f-stack/dpdk/drivers/event/dpaa/dpaa_eventdev.c

1071 lines
25 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2017-2019 NXP
*/
#include <assert.h>
#include <stdio.h>
#include <stdbool.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <sys/epoll.h>
#include <rte_atomic.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_debug.h>
#include <rte_dev.h>
#include <rte_eal.h>
#include <rte_lcore.h>
#include <rte_log.h>
#include <rte_malloc.h>
#include <rte_memcpy.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_pci.h>
#include <rte_eventdev.h>
#include <rte_eventdev_pmd_vdev.h>
#include <rte_ethdev.h>
#include <rte_event_eth_rx_adapter.h>
#include <rte_event_eth_tx_adapter.h>
#include <rte_cryptodev.h>
#include <rte_dpaa_bus.h>
#include <rte_dpaa_logs.h>
#include <rte_cycles.h>
#include <rte_kvargs.h>
#include <dpaa_ethdev.h>
#include <dpaa_sec_event.h>
#include "dpaa_eventdev.h"
#include <dpaa_mempool.h>
/*
* Clarifications
* Evendev = Virtual Instance for SoC
* Eventport = Portal Instance
* Eventqueue = Channel Instance
* 1 Eventdev can have N Eventqueue
*/
RTE_LOG_REGISTER(dpaa_logtype_eventdev, pmd.event.dpaa, NOTICE);
#define DISABLE_INTR_MODE "disable_intr"
static int
dpaa_event_dequeue_timeout_ticks(struct rte_eventdev *dev, uint64_t ns,
uint64_t *timeout_ticks)
{
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(dev);
uint64_t cycles_per_second;
cycles_per_second = rte_get_timer_hz();
*timeout_ticks = (ns * cycles_per_second) / NS_PER_S;
return 0;
}
static int
dpaa_event_dequeue_timeout_ticks_intr(struct rte_eventdev *dev, uint64_t ns,
uint64_t *timeout_ticks)
{
RTE_SET_USED(dev);
*timeout_ticks = ns/1000;
return 0;
}
static void
dpaa_eventq_portal_add(u16 ch_id)
{
uint32_t sdqcr;
sdqcr = QM_SDQCR_CHANNELS_POOL_CONV(ch_id);
qman_static_dequeue_add(sdqcr, NULL);
}
static uint16_t
dpaa_event_enqueue_burst(void *port, const struct rte_event ev[],
uint16_t nb_events)
{
uint16_t i;
struct rte_mbuf *mbuf;
RTE_SET_USED(port);
/*Release all the contexts saved previously*/
for (i = 0; i < nb_events; i++) {
switch (ev[i].op) {
case RTE_EVENT_OP_RELEASE:
qman_dca_index(ev[i].impl_opaque, 0);
mbuf = DPAA_PER_LCORE_DQRR_MBUF(i);
*dpaa_seqn(mbuf) = DPAA_INVALID_MBUF_SEQN;
DPAA_PER_LCORE_DQRR_HELD &= ~(1 << i);
DPAA_PER_LCORE_DQRR_SIZE--;
break;
default:
break;
}
}
return nb_events;
}
static uint16_t
dpaa_event_enqueue(void *port, const struct rte_event *ev)
{
return dpaa_event_enqueue_burst(port, ev, 1);
}
static void drain_4_bytes(int fd, fd_set *fdset)
{
if (FD_ISSET(fd, fdset)) {
/* drain 4 bytes */
uint32_t junk;
ssize_t sjunk = read(qman_thread_fd(), &junk, sizeof(junk));
if (sjunk != sizeof(junk))
DPAA_EVENTDEV_ERR("UIO irq read error");
}
}
static inline int
dpaa_event_dequeue_wait(uint64_t timeout_ticks)
{
int fd_qman, nfds;
int ret;
fd_set readset;
/* Go into (and back out of) IRQ mode for each select,
* it simplifies exit-path considerations and other
* potential nastiness.
*/
struct timeval tv = {
.tv_sec = timeout_ticks / 1000000,
.tv_usec = timeout_ticks % 1000000
};
fd_qman = qman_thread_fd();
nfds = fd_qman + 1;
FD_ZERO(&readset);
FD_SET(fd_qman, &readset);
qman_irqsource_add(QM_PIRQ_DQRI);
ret = select(nfds, &readset, NULL, NULL, &tv);
if (ret < 0)
return ret;
/* Calling irqsource_remove() prior to thread_irq()
* means thread_irq() will not process whatever caused
* the interrupts, however it does ensure that, once
* thread_irq() re-enables interrupts, they won't fire
* again immediately.
*/
qman_irqsource_remove(~0);
drain_4_bytes(fd_qman, &readset);
qman_thread_irq();
return ret;
}
static uint16_t
dpaa_event_dequeue_burst(void *port, struct rte_event ev[],
uint16_t nb_events, uint64_t timeout_ticks)
{
int ret;
u16 ch_id;
void *buffers[8];
u32 num_frames, i;
uint64_t cur_ticks = 0, wait_time_ticks = 0;
struct dpaa_port *portal = (struct dpaa_port *)port;
struct rte_mbuf *mbuf;
if (unlikely(!DPAA_PER_LCORE_PORTAL)) {
/* Affine current thread context to a qman portal */
ret = rte_dpaa_portal_init((void *)0);
if (ret) {
DPAA_EVENTDEV_ERR("Unable to initialize portal");
return ret;
}
}
if (unlikely(!portal->is_port_linked)) {
/*
* Affine event queue for current thread context
* to a qman portal.
*/
for (i = 0; i < portal->num_linked_evq; i++) {
ch_id = portal->evq_info[i].ch_id;
dpaa_eventq_portal_add(ch_id);
}
portal->is_port_linked = true;
}
/* Check if there are atomic contexts to be released */
i = 0;
while (DPAA_PER_LCORE_DQRR_SIZE) {
if (DPAA_PER_LCORE_DQRR_HELD & (1 << i)) {
qman_dca_index(i, 0);
mbuf = DPAA_PER_LCORE_DQRR_MBUF(i);
*dpaa_seqn(mbuf) = DPAA_INVALID_MBUF_SEQN;
DPAA_PER_LCORE_DQRR_HELD &= ~(1 << i);
DPAA_PER_LCORE_DQRR_SIZE--;
}
i++;
}
DPAA_PER_LCORE_DQRR_HELD = 0;
if (timeout_ticks)
wait_time_ticks = timeout_ticks;
else
wait_time_ticks = portal->timeout_us;
wait_time_ticks += rte_get_timer_cycles();
do {
/* Lets dequeue the frames */
num_frames = qman_portal_dequeue(ev, nb_events, buffers);
if (num_frames)
break;
cur_ticks = rte_get_timer_cycles();
} while (cur_ticks < wait_time_ticks);
return num_frames;
}
static uint16_t
dpaa_event_dequeue(void *port, struct rte_event *ev, uint64_t timeout_ticks)
{
return dpaa_event_dequeue_burst(port, ev, 1, timeout_ticks);
}
static uint16_t
dpaa_event_dequeue_burst_intr(void *port, struct rte_event ev[],
uint16_t nb_events, uint64_t timeout_ticks)
{
int ret;
u16 ch_id;
void *buffers[8];
u32 num_frames, i, irq = 0;
uint64_t cur_ticks = 0, wait_time_ticks = 0;
struct dpaa_port *portal = (struct dpaa_port *)port;
struct rte_mbuf *mbuf;
if (unlikely(!DPAA_PER_LCORE_PORTAL)) {
/* Affine current thread context to a qman portal */
ret = rte_dpaa_portal_init((void *)0);
if (ret) {
DPAA_EVENTDEV_ERR("Unable to initialize portal");
return ret;
}
}
if (unlikely(!portal->is_port_linked)) {
/*
* Affine event queue for current thread context
* to a qman portal.
*/
for (i = 0; i < portal->num_linked_evq; i++) {
ch_id = portal->evq_info[i].ch_id;
dpaa_eventq_portal_add(ch_id);
}
portal->is_port_linked = true;
}
/* Check if there are atomic contexts to be released */
i = 0;
while (DPAA_PER_LCORE_DQRR_SIZE) {
if (DPAA_PER_LCORE_DQRR_HELD & (1 << i)) {
qman_dca_index(i, 0);
mbuf = DPAA_PER_LCORE_DQRR_MBUF(i);
*dpaa_seqn(mbuf) = DPAA_INVALID_MBUF_SEQN;
DPAA_PER_LCORE_DQRR_HELD &= ~(1 << i);
DPAA_PER_LCORE_DQRR_SIZE--;
}
i++;
}
DPAA_PER_LCORE_DQRR_HELD = 0;
if (timeout_ticks)
wait_time_ticks = timeout_ticks;
else
wait_time_ticks = portal->timeout_us;
do {
/* Lets dequeue the frames */
num_frames = qman_portal_dequeue(ev, nb_events, buffers);
if (irq)
irq = 0;
if (num_frames)
break;
if (wait_time_ticks) { /* wait for time */
if (dpaa_event_dequeue_wait(wait_time_ticks) > 0) {
irq = 1;
continue;
}
break; /* no event after waiting */
}
cur_ticks = rte_get_timer_cycles();
} while (cur_ticks < wait_time_ticks);
return num_frames;
}
static uint16_t
dpaa_event_dequeue_intr(void *port,
struct rte_event *ev,
uint64_t timeout_ticks)
{
return dpaa_event_dequeue_burst_intr(port, ev, 1, timeout_ticks);
}
static void
dpaa_event_dev_info_get(struct rte_eventdev *dev,
struct rte_event_dev_info *dev_info)
{
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(dev);
dev_info->driver_name = "event_dpaa1";
dev_info->min_dequeue_timeout_ns =
DPAA_EVENT_MIN_DEQUEUE_TIMEOUT;
dev_info->max_dequeue_timeout_ns =
DPAA_EVENT_MAX_DEQUEUE_TIMEOUT;
dev_info->dequeue_timeout_ns =
DPAA_EVENT_PORT_DEQUEUE_TIMEOUT_NS;
dev_info->max_event_queues =
DPAA_EVENT_MAX_QUEUES;
dev_info->max_event_queue_flows =
DPAA_EVENT_MAX_QUEUE_FLOWS;
dev_info->max_event_queue_priority_levels =
DPAA_EVENT_MAX_QUEUE_PRIORITY_LEVELS;
dev_info->max_event_priority_levels =
DPAA_EVENT_MAX_EVENT_PRIORITY_LEVELS;
dev_info->max_event_ports =
DPAA_EVENT_MAX_EVENT_PORT;
dev_info->max_event_port_dequeue_depth =
DPAA_EVENT_MAX_PORT_DEQUEUE_DEPTH;
dev_info->max_event_port_enqueue_depth =
DPAA_EVENT_MAX_PORT_ENQUEUE_DEPTH;
/*
* TODO: Need to find out that how to fetch this info
* from kernel or somewhere else.
*/
dev_info->max_num_events =
DPAA_EVENT_MAX_NUM_EVENTS;
dev_info->event_dev_cap =
RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED |
RTE_EVENT_DEV_CAP_BURST_MODE |
RTE_EVENT_DEV_CAP_MULTIPLE_QUEUE_PORT |
RTE_EVENT_DEV_CAP_NONSEQ_MODE |
RTE_EVENT_DEV_CAP_CARRY_FLOW_ID;
}
static int
dpaa_event_dev_configure(const struct rte_eventdev *dev)
{
struct dpaa_eventdev *priv = dev->data->dev_private;
struct rte_event_dev_config *conf = &dev->data->dev_conf;
int ret, i;
uint32_t *ch_id;
EVENTDEV_INIT_FUNC_TRACE();
priv->dequeue_timeout_ns = conf->dequeue_timeout_ns;
priv->nb_events_limit = conf->nb_events_limit;
priv->nb_event_queues = conf->nb_event_queues;
priv->nb_event_ports = conf->nb_event_ports;
priv->nb_event_queue_flows = conf->nb_event_queue_flows;
priv->nb_event_port_dequeue_depth = conf->nb_event_port_dequeue_depth;
priv->nb_event_port_enqueue_depth = conf->nb_event_port_enqueue_depth;
priv->event_dev_cfg = conf->event_dev_cfg;
ch_id = rte_malloc("dpaa-channels",
sizeof(uint32_t) * priv->nb_event_queues,
RTE_CACHE_LINE_SIZE);
if (ch_id == NULL) {
DPAA_EVENTDEV_ERR("Fail to allocate memory for dpaa channels\n");
return -ENOMEM;
}
/* Create requested event queues within the given event device */
ret = qman_alloc_pool_range(ch_id, priv->nb_event_queues, 1, 0);
if (ret < 0) {
DPAA_EVENTDEV_ERR("qman_alloc_pool_range %u, err =%d\n",
priv->nb_event_queues, ret);
rte_free(ch_id);
return ret;
}
for (i = 0; i < priv->nb_event_queues; i++)
priv->evq_info[i].ch_id = (u16)ch_id[i];
/* Lets prepare event ports */
memset(&priv->ports[0], 0,
sizeof(struct dpaa_port) * priv->nb_event_ports);
/* Check dequeue timeout method is per dequeue or global */
if (priv->event_dev_cfg & RTE_EVENT_DEV_CFG_PER_DEQUEUE_TIMEOUT) {
/*
* Use timeout value as given in dequeue operation.
* So invalidating this timeout value.
*/
priv->dequeue_timeout_ns = 0;
} else if (conf->dequeue_timeout_ns == 0) {
priv->dequeue_timeout_ns = DPAA_EVENT_PORT_DEQUEUE_TIMEOUT_NS;
} else {
priv->dequeue_timeout_ns = conf->dequeue_timeout_ns;
}
for (i = 0; i < priv->nb_event_ports; i++) {
if (priv->intr_mode) {
priv->ports[i].timeout_us =
priv->dequeue_timeout_ns/1000;
} else {
uint64_t cycles_per_second;
cycles_per_second = rte_get_timer_hz();
priv->ports[i].timeout_us =
(priv->dequeue_timeout_ns * cycles_per_second)
/ NS_PER_S;
}
}
/*
* TODO: Currently portals are affined with threads. Maximum threads
* can be created equals to number of lcore.
*/
rte_free(ch_id);
DPAA_EVENTDEV_INFO("Configured eventdev devid=%d", dev->data->dev_id);
return 0;
}
static int
dpaa_event_dev_start(struct rte_eventdev *dev)
{
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(dev);
return 0;
}
static void
dpaa_event_dev_stop(struct rte_eventdev *dev)
{
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(dev);
}
static int
dpaa_event_dev_close(struct rte_eventdev *dev)
{
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(dev);
return 0;
}
static void
dpaa_event_queue_def_conf(struct rte_eventdev *dev, uint8_t queue_id,
struct rte_event_queue_conf *queue_conf)
{
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(dev);
RTE_SET_USED(queue_id);
memset(queue_conf, 0, sizeof(struct rte_event_queue_conf));
queue_conf->nb_atomic_flows = DPAA_EVENT_QUEUE_ATOMIC_FLOWS;
queue_conf->schedule_type = RTE_SCHED_TYPE_PARALLEL;
queue_conf->priority = RTE_EVENT_DEV_PRIORITY_HIGHEST;
}
static int
dpaa_event_queue_setup(struct rte_eventdev *dev, uint8_t queue_id,
const struct rte_event_queue_conf *queue_conf)
{
struct dpaa_eventdev *priv = dev->data->dev_private;
struct dpaa_eventq *evq_info = &priv->evq_info[queue_id];
EVENTDEV_INIT_FUNC_TRACE();
switch (queue_conf->schedule_type) {
case RTE_SCHED_TYPE_PARALLEL:
case RTE_SCHED_TYPE_ATOMIC:
break;
case RTE_SCHED_TYPE_ORDERED:
DPAA_EVENTDEV_ERR("Schedule type is not supported.");
return -1;
}
evq_info->event_queue_cfg = queue_conf->event_queue_cfg;
evq_info->event_queue_id = queue_id;
return 0;
}
static void
dpaa_event_queue_release(struct rte_eventdev *dev, uint8_t queue_id)
{
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(dev);
RTE_SET_USED(queue_id);
}
static void
dpaa_event_port_default_conf_get(struct rte_eventdev *dev, uint8_t port_id,
struct rte_event_port_conf *port_conf)
{
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(dev);
RTE_SET_USED(port_id);
port_conf->new_event_threshold = DPAA_EVENT_MAX_NUM_EVENTS;
port_conf->dequeue_depth = DPAA_EVENT_MAX_PORT_DEQUEUE_DEPTH;
port_conf->enqueue_depth = DPAA_EVENT_MAX_PORT_ENQUEUE_DEPTH;
}
static int
dpaa_event_port_setup(struct rte_eventdev *dev, uint8_t port_id,
const struct rte_event_port_conf *port_conf)
{
struct dpaa_eventdev *eventdev = dev->data->dev_private;
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(port_conf);
dev->data->ports[port_id] = &eventdev->ports[port_id];
return 0;
}
static void
dpaa_event_port_release(void *port)
{
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(port);
}
static int
dpaa_event_port_link(struct rte_eventdev *dev, void *port,
const uint8_t queues[], const uint8_t priorities[],
uint16_t nb_links)
{
struct dpaa_eventdev *priv = dev->data->dev_private;
struct dpaa_port *event_port = (struct dpaa_port *)port;
struct dpaa_eventq *event_queue;
uint8_t eventq_id;
int i;
RTE_SET_USED(dev);
RTE_SET_USED(priorities);
/* First check that input configuration are valid */
for (i = 0; i < nb_links; i++) {
eventq_id = queues[i];
event_queue = &priv->evq_info[eventq_id];
if ((event_queue->event_queue_cfg
& RTE_EVENT_QUEUE_CFG_SINGLE_LINK)
&& (event_queue->event_port)) {
return -EINVAL;
}
}
for (i = 0; i < nb_links; i++) {
eventq_id = queues[i];
event_queue = &priv->evq_info[eventq_id];
event_port->evq_info[i].event_queue_id = eventq_id;
event_port->evq_info[i].ch_id = event_queue->ch_id;
event_queue->event_port = port;
}
event_port->num_linked_evq = event_port->num_linked_evq + i;
return (int)i;
}
static int
dpaa_event_port_unlink(struct rte_eventdev *dev, void *port,
uint8_t queues[], uint16_t nb_links)
{
int i;
uint8_t eventq_id;
struct dpaa_eventq *event_queue;
struct dpaa_eventdev *priv = dev->data->dev_private;
struct dpaa_port *event_port = (struct dpaa_port *)port;
if (!event_port->num_linked_evq)
return nb_links;
for (i = 0; i < nb_links; i++) {
eventq_id = queues[i];
event_port->evq_info[eventq_id].event_queue_id = -1;
event_port->evq_info[eventq_id].ch_id = 0;
event_queue = &priv->evq_info[eventq_id];
event_queue->event_port = NULL;
}
if (event_port->num_linked_evq)
event_port->num_linked_evq = event_port->num_linked_evq - i;
return (int)i;
}
static int
dpaa_event_eth_rx_adapter_caps_get(const struct rte_eventdev *dev,
const struct rte_eth_dev *eth_dev,
uint32_t *caps)
{
const char *ethdev_driver = eth_dev->device->driver->name;
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(dev);
if (!strcmp(ethdev_driver, "net_dpaa"))
*caps = RTE_EVENT_ETH_RX_ADAPTER_DPAA_CAP;
else
*caps = RTE_EVENT_ETH_RX_ADAPTER_SW_CAP;
return 0;
}
static int
dpaa_event_eth_rx_adapter_queue_add(
const struct rte_eventdev *dev,
const struct rte_eth_dev *eth_dev,
int32_t rx_queue_id,
const struct rte_event_eth_rx_adapter_queue_conf *queue_conf)
{
struct dpaa_eventdev *eventdev = dev->data->dev_private;
uint8_t ev_qid = queue_conf->ev.queue_id;
u16 ch_id = eventdev->evq_info[ev_qid].ch_id;
struct dpaa_if *dpaa_intf = eth_dev->data->dev_private;
int ret, i;
EVENTDEV_INIT_FUNC_TRACE();
if (rx_queue_id == -1) {
for (i = 0; i < dpaa_intf->nb_rx_queues; i++) {
ret = dpaa_eth_eventq_attach(eth_dev, i, ch_id,
queue_conf);
if (ret) {
DPAA_EVENTDEV_ERR(
"Event Queue attach failed:%d\n", ret);
goto detach_configured_queues;
}
}
return 0;
}
ret = dpaa_eth_eventq_attach(eth_dev, rx_queue_id, ch_id, queue_conf);
if (ret)
DPAA_EVENTDEV_ERR("dpaa_eth_eventq_attach failed:%d\n", ret);
return ret;
detach_configured_queues:
for (i = (i - 1); i >= 0 ; i--)
dpaa_eth_eventq_detach(eth_dev, i);
return ret;
}
static int
dpaa_event_eth_rx_adapter_queue_del(const struct rte_eventdev *dev,
const struct rte_eth_dev *eth_dev,
int32_t rx_queue_id)
{
int ret, i;
struct dpaa_if *dpaa_intf = eth_dev->data->dev_private;
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(dev);
if (rx_queue_id == -1) {
for (i = 0; i < dpaa_intf->nb_rx_queues; i++) {
ret = dpaa_eth_eventq_detach(eth_dev, i);
if (ret)
DPAA_EVENTDEV_ERR(
"Event Queue detach failed:%d\n", ret);
}
return 0;
}
ret = dpaa_eth_eventq_detach(eth_dev, rx_queue_id);
if (ret)
DPAA_EVENTDEV_ERR("dpaa_eth_eventq_detach failed:%d\n", ret);
return ret;
}
static int
dpaa_event_eth_rx_adapter_start(const struct rte_eventdev *dev,
const struct rte_eth_dev *eth_dev)
{
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(dev);
RTE_SET_USED(eth_dev);
return 0;
}
static int
dpaa_event_eth_rx_adapter_stop(const struct rte_eventdev *dev,
const struct rte_eth_dev *eth_dev)
{
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(dev);
RTE_SET_USED(eth_dev);
return 0;
}
static int
dpaa_eventdev_crypto_caps_get(const struct rte_eventdev *dev,
const struct rte_cryptodev *cdev,
uint32_t *caps)
{
const char *name = cdev->data->name;
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(dev);
if (!strncmp(name, "dpaa_sec-", 9))
*caps = RTE_EVENT_CRYPTO_ADAPTER_DPAA_CAP;
else
return -1;
return 0;
}
static int
dpaa_eventdev_crypto_queue_add_all(const struct rte_eventdev *dev,
const struct rte_cryptodev *cryptodev,
const struct rte_event *ev)
{
struct dpaa_eventdev *priv = dev->data->dev_private;
uint8_t ev_qid = ev->queue_id;
u16 ch_id = priv->evq_info[ev_qid].ch_id;
int i, ret;
EVENTDEV_INIT_FUNC_TRACE();
for (i = 0; i < cryptodev->data->nb_queue_pairs; i++) {
ret = dpaa_sec_eventq_attach(cryptodev, i,
ch_id, ev);
if (ret) {
DPAA_EVENTDEV_ERR("dpaa_sec_eventq_attach failed: ret %d\n",
ret);
goto fail;
}
}
return 0;
fail:
for (i = (i - 1); i >= 0 ; i--)
dpaa_sec_eventq_detach(cryptodev, i);
return ret;
}
static int
dpaa_eventdev_crypto_queue_add(const struct rte_eventdev *dev,
const struct rte_cryptodev *cryptodev,
int32_t rx_queue_id,
const struct rte_event *ev)
{
struct dpaa_eventdev *priv = dev->data->dev_private;
uint8_t ev_qid = ev->queue_id;
u16 ch_id = priv->evq_info[ev_qid].ch_id;
int ret;
EVENTDEV_INIT_FUNC_TRACE();
if (rx_queue_id == -1)
return dpaa_eventdev_crypto_queue_add_all(dev,
cryptodev, ev);
ret = dpaa_sec_eventq_attach(cryptodev, rx_queue_id,
ch_id, ev);
if (ret) {
DPAA_EVENTDEV_ERR(
"dpaa_sec_eventq_attach failed: ret: %d\n", ret);
return ret;
}
return 0;
}
static int
dpaa_eventdev_crypto_queue_del_all(const struct rte_eventdev *dev,
const struct rte_cryptodev *cdev)
{
int i, ret;
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(dev);
for (i = 0; i < cdev->data->nb_queue_pairs; i++) {
ret = dpaa_sec_eventq_detach(cdev, i);
if (ret) {
DPAA_EVENTDEV_ERR(
"dpaa_sec_eventq_detach failed:ret %d\n", ret);
return ret;
}
}
return 0;
}
static int
dpaa_eventdev_crypto_queue_del(const struct rte_eventdev *dev,
const struct rte_cryptodev *cryptodev,
int32_t rx_queue_id)
{
int ret;
EVENTDEV_INIT_FUNC_TRACE();
if (rx_queue_id == -1)
return dpaa_eventdev_crypto_queue_del_all(dev, cryptodev);
ret = dpaa_sec_eventq_detach(cryptodev, rx_queue_id);
if (ret) {
DPAA_EVENTDEV_ERR(
"dpaa_sec_eventq_detach failed: ret: %d\n", ret);
return ret;
}
return 0;
}
static int
dpaa_eventdev_crypto_start(const struct rte_eventdev *dev,
const struct rte_cryptodev *cryptodev)
{
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(dev);
RTE_SET_USED(cryptodev);
return 0;
}
static int
dpaa_eventdev_crypto_stop(const struct rte_eventdev *dev,
const struct rte_cryptodev *cryptodev)
{
EVENTDEV_INIT_FUNC_TRACE();
RTE_SET_USED(dev);
RTE_SET_USED(cryptodev);
return 0;
}
static int
dpaa_eventdev_tx_adapter_create(uint8_t id,
const struct rte_eventdev *dev)
{
RTE_SET_USED(id);
RTE_SET_USED(dev);
/* Nothing to do. Simply return. */
return 0;
}
static int
dpaa_eventdev_tx_adapter_caps(const struct rte_eventdev *dev,
const struct rte_eth_dev *eth_dev,
uint32_t *caps)
{
RTE_SET_USED(dev);
RTE_SET_USED(eth_dev);
*caps = RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT;
return 0;
}
static uint16_t
dpaa_eventdev_txa_enqueue_same_dest(void *port,
struct rte_event ev[],
uint16_t nb_events)
{
struct rte_mbuf *m[DPAA_EVENT_MAX_PORT_ENQUEUE_DEPTH], *m0;
uint8_t qid, i;
RTE_SET_USED(port);
m0 = (struct rte_mbuf *)ev[0].mbuf;
qid = rte_event_eth_tx_adapter_txq_get(m0);
for (i = 0; i < nb_events; i++)
m[i] = (struct rte_mbuf *)ev[i].mbuf;
return rte_eth_tx_burst(m0->port, qid, m, nb_events);
}
static uint16_t
dpaa_eventdev_txa_enqueue(void *port,
struct rte_event ev[],
uint16_t nb_events)
{
struct rte_mbuf *m = (struct rte_mbuf *)ev[0].mbuf;
uint8_t qid, i;
RTE_SET_USED(port);
for (i = 0; i < nb_events; i++) {
qid = rte_event_eth_tx_adapter_txq_get(m);
rte_eth_tx_burst(m->port, qid, &m, 1);
}
return nb_events;
}
static struct rte_eventdev_ops dpaa_eventdev_ops = {
.dev_infos_get = dpaa_event_dev_info_get,
.dev_configure = dpaa_event_dev_configure,
.dev_start = dpaa_event_dev_start,
.dev_stop = dpaa_event_dev_stop,
.dev_close = dpaa_event_dev_close,
.queue_def_conf = dpaa_event_queue_def_conf,
.queue_setup = dpaa_event_queue_setup,
.queue_release = dpaa_event_queue_release,
.port_def_conf = dpaa_event_port_default_conf_get,
.port_setup = dpaa_event_port_setup,
.port_release = dpaa_event_port_release,
.port_link = dpaa_event_port_link,
.port_unlink = dpaa_event_port_unlink,
.timeout_ticks = dpaa_event_dequeue_timeout_ticks,
.eth_rx_adapter_caps_get = dpaa_event_eth_rx_adapter_caps_get,
.eth_rx_adapter_queue_add = dpaa_event_eth_rx_adapter_queue_add,
.eth_rx_adapter_queue_del = dpaa_event_eth_rx_adapter_queue_del,
.eth_rx_adapter_start = dpaa_event_eth_rx_adapter_start,
.eth_rx_adapter_stop = dpaa_event_eth_rx_adapter_stop,
.eth_tx_adapter_caps_get = dpaa_eventdev_tx_adapter_caps,
.eth_tx_adapter_create = dpaa_eventdev_tx_adapter_create,
.crypto_adapter_caps_get = dpaa_eventdev_crypto_caps_get,
.crypto_adapter_queue_pair_add = dpaa_eventdev_crypto_queue_add,
.crypto_adapter_queue_pair_del = dpaa_eventdev_crypto_queue_del,
.crypto_adapter_start = dpaa_eventdev_crypto_start,
.crypto_adapter_stop = dpaa_eventdev_crypto_stop,
};
static int flag_check_handler(__rte_unused const char *key,
const char *value, __rte_unused void *opaque)
{
if (strcmp(value, "1"))
return -1;
return 0;
}
static int
dpaa_event_check_flags(const char *params)
{
struct rte_kvargs *kvlist;
if (params == NULL || params[0] == '\0')
return 0;
kvlist = rte_kvargs_parse(params, NULL);
if (kvlist == NULL)
return 0;
if (!rte_kvargs_count(kvlist, DISABLE_INTR_MODE)) {
rte_kvargs_free(kvlist);
return 0;
}
/* INTR MODE is disabled when there's key-value pair: disable_intr = 1*/
if (rte_kvargs_process(kvlist, DISABLE_INTR_MODE,
flag_check_handler, NULL) < 0) {
rte_kvargs_free(kvlist);
return 0;
}
rte_kvargs_free(kvlist);
return 1;
}
static int
dpaa_event_dev_create(const char *name, const char *params)
{
struct rte_eventdev *eventdev;
struct dpaa_eventdev *priv;
eventdev = rte_event_pmd_vdev_init(name,
sizeof(struct dpaa_eventdev),
rte_socket_id());
if (eventdev == NULL) {
DPAA_EVENTDEV_ERR("Failed to create eventdev vdev %s", name);
goto fail;
}
priv = eventdev->data->dev_private;
eventdev->dev_ops = &dpaa_eventdev_ops;
eventdev->enqueue = dpaa_event_enqueue;
eventdev->enqueue_burst = dpaa_event_enqueue_burst;
if (dpaa_event_check_flags(params)) {
eventdev->dequeue = dpaa_event_dequeue;
eventdev->dequeue_burst = dpaa_event_dequeue_burst;
} else {
priv->intr_mode = 1;
eventdev->dev_ops->timeout_ticks =
dpaa_event_dequeue_timeout_ticks_intr;
eventdev->dequeue = dpaa_event_dequeue_intr;
eventdev->dequeue_burst = dpaa_event_dequeue_burst_intr;
}
eventdev->txa_enqueue = dpaa_eventdev_txa_enqueue;
eventdev->txa_enqueue_same_dest = dpaa_eventdev_txa_enqueue_same_dest;
RTE_LOG(INFO, PMD, "%s eventdev added", name);
/* For secondary processes, the primary has done all the work */
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
priv->max_event_queues = DPAA_EVENT_MAX_QUEUES;
return 0;
fail:
return -EFAULT;
}
static int
dpaa_event_dev_probe(struct rte_vdev_device *vdev)
{
const char *name;
const char *params;
name = rte_vdev_device_name(vdev);
DPAA_EVENTDEV_INFO("Initializing %s", name);
params = rte_vdev_device_args(vdev);
return dpaa_event_dev_create(name, params);
}
static int
dpaa_event_dev_remove(struct rte_vdev_device *vdev)
{
const char *name;
name = rte_vdev_device_name(vdev);
DPAA_EVENTDEV_INFO("Closing %s", name);
return rte_event_pmd_vdev_uninit(name);
}
static struct rte_vdev_driver vdev_eventdev_dpaa_pmd = {
.probe = dpaa_event_dev_probe,
.remove = dpaa_event_dev_remove
};
RTE_PMD_REGISTER_VDEV(EVENTDEV_NAME_DPAA_PMD, vdev_eventdev_dpaa_pmd);
RTE_PMD_REGISTER_PARAM_STRING(EVENTDEV_NAME_DPAA_PMD,
DISABLE_INTR_MODE "=<int>");