f-stack/freebsd/arm/amlogic/aml8726/aml8726_timer.c

396 lines
10 KiB
C

/*-
* Copyright 2013-2015 John Wehle <john@feith.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* Amlogic aml8726 timer driver.
*
* 16 bit Timer A is used for the event timer / hard clock.
* 32 bit Timer E is used for the timecounter / DELAY.
*
* The current implementation doesn't use Timers B-D. Another approach is
* to split the timers between the cores implementing per cpu event timers.
*
* The timers all share the MUX register which requires a mutex to serialize
* access. The mutex is also used to avoid potential problems between the
* interrupt handler and timer_start / timer_stop.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/rman.h>
#include <sys/timetc.h>
#include <sys/timeet.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
struct aml8726_timer_softc {
device_t dev;
struct resource * res[2];
struct mtx mtx;
void * ih_cookie;
struct eventtimer et;
uint32_t first_ticks;
uint32_t period_ticks;
struct timecounter tc;
};
static struct resource_spec aml8726_timer_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE }, /* INT_TIMER_A */
{ -1, 0 }
};
/*
* devclass_get_device / device_get_softc could be used
* to dynamically locate this, however the timers are a
* required device which can't be unloaded so there's
* no need for the overhead.
*/
static struct aml8726_timer_softc *aml8726_timer_sc = NULL;
#define AML_TIMER_LOCK(sc) mtx_lock_spin(&(sc)->mtx)
#define AML_TIMER_UNLOCK(sc) mtx_unlock_spin(&(sc)->mtx)
#define AML_TIMER_LOCK_INIT(sc) \
mtx_init(&(sc)->mtx, device_get_nameunit((sc)->dev), \
"timer", MTX_SPIN)
#define AML_TIMER_LOCK_DESTROY(sc) mtx_destroy(&(sc)->mtx);
#define AML_TIMER_MUX_REG 0
#define AML_TIMER_INPUT_1us 0
#define AML_TIMER_INPUT_10us 1
#define AML_TIMER_INPUT_100us 2
#define AML_TIMER_INPUT_1ms 3
#define AML_TIMER_INPUT_MASK 3
#define AML_TIMER_A_INPUT_MASK 3
#define AML_TIMER_A_INPUT_SHIFT 0
#define AML_TIMER_B_INPUT_MASK (3 << 2)
#define AML_TIMER_B_INPUT_SHIFT 2
#define AML_TIMER_C_INPUT_MASK (3 << 4)
#define AML_TIMER_C_INPUT_SHIFT 4
#define AML_TIMER_D_INPUT_MASK (3 << 6)
#define AML_TIMER_D_INPUT_SHIFT 6
#define AML_TIMER_E_INPUT_SYS 0
#define AML_TIMER_E_INPUT_1us 1
#define AML_TIMER_E_INPUT_10us 2
#define AML_TIMER_E_INPUT_100us 3
#define AML_TIMER_E_INPUT_1ms 4
#define AML_TIMER_E_INPUT_MASK (7 << 8)
#define AML_TIMER_E_INPUT_SHIFT 8
#define AML_TIMER_A_PERIODIC (1 << 12)
#define AML_TIMER_B_PERIODIC (1 << 13)
#define AML_TIMER_C_PERIODIC (1 << 14)
#define AML_TIMER_D_PERIODIC (1 << 15)
#define AML_TIMER_A_EN (1 << 16)
#define AML_TIMER_B_EN (1 << 17)
#define AML_TIMER_C_EN (1 << 18)
#define AML_TIMER_D_EN (1 << 19)
#define AML_TIMER_E_EN (1 << 20)
#define AML_TIMER_A_REG 4
#define AML_TIMER_B_REG 8
#define AML_TIMER_C_REG 12
#define AML_TIMER_D_REG 16
#define AML_TIMER_E_REG 20
#define CSR_WRITE_4(sc, reg, val) bus_write_4((sc)->res[0], reg, (val))
#define CSR_READ_4(sc, reg) bus_read_4((sc)->res[0], reg)
static unsigned
aml8726_get_timecount(struct timecounter *tc)
{
struct aml8726_timer_softc *sc =
(struct aml8726_timer_softc *)tc->tc_priv;
return CSR_READ_4(sc, AML_TIMER_E_REG);
}
static int
aml8726_hardclock(void *arg)
{
struct aml8726_timer_softc *sc = (struct aml8726_timer_softc *)arg;
AML_TIMER_LOCK(sc);
if (sc->first_ticks != 0 && sc->period_ticks != 0) {
sc->first_ticks = 0;
CSR_WRITE_4(sc, AML_TIMER_A_REG, sc->period_ticks);
CSR_WRITE_4(sc, AML_TIMER_MUX_REG,
(CSR_READ_4(sc, AML_TIMER_MUX_REG) |
AML_TIMER_A_PERIODIC | AML_TIMER_A_EN));
}
AML_TIMER_UNLOCK(sc);
if (sc->et.et_active)
sc->et.et_event_cb(&sc->et, sc->et.et_arg);
return (FILTER_HANDLED);
}
static int
aml8726_timer_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
{
struct aml8726_timer_softc *sc =
(struct aml8726_timer_softc *)et->et_priv;
uint32_t first_ticks;
uint32_t period_ticks;
uint32_t periodic;
uint32_t ticks;
first_ticks = (first * et->et_frequency) / SBT_1S;
period_ticks = (period * et->et_frequency) / SBT_1S;
if (first_ticks != 0) {
ticks = first_ticks;
periodic = 0;
} else {
ticks = period_ticks;
periodic = AML_TIMER_A_PERIODIC;
}
if (ticks == 0)
return (EINVAL);
AML_TIMER_LOCK(sc);
sc->first_ticks = first_ticks;
sc->period_ticks = period_ticks;
CSR_WRITE_4(sc, AML_TIMER_A_REG, ticks);
CSR_WRITE_4(sc, AML_TIMER_MUX_REG,
((CSR_READ_4(sc, AML_TIMER_MUX_REG) & ~AML_TIMER_A_PERIODIC) |
AML_TIMER_A_EN | periodic));
AML_TIMER_UNLOCK(sc);
return (0);
}
static int
aml8726_timer_stop(struct eventtimer *et)
{
struct aml8726_timer_softc *sc =
(struct aml8726_timer_softc *)et->et_priv;
AML_TIMER_LOCK(sc);
CSR_WRITE_4(sc, AML_TIMER_MUX_REG,
(CSR_READ_4(sc, AML_TIMER_MUX_REG) & ~AML_TIMER_A_EN));
AML_TIMER_UNLOCK(sc);
return (0);
}
static int
aml8726_timer_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "amlogic,meson6-timer"))
return (ENXIO);
device_set_desc(dev, "Amlogic aml8726 timer");
return (BUS_PROBE_DEFAULT);
}
static int
aml8726_timer_attach(device_t dev)
{
struct aml8726_timer_softc *sc = device_get_softc(dev);
/* There should be exactly one instance. */
if (aml8726_timer_sc != NULL)
return (ENXIO);
sc->dev = dev;
if (bus_alloc_resources(dev, aml8726_timer_spec, sc->res)) {
device_printf(dev, "can not allocate resources for device\n");
return (ENXIO);
}
/*
* Disable the timers, select the input for each timer,
* clear timer E, and then enable timer E.
*/
CSR_WRITE_4(sc, AML_TIMER_MUX_REG,
((CSR_READ_4(sc, AML_TIMER_MUX_REG) &
~(AML_TIMER_A_EN | AML_TIMER_A_INPUT_MASK |
AML_TIMER_E_EN | AML_TIMER_E_INPUT_MASK)) |
(AML_TIMER_INPUT_1us << AML_TIMER_A_INPUT_SHIFT) |
(AML_TIMER_E_INPUT_1us << AML_TIMER_E_INPUT_SHIFT)));
CSR_WRITE_4(sc, AML_TIMER_E_REG, 0);
CSR_WRITE_4(sc, AML_TIMER_MUX_REG,
(CSR_READ_4(sc, AML_TIMER_MUX_REG) | AML_TIMER_E_EN));
/*
* Initialize the mutex prior to installing the interrupt handler
* in case of a spurious interrupt.
*/
AML_TIMER_LOCK_INIT(sc);
if (bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK,
aml8726_hardclock, NULL, sc, &sc->ih_cookie)) {
device_printf(dev, "could not setup interrupt handler\n");
bus_release_resources(dev, aml8726_timer_spec, sc->res);
AML_TIMER_LOCK_DESTROY(sc);
return (ENXIO);
}
aml8726_timer_sc = sc;
sc->et.et_name = "aml8726 timer A";
sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT;
sc->et.et_frequency = 1000000;
sc->et.et_quality = 1000;
sc->et.et_min_period = (0x00000002LLU * SBT_1S) / sc->et.et_frequency;
sc->et.et_max_period = (0x0000fffeLLU * SBT_1S) / sc->et.et_frequency;
sc->et.et_start = aml8726_timer_start;
sc->et.et_stop = aml8726_timer_stop;
sc->et.et_priv = sc;
et_register(&sc->et);
sc->tc.tc_get_timecount = aml8726_get_timecount;
sc->tc.tc_name = "aml8726 timer E";
sc->tc.tc_frequency = 1000000;
sc->tc.tc_counter_mask = ~0u;
sc->tc.tc_quality = 1000;
sc->tc.tc_priv = sc;
tc_init(&sc->tc);
return (0);
}
static int
aml8726_timer_detach(device_t dev)
{
return (EBUSY);
}
static device_method_t aml8726_timer_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, aml8726_timer_probe),
DEVMETHOD(device_attach, aml8726_timer_attach),
DEVMETHOD(device_detach, aml8726_timer_detach),
DEVMETHOD_END
};
static driver_t aml8726_timer_driver = {
"timer",
aml8726_timer_methods,
sizeof(struct aml8726_timer_softc),
};
static devclass_t aml8726_timer_devclass;
EARLY_DRIVER_MODULE(timer, simplebus, aml8726_timer_driver,
aml8726_timer_devclass, 0, 0, BUS_PASS_TIMER);
void
DELAY(int usec)
{
uint32_t counter;
uint32_t delta, now, previous, remaining;
/* Timer has not yet been initialized */
if (aml8726_timer_sc == NULL) {
for (; usec > 0; usec--)
for (counter = 200; counter > 0; counter--) {
/* Prevent gcc from optimizing out the loop */
cpufunc_nullop();
}
return;
}
/*
* Some of the other timers in the source tree do this calculation as:
*
* usec * ((sc->tc.tc_frequency / 1000000) + 1)
*
* which gives a fairly pessimistic result when tc_frequency is an exact
* multiple of 1000000. Given the data type and typical values for
* tc_frequency adding 999999 shouldn't overflow.
*/
remaining = usec * ((aml8726_timer_sc->tc.tc_frequency + 999999) /
1000000);
/*
* We add one since the first iteration may catch the counter just
* as it is changing.
*/
remaining += 1;
previous = aml8726_get_timecount(&aml8726_timer_sc->tc);
for ( ; ; ) {
now = aml8726_get_timecount(&aml8726_timer_sc->tc);
/*
* If the timer has rolled over, then we have the case:
*
* if (previous > now) {
* delta = (0 - previous) + now
* }
*
* which is really no different then the normal case.
* Both cases are simply:
*
* delta = now - previous.
*/
delta = now - previous;
if (delta >= remaining)
break;
previous = now;
remaining -= delta;
}
}