f-stack/dpdk/app/test-compress-perf/comp_perf_test_verify.c

443 lines
11 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include <rte_malloc.h>
#include <rte_eal.h>
#include <rte_log.h>
#include <rte_compressdev.h>
#include "comp_perf_test_verify.h"
#include "comp_perf_test_common.h"
void
cperf_verify_test_destructor(void *arg)
{
if (arg) {
comp_perf_free_memory(
((struct cperf_verify_ctx *)arg)->options,
&((struct cperf_verify_ctx *)arg)->mem);
rte_free(arg);
}
}
void *
cperf_verify_test_constructor(uint8_t dev_id, uint16_t qp_id,
struct comp_test_data *options)
{
struct cperf_verify_ctx *ctx = NULL;
ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0);
if (ctx == NULL)
return NULL;
ctx->mem.dev_id = dev_id;
ctx->mem.qp_id = qp_id;
ctx->options = options;
if (!comp_perf_allocate_memory(ctx->options, &ctx->mem) &&
!prepare_bufs(ctx->options, &ctx->mem))
return ctx;
cperf_verify_test_destructor(ctx);
return NULL;
}
static int
main_loop(struct cperf_verify_ctx *ctx, enum rte_comp_xform_type type)
{
struct comp_test_data *test_data = ctx->options;
uint8_t *output_data_ptr = NULL;
size_t *output_data_sz = NULL;
struct cperf_mem_resources *mem = &ctx->mem;
uint8_t dev_id = mem->dev_id;
uint32_t i, iter, num_iter;
struct rte_comp_op **ops, **deq_ops;
void *priv_xform = NULL;
struct rte_comp_xform xform;
size_t output_size = 0;
struct rte_mbuf **input_bufs, **output_bufs;
int res = 0;
int allocated = 0;
uint32_t out_seg_sz;
if (test_data == NULL || !test_data->burst_sz) {
RTE_LOG(ERR, USER1,
"Unknown burst size\n");
return -1;
}
ops = rte_zmalloc_socket(NULL,
2 * mem->total_bufs * sizeof(struct rte_comp_op *),
0, rte_socket_id());
if (ops == NULL) {
RTE_LOG(ERR, USER1,
"Can't allocate memory for ops strucures\n");
return -1;
}
deq_ops = &ops[mem->total_bufs];
if (type == RTE_COMP_COMPRESS) {
xform = (struct rte_comp_xform) {
.type = RTE_COMP_COMPRESS,
.compress = {
.algo = RTE_COMP_ALGO_DEFLATE,
.deflate.huffman = test_data->huffman_enc,
.level = test_data->level,
.window_size = test_data->window_sz,
.chksum = RTE_COMP_CHECKSUM_NONE,
.hash_algo = RTE_COMP_HASH_ALGO_NONE
}
};
output_data_ptr = ctx->mem.compressed_data;
output_data_sz = &ctx->comp_data_sz;
input_bufs = mem->decomp_bufs;
output_bufs = mem->comp_bufs;
out_seg_sz = test_data->out_seg_sz;
} else {
xform = (struct rte_comp_xform) {
.type = RTE_COMP_DECOMPRESS,
.decompress = {
.algo = RTE_COMP_ALGO_DEFLATE,
.chksum = RTE_COMP_CHECKSUM_NONE,
.window_size = test_data->window_sz,
.hash_algo = RTE_COMP_HASH_ALGO_NONE
}
};
output_data_ptr = ctx->mem.decompressed_data;
output_data_sz = &ctx->decomp_data_sz;
input_bufs = mem->comp_bufs;
output_bufs = mem->decomp_bufs;
out_seg_sz = test_data->seg_sz;
}
/* Create private xform */
if (rte_compressdev_private_xform_create(dev_id, &xform,
&priv_xform) < 0) {
RTE_LOG(ERR, USER1, "Private xform could not be created\n");
res = -1;
goto end;
}
num_iter = 1;
for (iter = 0; iter < num_iter; iter++) {
uint32_t total_ops = mem->total_bufs;
uint32_t remaining_ops = mem->total_bufs;
uint32_t total_deq_ops = 0;
uint32_t total_enq_ops = 0;
uint16_t ops_unused = 0;
uint16_t num_enq = 0;
uint16_t num_deq = 0;
output_size = 0;
while (remaining_ops > 0) {
uint16_t num_ops = RTE_MIN(remaining_ops,
test_data->burst_sz);
uint16_t ops_needed = num_ops - ops_unused;
/*
* Move the unused operations from the previous
* enqueue_burst call to the front, to maintain order
*/
if ((ops_unused > 0) && (num_enq > 0)) {
size_t nb_b_to_mov =
ops_unused * sizeof(struct rte_comp_op *);
memmove(ops, &ops[num_enq], nb_b_to_mov);
}
/* Allocate compression operations */
if (ops_needed && !rte_comp_op_bulk_alloc(
mem->op_pool,
&ops[ops_unused],
ops_needed)) {
RTE_LOG(ERR, USER1,
"Could not allocate enough operations\n");
res = -1;
goto end;
}
allocated += ops_needed;
for (i = 0; i < ops_needed; i++) {
/*
* Calculate next buffer to attach to operation
*/
uint32_t buf_id = total_enq_ops + i +
ops_unused;
uint16_t op_id = ops_unused + i;
/* Reset all data in output buffers */
struct rte_mbuf *m = output_bufs[buf_id];
m->pkt_len = out_seg_sz * m->nb_segs;
while (m) {
m->data_len = m->buf_len - m->data_off;
m = m->next;
}
ops[op_id]->m_src = input_bufs[buf_id];
ops[op_id]->m_dst = output_bufs[buf_id];
ops[op_id]->src.offset = 0;
ops[op_id]->src.length =
rte_pktmbuf_pkt_len(input_bufs[buf_id]);
ops[op_id]->dst.offset = 0;
ops[op_id]->flush_flag = RTE_COMP_FLUSH_FINAL;
ops[op_id]->input_chksum = buf_id;
ops[op_id]->private_xform = priv_xform;
}
if (unlikely(test_data->perf_comp_force_stop))
goto end;
num_enq = rte_compressdev_enqueue_burst(dev_id,
mem->qp_id, ops,
num_ops);
if (num_enq == 0) {
struct rte_compressdev_stats stats;
rte_compressdev_stats_get(dev_id, &stats);
if (stats.enqueue_err_count) {
res = -1;
goto end;
}
}
ops_unused = num_ops - num_enq;
remaining_ops -= num_enq;
total_enq_ops += num_enq;
num_deq = rte_compressdev_dequeue_burst(dev_id,
mem->qp_id,
deq_ops,
test_data->burst_sz);
total_deq_ops += num_deq;
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
if (op->status ==
RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED ||
op->status ==
RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE) {
RTE_LOG(ERR, USER1,
"Out of space error occurred due to uncompressible input data expanding to larger than destination buffer. Increase the EXPANSE_RATIO constant to use this data.\n");
res = -1;
goto end;
} else if (op->status !=
RTE_COMP_OP_STATUS_SUCCESS) {
RTE_LOG(ERR, USER1,
"Some operations were not successful\n");
goto end;
}
const void *read_data_addr =
rte_pktmbuf_read(op->m_dst, 0,
op->produced, output_data_ptr);
if (read_data_addr == NULL) {
RTE_LOG(ERR, USER1,
"Could not copy buffer in destination\n");
res = -1;
goto end;
}
if (read_data_addr != output_data_ptr)
rte_memcpy(output_data_ptr,
rte_pktmbuf_mtod(op->m_dst,
uint8_t *),
op->produced);
output_data_ptr += op->produced;
output_size += op->produced;
}
if (iter == num_iter - 1) {
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
struct rte_mbuf *m = op->m_dst;
m->pkt_len = op->produced;
uint32_t remaining_data = op->produced;
uint16_t data_to_append;
while (remaining_data > 0) {
data_to_append =
RTE_MIN(remaining_data,
out_seg_sz);
m->data_len = data_to_append;
remaining_data -=
data_to_append;
m = m->next;
}
}
}
rte_mempool_put_bulk(mem->op_pool,
(void **)deq_ops, num_deq);
allocated -= num_deq;
}
/* Dequeue the last operations */
while (total_deq_ops < total_ops) {
if (unlikely(test_data->perf_comp_force_stop))
goto end;
num_deq = rte_compressdev_dequeue_burst(dev_id,
mem->qp_id,
deq_ops,
test_data->burst_sz);
if (num_deq == 0) {
struct rte_compressdev_stats stats;
rte_compressdev_stats_get(dev_id, &stats);
if (stats.dequeue_err_count) {
res = -1;
goto end;
}
}
total_deq_ops += num_deq;
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
if (op->status ==
RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED ||
op->status ==
RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE) {
RTE_LOG(ERR, USER1,
"Out of space error occurred due to uncompressible input data expanding to larger than destination buffer. Increase the EXPANSE_RATIO constant to use this data.\n");
res = -1;
goto end;
} else if (op->status !=
RTE_COMP_OP_STATUS_SUCCESS) {
RTE_LOG(ERR, USER1,
"Some operations were not successful\n");
goto end;
}
const void *read_data_addr =
rte_pktmbuf_read(op->m_dst,
op->dst.offset,
op->produced, output_data_ptr);
if (read_data_addr == NULL) {
RTE_LOG(ERR, USER1,
"Could not copy buffer in destination\n");
res = -1;
goto end;
}
if (read_data_addr != output_data_ptr)
rte_memcpy(output_data_ptr,
rte_pktmbuf_mtod(
op->m_dst, uint8_t *),
op->produced);
output_data_ptr += op->produced;
output_size += op->produced;
}
if (iter == num_iter - 1) {
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
struct rte_mbuf *m = op->m_dst;
m->pkt_len = op->produced;
uint32_t remaining_data = op->produced;
uint16_t data_to_append;
while (remaining_data > 0) {
data_to_append =
RTE_MIN(remaining_data,
out_seg_sz);
m->data_len = data_to_append;
remaining_data -=
data_to_append;
m = m->next;
}
}
}
rte_mempool_put_bulk(mem->op_pool,
(void **)deq_ops, num_deq);
allocated -= num_deq;
}
}
if (output_data_sz)
*output_data_sz = output_size;
end:
rte_mempool_put_bulk(mem->op_pool, (void **)ops, allocated);
rte_compressdev_private_xform_free(dev_id, priv_xform);
rte_free(ops);
if (test_data->perf_comp_force_stop) {
RTE_LOG(ERR, USER1,
"lcore: %d Perf. test has been aborted by user\n",
mem->lcore_id);
res = -1;
}
return res;
}
int
cperf_verify_test_runner(void *test_ctx)
{
struct cperf_verify_ctx *ctx = test_ctx;
struct comp_test_data *test_data = ctx->options;
int ret = EXIT_SUCCESS;
static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);
uint32_t lcore = rte_lcore_id();
ctx->mem.lcore_id = lcore;
test_data->ratio = 0;
if (main_loop(ctx, RTE_COMP_COMPRESS) < 0) {
ret = EXIT_FAILURE;
goto end;
}
if (main_loop(ctx, RTE_COMP_DECOMPRESS) < 0) {
ret = EXIT_FAILURE;
goto end;
}
if (ctx->decomp_data_sz != test_data->input_data_sz) {
RTE_LOG(ERR, USER1,
"Decompressed data length not equal to input data length\n");
RTE_LOG(ERR, USER1,
"Decompressed size = %zu, expected = %zu\n",
ctx->decomp_data_sz, test_data->input_data_sz);
ret = EXIT_FAILURE;
goto end;
} else {
if (memcmp(ctx->mem.decompressed_data,
test_data->input_data,
test_data->input_data_sz) != 0) {
RTE_LOG(ERR, USER1,
"Decompressed data is not the same as file data\n");
ret = EXIT_FAILURE;
goto end;
}
}
ctx->ratio = (double) ctx->comp_data_sz /
test_data->input_data_sz * 100;
if (!ctx->silent) {
if (rte_atomic16_test_and_set(&display_once)) {
printf("%12s%6s%12s%17s\n",
"lcore id", "Level", "Comp size", "Comp ratio [%]");
}
printf("%12u%6u%12zu%17.2f\n",
ctx->mem.lcore_id,
test_data->level, ctx->comp_data_sz, ctx->ratio);
}
end:
return ret;
}