spec_filter->filters[i].efs_match_flags |=
|
|
vals[i / filters_count_for_one_val];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Check that the following conditions are met:
|
|
* - the specification corresponds to a filter for encapsulated traffic
|
|
* - the list of supported filters has a filter
|
|
* with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of
|
|
* EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also
|
|
* be inserted.
|
|
*
|
|
* @param match[in]
|
|
* The match flags of filter.
|
|
* @param spec[in]
|
|
* Specification to be supplemented.
|
|
* @param filter[in]
|
|
* SFC filter with list of supported filters.
|
|
*/
|
|
static boolean_t
|
|
sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match,
|
|
efx_filter_spec_t *spec,
|
|
struct sfc_filter *filter)
|
|
{
|
|
unsigned int i;
|
|
efx_tunnel_protocol_t encap_type = spec->efs_encap_type;
|
|
efx_filter_match_flags_t match_mcast_dst;
|
|
|
|
if (encap_type == EFX_TUNNEL_PROTOCOL_NONE)
|
|
return B_FALSE;
|
|
|
|
match_mcast_dst =
|
|
(match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) |
|
|
EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST;
|
|
for (i = 0; i < filter->supported_match_num; i++) {
|
|
if (match_mcast_dst == filter->supported_match[i])
|
|
return B_TRUE;
|
|
}
|
|
|
|
return B_FALSE;
|
|
}
|
|
|
|
/**
|
|
* Check that the list of supported filters has a filter that differs
|
|
* from @p match in that it has no flag EFX_FILTER_MATCH_OUTER_VID
|
|
* in this case that filter will be used and the flag
|
|
* EFX_FILTER_MATCH_OUTER_VID is not needed.
|
|
*
|
|
* @param match[in]
|
|
* The match flags of filter.
|
|
* @param spec[in]
|
|
* Specification to be supplemented.
|
|
* @param filter[in]
|
|
* SFC filter with list of supported filters.
|
|
*/
|
|
static boolean_t
|
|
sfc_flow_check_outer_vid_flag(efx_filter_match_flags_t match,
|
|
__rte_unused efx_filter_spec_t *spec,
|
|
struct sfc_filter *filter)
|
|
{
|
|
unsigned int i;
|
|
efx_filter_match_flags_t match_without_vid =
|
|
match & ~EFX_FILTER_MATCH_OUTER_VID;
|
|
|
|
for (i = 0; i < filter->supported_match_num; i++) {
|
|
if (match_without_vid == filter->supported_match[i])
|
|
return B_FALSE;
|
|
}
|
|
|
|
return B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Match flags that can be automatically added to filters.
|
|
* Selecting the last minimum when searching for the copy flag ensures that the
|
|
* EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than
|
|
* EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter
|
|
* EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported
|
|
* filters.
|
|
*/
|
|
static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = {
|
|
{
|
|
.flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
|
|
.vals_count = 2,
|
|
.set_vals = sfc_flow_set_unknown_dst_flags,
|
|
.spec_check = sfc_flow_check_unknown_dst_flags,
|
|
},
|
|
{
|
|
.flag = EFX_FILTER_MATCH_ETHER_TYPE,
|
|
.vals_count = 2,
|
|
.set_vals = sfc_flow_set_ethertypes,
|
|
.spec_check = NULL,
|
|
},
|
|
{
|
|
.flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
|
|
.vals_count = 2,
|
|
.set_vals = sfc_flow_set_ifrm_unknown_dst_flags,
|
|
.spec_check = sfc_flow_check_ifrm_unknown_dst_flags,
|
|
},
|
|
{
|
|
.flag = EFX_FILTER_MATCH_OUTER_VID,
|
|
.vals_count = 1,
|
|
.set_vals = sfc_flow_set_outer_vid_flag,
|
|
.spec_check = sfc_flow_check_outer_vid_flag,
|
|
},
|
|
};
|
|
|
|
/* Get item from array sfc_flow_copy_flags */
|
|
static const struct sfc_flow_copy_flag *
|
|
sfc_flow_get_copy_flag(efx_filter_match_flags_t flag)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
|
|
if (sfc_flow_copy_flags[i].flag == flag)
|
|
return &sfc_flow_copy_flags[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Make copies of the specifications, set match flag and values
|
|
* of the field that corresponds to it.
|
|
*
|
|
* @param spec[in, out]
|
|
* SFC flow specification to update.
|
|
* @param flag[in]
|
|
* The match flag to add.
|
|
* @param error[out]
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec,
|
|
efx_filter_match_flags_t flag,
|
|
struct rte_flow_error *error)
|
|
{
|
|
unsigned int i;
|
|
unsigned int new_filters_count;
|
|
unsigned int filters_count_for_one_val;
|
|
const struct sfc_flow_copy_flag *copy_flag;
|
|
struct sfc_flow_spec_filter *spec_filter = &spec->filter;
|
|
int rc;
|
|
|
|
copy_flag = sfc_flow_get_copy_flag(flag);
|
|
if (copy_flag == NULL) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"Unsupported spec field for copying");
|
|
return -rte_errno;
|
|
}
|
|
|
|
new_filters_count = spec_filter->count * copy_flag->vals_count;
|
|
if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"Too much EFX specifications in the flow rule");
|
|
return -rte_errno;
|
|
}
|
|
|
|
/* Copy filters specifications */
|
|
for (i = spec_filter->count; i < new_filters_count; i++) {
|
|
spec_filter->filters[i] =
|
|
spec_filter->filters[i - spec_filter->count];
|
|
}
|
|
|
|
filters_count_for_one_val = spec_filter->count;
|
|
spec_filter->count = new_filters_count;
|
|
|
|
rc = copy_flag->set_vals(spec, filters_count_for_one_val, error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Check that the given set of match flags missing in the original filter spec
|
|
* could be covered by adding spec copies which specify the corresponding
|
|
* flags and packet field values to match.
|
|
*
|
|
* @param miss_flags[in]
|
|
* Flags that are missing until the supported filter.
|
|
* @param spec[in]
|
|
* Specification to be supplemented.
|
|
* @param filter[in]
|
|
* SFC filter.
|
|
*
|
|
* @return
|
|
* Number of specifications after copy or 0, if the flags can not be added.
|
|
*/
|
|
static unsigned int
|
|
sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags,
|
|
efx_filter_spec_t *spec,
|
|
struct sfc_filter *filter)
|
|
{
|
|
unsigned int i;
|
|
efx_filter_match_flags_t copy_flags = 0;
|
|
efx_filter_match_flags_t flag;
|
|
efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags;
|
|
sfc_flow_spec_check *check;
|
|
unsigned int multiplier = 1;
|
|
|
|
for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
|
|
flag = sfc_flow_copy_flags[i].flag;
|
|
check = sfc_flow_copy_flags[i].spec_check;
|
|
if ((flag & miss_flags) == flag) {
|
|
if (check != NULL && (!check(match, spec, filter)))
|
|
continue;
|
|
|
|
copy_flags |= flag;
|
|
multiplier *= sfc_flow_copy_flags[i].vals_count;
|
|
}
|
|
}
|
|
|
|
if (copy_flags == miss_flags)
|
|
return multiplier;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Attempt to supplement the specification template to the minimally
|
|
* supported set of match flags. To do this, it is necessary to copy
|
|
* the specifications, filling them with the values of fields that
|
|
* correspond to the missing flags.
|
|
* The necessary and sufficient filter is built from the fewest number
|
|
* of copies which could be made to cover the minimally required set
|
|
* of flags.
|
|
*
|
|
* @param sa[in]
|
|
* SFC adapter.
|
|
* @param spec[in, out]
|
|
* SFC flow specification to update.
|
|
* @param error[out]
|
|
* Perform verbose error reporting if not NULL.
|
|
*/
|
|
static int
|
|
sfc_flow_spec_filters_complete(struct sfc_adapter *sa,
|
|
struct sfc_flow_spec *spec,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_flow_spec_filter *spec_filter = &spec->filter;
|
|
struct sfc_filter *filter = &sa->filter;
|
|
efx_filter_match_flags_t miss_flags;
|
|
efx_filter_match_flags_t min_miss_flags = 0;
|
|
efx_filter_match_flags_t match;
|
|
unsigned int min_multiplier = UINT_MAX;
|
|
unsigned int multiplier;
|
|
unsigned int i;
|
|
int rc;
|
|
|
|
match = spec_filter->template.efs_match_flags;
|
|
for (i = 0; i < filter->supported_match_num; i++) {
|
|
if ((match & filter->supported_match[i]) == match) {
|
|
miss_flags = filter->supported_match[i] & (~match);
|
|
multiplier = sfc_flow_check_missing_flags(miss_flags,
|
|
&spec_filter->template, filter);
|
|
if (multiplier > 0) {
|
|
if (multiplier <= min_multiplier) {
|
|
min_multiplier = multiplier;
|
|
min_miss_flags = miss_flags;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (min_multiplier == UINT_MAX) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"The flow rule pattern is unsupported");
|
|
return -rte_errno;
|
|
}
|
|
|
|
for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
|
|
efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag;
|
|
|
|
if ((flag & min_miss_flags) == flag) {
|
|
rc = sfc_flow_spec_add_match_flag(spec, flag, error);
|
|
if (rc != 0)
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Check that set of match flags is referred to by a filter. Filter is
|
|
* described by match flags with the ability to add OUTER_VID and INNER_VID
|
|
* flags.
|
|
*
|
|
* @param match_flags[in]
|
|
* Set of match flags.
|
|
* @param flags_pattern[in]
|
|
* Pattern of filter match flags.
|
|
*/
|
|
static boolean_t
|
|
sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags,
|
|
efx_filter_match_flags_t flags_pattern)
|
|
{
|
|
if ((match_flags & flags_pattern) != flags_pattern)
|
|
return B_FALSE;
|
|
|
|
switch (match_flags & ~flags_pattern) {
|
|
case 0:
|
|
case EFX_FILTER_MATCH_OUTER_VID:
|
|
case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID:
|
|
return B_TRUE;
|
|
default:
|
|
return B_FALSE;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Check whether the spec maps to a hardware filter which is known to be
|
|
* ineffective despite being valid.
|
|
*
|
|
* @param filter[in]
|
|
* SFC filter with list of supported filters.
|
|
* @param spec[in]
|
|
* SFC flow specification.
|
|
*/
|
|
static boolean_t
|
|
sfc_flow_is_match_flags_exception(struct sfc_filter *filter,
|
|
struct sfc_flow_spec *spec)
|
|
{
|
|
unsigned int i;
|
|
uint16_t ether_type;
|
|
uint8_t ip_proto;
|
|
efx_filter_match_flags_t match_flags;
|
|
struct sfc_flow_spec_filter *spec_filter = &spec->filter;
|
|
|
|
for (i = 0; i < spec_filter->count; i++) {
|
|
match_flags = spec_filter->filters[i].efs_match_flags;
|
|
|
|
if (sfc_flow_is_match_with_vids(match_flags,
|
|
EFX_FILTER_MATCH_ETHER_TYPE) ||
|
|
sfc_flow_is_match_with_vids(match_flags,
|
|
EFX_FILTER_MATCH_ETHER_TYPE |
|
|
EFX_FILTER_MATCH_LOC_MAC)) {
|
|
ether_type = spec_filter->filters[i].efs_ether_type;
|
|
if (filter->supports_ip_proto_or_addr_filter &&
|
|
(ether_type == EFX_ETHER_TYPE_IPV4 ||
|
|
ether_type == EFX_ETHER_TYPE_IPV6))
|
|
return B_TRUE;
|
|
} else if (sfc_flow_is_match_with_vids(match_flags,
|
|
EFX_FILTER_MATCH_ETHER_TYPE |
|
|
EFX_FILTER_MATCH_IP_PROTO) ||
|
|
sfc_flow_is_match_with_vids(match_flags,
|
|
EFX_FILTER_MATCH_ETHER_TYPE |
|
|
EFX_FILTER_MATCH_IP_PROTO |
|
|
EFX_FILTER_MATCH_LOC_MAC)) {
|
|
ip_proto = spec_filter->filters[i].efs_ip_proto;
|
|
if (filter->supports_rem_or_local_port_filter &&
|
|
(ip_proto == EFX_IPPROTO_TCP ||
|
|
ip_proto == EFX_IPPROTO_UDP))
|
|
return B_TRUE;
|
|
}
|
|
}
|
|
|
|
return B_FALSE;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_validate_match_flags(struct sfc_adapter *sa,
|
|
struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_flow_spec *spec = &flow->spec;
|
|
struct sfc_flow_spec_filter *spec_filter = &spec->filter;
|
|
efx_filter_spec_t *spec_tmpl = &spec_filter->template;
|
|
efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags;
|
|
int rc;
|
|
|
|
/* Initialize the first filter spec with template */
|
|
spec_filter->filters[0] = *spec_tmpl;
|
|
spec_filter->count = 1;
|
|
|
|
if (!sfc_filter_is_match_supported(sa, match_flags)) {
|
|
rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error);
|
|
if (rc != 0)
|
|
return rc;
|
|
}
|
|
|
|
if (sfc_flow_is_match_flags_exception(&sa->filter, &flow->spec)) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"The flow rule pattern is unsupported");
|
|
return -rte_errno;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_parse_rte_to_filter(struct rte_eth_dev *dev,
|
|
const struct rte_flow_item pattern[],
|
|
const struct rte_flow_action actions[],
|
|
struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
|
|
struct sfc_flow_spec *spec = &flow->spec;
|
|
struct sfc_flow_spec_filter *spec_filter = &spec->filter;
|
|
struct sfc_flow_parse_ctx ctx;
|
|
int rc;
|
|
|
|
ctx.type = SFC_FLOW_PARSE_CTX_FILTER;
|
|
ctx.filter = &spec_filter->template;
|
|
|
|
rc = sfc_flow_parse_pattern(sfc_flow_items, RTE_DIM(sfc_flow_items),
|
|
pattern, &ctx, error);
|
|
if (rc != 0)
|
|
goto fail_bad_value;
|
|
|
|
rc = sfc_flow_parse_actions(sa, actions, flow, error);
|
|
if (rc != 0)
|
|
goto fail_bad_value;
|
|
|
|
rc = sfc_flow_validate_match_flags(sa, flow, error);
|
|
if (rc != 0)
|
|
goto fail_bad_value;
|
|
|
|
return 0;
|
|
|
|
fail_bad_value:
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_parse_rte_to_mae(struct rte_eth_dev *dev,
|
|
const struct rte_flow_item pattern[],
|
|
const struct rte_flow_action actions[],
|
|
struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
|
|
struct sfc_flow_spec *spec = &flow->spec;
|
|
struct sfc_flow_spec_mae *spec_mae = &spec->mae;
|
|
int rc;
|
|
|
|
rc = sfc_mae_rule_parse_pattern(sa, pattern, spec_mae, error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
rc = sfc_mae_rule_parse_actions(sa, actions, &spec_mae->action_set,
|
|
error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_parse(struct rte_eth_dev *dev,
|
|
const struct rte_flow_attr *attr,
|
|
const struct rte_flow_item pattern[],
|
|
const struct rte_flow_action actions[],
|
|
struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
|
|
const struct sfc_flow_ops_by_spec *ops;
|
|
int rc;
|
|
|
|
rc = sfc_flow_parse_attr(sa, attr, flow, error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
ops = sfc_flow_get_ops_by_spec(flow);
|
|
if (ops == NULL || ops->parse == NULL) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"No backend to handle this flow");
|
|
return -rte_errno;
|
|
}
|
|
|
|
return ops->parse(dev, pattern, actions, flow, error);
|
|
}
|
|
|
|
static struct rte_flow *
|
|
sfc_flow_zmalloc(struct rte_flow_error *error)
|
|
{
|
|
struct rte_flow *flow;
|
|
|
|
flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0);
|
|
if (flow == NULL) {
|
|
rte_flow_error_set(error, ENOMEM,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"Failed to allocate memory");
|
|
}
|
|
|
|
return flow;
|
|
}
|
|
|
|
static void
|
|
sfc_flow_free(struct sfc_adapter *sa, struct rte_flow *flow)
|
|
{
|
|
const struct sfc_flow_ops_by_spec *ops;
|
|
|
|
ops = sfc_flow_get_ops_by_spec(flow);
|
|
if (ops != NULL && ops->cleanup != NULL)
|
|
ops->cleanup(sa, flow);
|
|
|
|
rte_free(flow);
|
|
}
|
|
|
|
static int
|
|
sfc_flow_insert(struct sfc_adapter *sa, struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
const struct sfc_flow_ops_by_spec *ops;
|
|
int rc;
|
|
|
|
ops = sfc_flow_get_ops_by_spec(flow);
|
|
if (ops == NULL || ops->insert == NULL) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"No backend to handle this flow");
|
|
return rte_errno;
|
|
}
|
|
|
|
rc = ops->insert(sa, flow);
|
|
if (rc != 0) {
|
|
rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
|
|
NULL, "Failed to insert the flow rule");
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_remove(struct sfc_adapter *sa, struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
const struct sfc_flow_ops_by_spec *ops;
|
|
int rc;
|
|
|
|
ops = sfc_flow_get_ops_by_spec(flow);
|
|
if (ops == NULL || ops->remove == NULL) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"No backend to handle this flow");
|
|
return rte_errno;
|
|
}
|
|
|
|
rc = ops->remove(sa, flow);
|
|
if (rc != 0) {
|
|
rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
|
|
NULL, "Failed to remove the flow rule");
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_verify(struct sfc_adapter *sa, struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
const struct sfc_flow_ops_by_spec *ops;
|
|
int rc = 0;
|
|
|
|
ops = sfc_flow_get_ops_by_spec(flow);
|
|
if (ops == NULL) {
|
|
rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"No backend to handle this flow");
|
|
return -rte_errno;
|
|
}
|
|
|
|
if (ops->verify != NULL) {
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
rc = ops->verify(sa, flow);
|
|
}
|
|
|
|
if (rc != 0) {
|
|
rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"Failed to verify flow validity with FW");
|
|
return -rte_errno;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_validate(struct rte_eth_dev *dev,
|
|
const struct rte_flow_attr *attr,
|
|
const struct rte_flow_item pattern[],
|
|
const struct rte_flow_action actions[],
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
|
|
struct rte_flow *flow;
|
|
int rc;
|
|
|
|
flow = sfc_flow_zmalloc(error);
|
|
if (flow == NULL)
|
|
return -rte_errno;
|
|
|
|
sfc_adapter_lock(sa);
|
|
|
|
rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
|
|
if (rc == 0)
|
|
rc = sfc_flow_verify(sa, flow, error);
|
|
|
|
sfc_flow_free(sa, flow);
|
|
|
|
sfc_adapter_unlock(sa);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static struct rte_flow *
|
|
sfc_flow_create(struct rte_eth_dev *dev,
|
|
const struct rte_flow_attr *attr,
|
|
const struct rte_flow_item pattern[],
|
|
const struct rte_flow_action actions[],
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
|
|
struct rte_flow *flow = NULL;
|
|
int rc;
|
|
|
|
flow = sfc_flow_zmalloc(error);
|
|
if (flow == NULL)
|
|
goto fail_no_mem;
|
|
|
|
sfc_adapter_lock(sa);
|
|
|
|
rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
|
|
if (rc != 0)
|
|
goto fail_bad_value;
|
|
|
|
TAILQ_INSERT_TAIL(&sa->flow_list, flow, entries);
|
|
|
|
if (sa->state == SFC_ADAPTER_STARTED) {
|
|
rc = sfc_flow_insert(sa, flow, error);
|
|
if (rc != 0)
|
|
goto fail_flow_insert;
|
|
}
|
|
|
|
sfc_adapter_unlock(sa);
|
|
|
|
return flow;
|
|
|
|
fail_flow_insert:
|
|
TAILQ_REMOVE(&sa->flow_list, flow, entries);
|
|
|
|
fail_bad_value:
|
|
sfc_flow_free(sa, flow);
|
|
sfc_adapter_unlock(sa);
|
|
|
|
fail_no_mem:
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_destroy(struct rte_eth_dev *dev,
|
|
struct rte_flow *flow,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
|
|
struct rte_flow *flow_ptr;
|
|
int rc = EINVAL;
|
|
|
|
sfc_adapter_lock(sa);
|
|
|
|
TAILQ_FOREACH(flow_ptr, &sa->flow_list, entries) {
|
|
if (flow_ptr == flow)
|
|
rc = 0;
|
|
}
|
|
if (rc != 0) {
|
|
rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
|
|
"Failed to find flow rule to destroy");
|
|
goto fail_bad_value;
|
|
}
|
|
|
|
if (sa->state == SFC_ADAPTER_STARTED)
|
|
rc = sfc_flow_remove(sa, flow, error);
|
|
|
|
TAILQ_REMOVE(&sa->flow_list, flow, entries);
|
|
sfc_flow_free(sa, flow);
|
|
|
|
fail_bad_value:
|
|
sfc_adapter_unlock(sa);
|
|
|
|
return -rc;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_flush(struct rte_eth_dev *dev,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
|
|
struct rte_flow *flow;
|
|
int ret = 0;
|
|
|
|
sfc_adapter_lock(sa);
|
|
|
|
while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
|
|
if (sa->state == SFC_ADAPTER_STARTED) {
|
|
int rc;
|
|
|
|
rc = sfc_flow_remove(sa, flow, error);
|
|
if (rc != 0)
|
|
ret = rc;
|
|
}
|
|
|
|
TAILQ_REMOVE(&sa->flow_list, flow, entries);
|
|
sfc_flow_free(sa, flow);
|
|
}
|
|
|
|
sfc_adapter_unlock(sa);
|
|
|
|
return -ret;
|
|
}
|
|
|
|
static int
|
|
sfc_flow_isolate(struct rte_eth_dev *dev, int enable,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
|
|
int ret = 0;
|
|
|
|
sfc_adapter_lock(sa);
|
|
if (sa->state != SFC_ADAPTER_INITIALIZED) {
|
|
rte_flow_error_set(error, EBUSY,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
|
|
NULL, "please close the port first");
|
|
ret = -rte_errno;
|
|
} else {
|
|
sfc_sa2shared(sa)->isolated = (enable) ? B_TRUE : B_FALSE;
|
|
}
|
|
sfc_adapter_unlock(sa);
|
|
|
|
return ret;
|
|
}
|
|
|
|
const struct rte_flow_ops sfc_flow_ops = {
|
|
.validate = sfc_flow_validate,
|
|
.create = sfc_flow_create,
|
|
.destroy = sfc_flow_destroy,
|
|
.flush = sfc_flow_flush,
|
|
.query = NULL,
|
|
.isolate = sfc_flow_isolate,
|
|
};
|
|
|
|
void
|
|
sfc_flow_init(struct sfc_adapter *sa)
|
|
{
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
TAILQ_INIT(&sa->flow_list);
|
|
}
|
|
|
|
void
|
|
sfc_flow_fini(struct sfc_adapter *sa)
|
|
{
|
|
struct rte_flow *flow;
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
|
|
TAILQ_REMOVE(&sa->flow_list, flow, entries);
|
|
sfc_flow_free(sa, flow);
|
|
}
|
|
}
|
|
|
|
void
|
|
sfc_flow_stop(struct sfc_adapter *sa)
|
|
{
|
|
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
|
|
struct sfc_rss *rss = &sas->rss;
|
|
struct rte_flow *flow;
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
TAILQ_FOREACH(flow, &sa->flow_list, entries)
|
|
sfc_flow_remove(sa, flow, NULL);
|
|
|
|
if (rss->dummy_rss_context != EFX_RSS_CONTEXT_DEFAULT) {
|
|
efx_rx_scale_context_free(sa->nic, rss->dummy_rss_context);
|
|
rss->dummy_rss_context = EFX_RSS_CONTEXT_DEFAULT;
|
|
}
|
|
}
|
|
|
|
int
|
|
sfc_flow_start(struct sfc_adapter *sa)
|
|
{
|
|
struct rte_flow *flow;
|
|
int rc = 0;
|
|
|
|
sfc_log_init(sa, "entry");
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
TAILQ_FOREACH(flow, &sa->flow_list, entries) {
|
|
rc = sfc_flow_insert(sa, flow, NULL);
|
|
if (rc != 0)
|
|
goto fail_bad_flow;
|
|
}
|
|
|
|
sfc_log_init(sa, "done");
|
|
|
|
fail_bad_flow:
|
|
return rc;
|
|
}
|