f-stack/freebsd/arm64/arm64/machdep.c

1030 lines
23 KiB
C

/*-
* Copyright (c) 2014 Andrew Turner
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include "opt_platform.h"
#include "opt_ddb.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/cons.h>
#include <sys/cpu.h>
#include <sys/devmap.h>
#include <sys/efi.h>
#include <sys/exec.h>
#include <sys/imgact.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/linker.h>
#include <sys/msgbuf.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/reboot.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/signalvar.h>
#include <sys/syscallsubr.h>
#include <sys/sysent.h>
#include <sys/sysproto.h>
#include <sys/ucontext.h>
#include <sys/vdso.h>
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_pager.h>
#include <machine/armreg.h>
#include <machine/cpu.h>
#include <machine/debug_monitor.h>
#include <machine/kdb.h>
#include <machine/machdep.h>
#include <machine/metadata.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/reg.h>
#include <machine/vmparam.h>
#ifdef VFP
#include <machine/vfp.h>
#endif
#ifdef FDT
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#endif
struct pcpu __pcpu[MAXCPU];
static struct trapframe proc0_tf;
vm_paddr_t phys_avail[PHYS_AVAIL_SIZE + 2];
vm_paddr_t dump_avail[PHYS_AVAIL_SIZE + 2];
int early_boot = 1;
int cold = 1;
long realmem = 0;
long Maxmem = 0;
#define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1))
vm_paddr_t physmap[PHYSMAP_SIZE];
u_int physmap_idx;
struct kva_md_info kmi;
int64_t dcache_line_size; /* The minimum D cache line size */
int64_t icache_line_size; /* The minimum I cache line size */
int64_t idcache_line_size; /* The minimum cache line size */
int64_t dczva_line_size; /* The size of cache line the dc zva zeroes */
/* pagezero_* implementations are provided in support.S */
void pagezero_simple(void *);
void pagezero_cache(void *);
/* pagezero_simple is default pagezero */
void (*pagezero)(void *p) = pagezero_simple;
static void
cpu_startup(void *dummy)
{
identify_cpu();
vm_ksubmap_init(&kmi);
bufinit();
vm_pager_bufferinit();
}
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
int
cpu_idle_wakeup(int cpu)
{
return (0);
}
int
fill_regs(struct thread *td, struct reg *regs)
{
struct trapframe *frame;
frame = td->td_frame;
regs->sp = frame->tf_sp;
regs->lr = frame->tf_lr;
regs->elr = frame->tf_elr;
regs->spsr = frame->tf_spsr;
memcpy(regs->x, frame->tf_x, sizeof(regs->x));
return (0);
}
int
set_regs(struct thread *td, struct reg *regs)
{
struct trapframe *frame;
frame = td->td_frame;
frame->tf_sp = regs->sp;
frame->tf_lr = regs->lr;
frame->tf_elr = regs->elr;
frame->tf_spsr = regs->spsr;
memcpy(frame->tf_x, regs->x, sizeof(frame->tf_x));
return (0);
}
int
fill_fpregs(struct thread *td, struct fpreg *regs)
{
#ifdef VFP
struct pcb *pcb;
pcb = td->td_pcb;
if ((pcb->pcb_fpflags & PCB_FP_STARTED) != 0) {
/*
* If we have just been running VFP instructions we will
* need to save the state to memcpy it below.
*/
vfp_save_state(td, pcb);
memcpy(regs->fp_q, pcb->pcb_vfp, sizeof(regs->fp_q));
regs->fp_cr = pcb->pcb_fpcr;
regs->fp_sr = pcb->pcb_fpsr;
} else
#endif
memset(regs->fp_q, 0, sizeof(regs->fp_q));
return (0);
}
int
set_fpregs(struct thread *td, struct fpreg *regs)
{
#ifdef VFP
struct pcb *pcb;
pcb = td->td_pcb;
memcpy(pcb->pcb_vfp, regs->fp_q, sizeof(regs->fp_q));
pcb->pcb_fpcr = regs->fp_cr;
pcb->pcb_fpsr = regs->fp_sr;
#endif
return (0);
}
int
fill_dbregs(struct thread *td, struct dbreg *regs)
{
panic("ARM64TODO: fill_dbregs");
}
int
set_dbregs(struct thread *td, struct dbreg *regs)
{
panic("ARM64TODO: set_dbregs");
}
int
ptrace_set_pc(struct thread *td, u_long addr)
{
panic("ARM64TODO: ptrace_set_pc");
return (0);
}
int
ptrace_single_step(struct thread *td)
{
td->td_frame->tf_spsr |= PSR_SS;
td->td_pcb->pcb_flags |= PCB_SINGLE_STEP;
return (0);
}
int
ptrace_clear_single_step(struct thread *td)
{
td->td_frame->tf_spsr &= ~PSR_SS;
td->td_pcb->pcb_flags &= ~PCB_SINGLE_STEP;
return (0);
}
void
exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
{
struct trapframe *tf = td->td_frame;
memset(tf, 0, sizeof(struct trapframe));
/*
* We need to set x0 for init as it doesn't call
* cpu_set_syscall_retval to copy the value. We also
* need to set td_retval for the cases where we do.
*/
tf->tf_x[0] = td->td_retval[0] = stack;
tf->tf_sp = STACKALIGN(stack);
tf->tf_lr = imgp->entry_addr;
tf->tf_elr = imgp->entry_addr;
}
/* Sanity check these are the same size, they will be memcpy'd to and fro */
CTASSERT(sizeof(((struct trapframe *)0)->tf_x) ==
sizeof((struct gpregs *)0)->gp_x);
CTASSERT(sizeof(((struct trapframe *)0)->tf_x) ==
sizeof((struct reg *)0)->x);
int
get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
{
struct trapframe *tf = td->td_frame;
if (clear_ret & GET_MC_CLEAR_RET) {
mcp->mc_gpregs.gp_x[0] = 0;
mcp->mc_gpregs.gp_spsr = tf->tf_spsr & ~PSR_C;
} else {
mcp->mc_gpregs.gp_x[0] = tf->tf_x[0];
mcp->mc_gpregs.gp_spsr = tf->tf_spsr;
}
memcpy(&mcp->mc_gpregs.gp_x[1], &tf->tf_x[1],
sizeof(mcp->mc_gpregs.gp_x[1]) * (nitems(mcp->mc_gpregs.gp_x) - 1));
mcp->mc_gpregs.gp_sp = tf->tf_sp;
mcp->mc_gpregs.gp_lr = tf->tf_lr;
mcp->mc_gpregs.gp_elr = tf->tf_elr;
return (0);
}
int
set_mcontext(struct thread *td, mcontext_t *mcp)
{
struct trapframe *tf = td->td_frame;
memcpy(tf->tf_x, mcp->mc_gpregs.gp_x, sizeof(tf->tf_x));
tf->tf_sp = mcp->mc_gpregs.gp_sp;
tf->tf_lr = mcp->mc_gpregs.gp_lr;
tf->tf_elr = mcp->mc_gpregs.gp_elr;
tf->tf_spsr = mcp->mc_gpregs.gp_spsr;
return (0);
}
static void
get_fpcontext(struct thread *td, mcontext_t *mcp)
{
#ifdef VFP
struct pcb *curpcb;
critical_enter();
curpcb = curthread->td_pcb;
if ((curpcb->pcb_fpflags & PCB_FP_STARTED) != 0) {
/*
* If we have just been running VFP instructions we will
* need to save the state to memcpy it below.
*/
vfp_save_state(td, curpcb);
memcpy(mcp->mc_fpregs.fp_q, curpcb->pcb_vfp,
sizeof(mcp->mc_fpregs));
mcp->mc_fpregs.fp_cr = curpcb->pcb_fpcr;
mcp->mc_fpregs.fp_sr = curpcb->pcb_fpsr;
mcp->mc_fpregs.fp_flags = curpcb->pcb_fpflags;
mcp->mc_flags |= _MC_FP_VALID;
}
critical_exit();
#endif
}
static void
set_fpcontext(struct thread *td, mcontext_t *mcp)
{
#ifdef VFP
struct pcb *curpcb;
critical_enter();
if ((mcp->mc_flags & _MC_FP_VALID) != 0) {
curpcb = curthread->td_pcb;
/*
* Discard any vfp state for the current thread, we
* are about to override it.
*/
vfp_discard(td);
memcpy(curpcb->pcb_vfp, mcp->mc_fpregs.fp_q,
sizeof(mcp->mc_fpregs));
curpcb->pcb_fpcr = mcp->mc_fpregs.fp_cr;
curpcb->pcb_fpsr = mcp->mc_fpregs.fp_sr;
curpcb->pcb_fpflags = mcp->mc_fpregs.fp_flags;
}
critical_exit();
#endif
}
void
cpu_idle(int busy)
{
spinlock_enter();
if (!busy)
cpu_idleclock();
if (!sched_runnable())
__asm __volatile(
"dsb sy \n"
"wfi \n");
if (!busy)
cpu_activeclock();
spinlock_exit();
}
void
cpu_halt(void)
{
/* We should have shutdown by now, if not enter a low power sleep */
intr_disable();
while (1) {
__asm __volatile("wfi");
}
}
/*
* Flush the D-cache for non-DMA I/O so that the I-cache can
* be made coherent later.
*/
void
cpu_flush_dcache(void *ptr, size_t len)
{
/* ARM64TODO TBD */
}
/* Get current clock frequency for the given CPU ID. */
int
cpu_est_clockrate(int cpu_id, uint64_t *rate)
{
panic("ARM64TODO: cpu_est_clockrate");
}
void
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
{
pcpu->pc_acpi_id = 0xffffffff;
}
void
spinlock_enter(void)
{
struct thread *td;
register_t daif;
td = curthread;
if (td->td_md.md_spinlock_count == 0) {
daif = intr_disable();
td->td_md.md_spinlock_count = 1;
td->td_md.md_saved_daif = daif;
} else
td->td_md.md_spinlock_count++;
critical_enter();
}
void
spinlock_exit(void)
{
struct thread *td;
register_t daif;
td = curthread;
critical_exit();
daif = td->td_md.md_saved_daif;
td->td_md.md_spinlock_count--;
if (td->td_md.md_spinlock_count == 0)
intr_restore(daif);
}
#ifndef _SYS_SYSPROTO_H_
struct sigreturn_args {
ucontext_t *ucp;
};
#endif
int
sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
{
ucontext_t uc;
uint32_t spsr;
if (uap == NULL)
return (EFAULT);
if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
return (EFAULT);
spsr = uc.uc_mcontext.mc_gpregs.gp_spsr;
if ((spsr & PSR_M_MASK) != PSR_M_EL0t ||
(spsr & (PSR_F | PSR_I | PSR_A | PSR_D)) != 0)
return (EINVAL);
set_mcontext(td, &uc.uc_mcontext);
set_fpcontext(td, &uc.uc_mcontext);
/* Restore signal mask. */
kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
return (EJUSTRETURN);
}
/*
* Construct a PCB from a trapframe. This is called from kdb_trap() where
* we want to start a backtrace from the function that caused us to enter
* the debugger. We have the context in the trapframe, but base the trace
* on the PCB. The PCB doesn't have to be perfect, as long as it contains
* enough for a backtrace.
*/
void
makectx(struct trapframe *tf, struct pcb *pcb)
{
int i;
for (i = 0; i < PCB_LR; i++)
pcb->pcb_x[i] = tf->tf_x[i];
pcb->pcb_x[PCB_LR] = tf->tf_lr;
pcb->pcb_pc = tf->tf_elr;
pcb->pcb_sp = tf->tf_sp;
}
void
sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
{
struct thread *td;
struct proc *p;
struct trapframe *tf;
struct sigframe *fp, frame;
struct sigacts *psp;
struct sysentvec *sysent;
int code, onstack, sig;
td = curthread;
p = td->td_proc;
PROC_LOCK_ASSERT(p, MA_OWNED);
sig = ksi->ksi_signo;
code = ksi->ksi_code;
psp = p->p_sigacts;
mtx_assert(&psp->ps_mtx, MA_OWNED);
tf = td->td_frame;
onstack = sigonstack(tf->tf_sp);
CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
catcher, sig);
/* Allocate and validate space for the signal handler context. */
if ((td->td_pflags & TDP_ALTSTACK) != 0 && !onstack &&
SIGISMEMBER(psp->ps_sigonstack, sig)) {
fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp +
td->td_sigstk.ss_size);
#if defined(COMPAT_43)
td->td_sigstk.ss_flags |= SS_ONSTACK;
#endif
} else {
fp = (struct sigframe *)td->td_frame->tf_sp;
}
/* Make room, keeping the stack aligned */
fp--;
fp = (struct sigframe *)STACKALIGN(fp);
/* Fill in the frame to copy out */
get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
get_fpcontext(td, &frame.sf_uc.uc_mcontext);
frame.sf_si = ksi->ksi_info;
frame.sf_uc.uc_sigmask = *mask;
frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
frame.sf_uc.uc_stack = td->td_sigstk;
mtx_unlock(&psp->ps_mtx);
PROC_UNLOCK(td->td_proc);
/* Copy the sigframe out to the user's stack. */
if (copyout(&frame, fp, sizeof(*fp)) != 0) {
/* Process has trashed its stack. Kill it. */
CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
PROC_LOCK(p);
sigexit(td, SIGILL);
}
tf->tf_x[0]= sig;
tf->tf_x[1] = (register_t)&fp->sf_si;
tf->tf_x[2] = (register_t)&fp->sf_uc;
tf->tf_elr = (register_t)catcher;
tf->tf_sp = (register_t)fp;
sysent = p->p_sysent;
if (sysent->sv_sigcode_base != 0)
tf->tf_lr = (register_t)sysent->sv_sigcode_base;
else
tf->tf_lr = (register_t)(sysent->sv_psstrings -
*(sysent->sv_szsigcode));
CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_elr,
tf->tf_sp);
PROC_LOCK(p);
mtx_lock(&psp->ps_mtx);
}
static void
init_proc0(vm_offset_t kstack)
{
struct pcpu *pcpup = &__pcpu[0];
proc_linkup0(&proc0, &thread0);
thread0.td_kstack = kstack;
thread0.td_pcb = (struct pcb *)(thread0.td_kstack) - 1;
thread0.td_pcb->pcb_fpflags = 0;
thread0.td_pcb->pcb_vfpcpu = UINT_MAX;
thread0.td_frame = &proc0_tf;
pcpup->pc_curpcb = thread0.td_pcb;
}
typedef struct {
uint32_t type;
uint64_t phys_start;
uint64_t virt_start;
uint64_t num_pages;
uint64_t attr;
} EFI_MEMORY_DESCRIPTOR;
static int
add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
u_int *physmap_idxp)
{
u_int i, insert_idx, _physmap_idx;
_physmap_idx = *physmap_idxp;
if (length == 0)
return (1);
/*
* Find insertion point while checking for overlap. Start off by
* assuming the new entry will be added to the end.
*/
insert_idx = _physmap_idx;
for (i = 0; i <= _physmap_idx; i += 2) {
if (base < physmap[i + 1]) {
if (base + length <= physmap[i]) {
insert_idx = i;
break;
}
if (boothowto & RB_VERBOSE)
printf(
"Overlapping memory regions, ignoring second region\n");
return (1);
}
}
/* See if we can prepend to the next entry. */
if (insert_idx <= _physmap_idx &&
base + length == physmap[insert_idx]) {
physmap[insert_idx] = base;
return (1);
}
/* See if we can append to the previous entry. */
if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
physmap[insert_idx - 1] += length;
return (1);
}
_physmap_idx += 2;
*physmap_idxp = _physmap_idx;
if (_physmap_idx == PHYSMAP_SIZE) {
printf(
"Too many segments in the physical address map, giving up\n");
return (0);
}
/*
* Move the last 'N' entries down to make room for the new
* entry if needed.
*/
for (i = _physmap_idx; i > insert_idx; i -= 2) {
physmap[i] = physmap[i - 2];
physmap[i + 1] = physmap[i - 1];
}
/* Insert the new entry. */
physmap[insert_idx] = base;
physmap[insert_idx + 1] = base + length;
return (1);
}
#ifdef FDT
static void
add_fdt_mem_regions(struct mem_region *mr, int mrcnt, vm_paddr_t *physmap,
u_int *physmap_idxp)
{
for (int i = 0; i < mrcnt; i++) {
if (!add_physmap_entry(mr[i].mr_start, mr[i].mr_size, physmap,
physmap_idxp))
break;
}
}
#endif
#define efi_next_descriptor(ptr, size) \
((struct efi_md *)(((uint8_t *) ptr) + size))
static void
add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap,
u_int *physmap_idxp)
{
struct efi_md *map, *p;
const char *type;
size_t efisz;
int ndesc, i;
static const char *types[] = {
"Reserved",
"LoaderCode",
"LoaderData",
"BootServicesCode",
"BootServicesData",
"RuntimeServicesCode",
"RuntimeServicesData",
"ConventionalMemory",
"UnusableMemory",
"ACPIReclaimMemory",
"ACPIMemoryNVS",
"MemoryMappedIO",
"MemoryMappedIOPortSpace",
"PalCode"
};
/*
* Memory map data provided by UEFI via the GetMemoryMap
* Boot Services API.
*/
efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
map = (struct efi_md *)((uint8_t *)efihdr + efisz);
if (efihdr->descriptor_size == 0)
return;
ndesc = efihdr->memory_size / efihdr->descriptor_size;
if (boothowto & RB_VERBOSE)
printf("%23s %12s %12s %8s %4s\n",
"Type", "Physical", "Virtual", "#Pages", "Attr");
for (i = 0, p = map; i < ndesc; i++,
p = efi_next_descriptor(p, efihdr->descriptor_size)) {
if (boothowto & RB_VERBOSE) {
if (p->md_type <= EFI_MD_TYPE_PALCODE)
type = types[p->md_type];
else
type = "<INVALID>";
printf("%23s %012lx %12p %08lx ", type, p->md_phys,
p->md_virt, p->md_pages);
if (p->md_attr & EFI_MD_ATTR_UC)
printf("UC ");
if (p->md_attr & EFI_MD_ATTR_WC)
printf("WC ");
if (p->md_attr & EFI_MD_ATTR_WT)
printf("WT ");
if (p->md_attr & EFI_MD_ATTR_WB)
printf("WB ");
if (p->md_attr & EFI_MD_ATTR_UCE)
printf("UCE ");
if (p->md_attr & EFI_MD_ATTR_WP)
printf("WP ");
if (p->md_attr & EFI_MD_ATTR_RP)
printf("RP ");
if (p->md_attr & EFI_MD_ATTR_XP)
printf("XP ");
if (p->md_attr & EFI_MD_ATTR_RT)
printf("RUNTIME");
printf("\n");
}
switch (p->md_type) {
case EFI_MD_TYPE_CODE:
case EFI_MD_TYPE_DATA:
case EFI_MD_TYPE_BS_CODE:
case EFI_MD_TYPE_BS_DATA:
case EFI_MD_TYPE_FREE:
/*
* We're allowed to use any entry with these types.
*/
break;
default:
continue;
}
if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE),
physmap, physmap_idxp))
break;
}
}
#ifdef FDT
static void
try_load_dtb(caddr_t kmdp)
{
vm_offset_t dtbp;
dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
if (dtbp == (vm_offset_t)NULL) {
printf("ERROR loading DTB\n");
return;
}
if (OF_install(OFW_FDT, 0) == FALSE)
panic("Cannot install FDT");
if (OF_init((void *)dtbp) != 0)
panic("OF_init failed with the found device tree");
}
#endif
static void
cache_setup(void)
{
int dcache_line_shift, icache_line_shift, dczva_line_shift;
uint32_t ctr_el0;
uint32_t dczid_el0;
ctr_el0 = READ_SPECIALREG(ctr_el0);
/* Read the log2 words in each D cache line */
dcache_line_shift = CTR_DLINE_SIZE(ctr_el0);
/* Get the D cache line size */
dcache_line_size = sizeof(int) << dcache_line_shift;
/* And the same for the I cache */
icache_line_shift = CTR_ILINE_SIZE(ctr_el0);
icache_line_size = sizeof(int) << icache_line_shift;
idcache_line_size = MIN(dcache_line_size, icache_line_size);
dczid_el0 = READ_SPECIALREG(dczid_el0);
/* Check if dc zva is not prohibited */
if (dczid_el0 & DCZID_DZP)
dczva_line_size = 0;
else {
/* Same as with above calculations */
dczva_line_shift = DCZID_BS_SIZE(dczid_el0);
dczva_line_size = sizeof(int) << dczva_line_shift;
/* Change pagezero function */
pagezero = pagezero_cache;
}
}
void
initarm(struct arm64_bootparams *abp)
{
struct efi_map_header *efihdr;
struct pcpu *pcpup;
#ifdef FDT
struct mem_region mem_regions[FDT_MEM_REGIONS];
int mem_regions_sz;
#endif
vm_offset_t lastaddr;
caddr_t kmdp;
vm_paddr_t mem_len;
int i;
/* Set the module data location */
preload_metadata = (caddr_t)(uintptr_t)(abp->modulep);
/* Find the kernel address */
kmdp = preload_search_by_type("elf kernel");
if (kmdp == NULL)
kmdp = preload_search_by_type("elf64 kernel");
boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
init_static_kenv(MD_FETCH(kmdp, MODINFOMD_ENVP, char *), 0);
#ifdef FDT
try_load_dtb(kmdp);
#endif
/* Find the address to start allocating from */
lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
/* Load the physical memory ranges */
physmap_idx = 0;
efihdr = (struct efi_map_header *)preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_EFI_MAP);
if (efihdr != NULL)
add_efi_map_entries(efihdr, physmap, &physmap_idx);
#ifdef FDT
else {
/* Grab physical memory regions information from device tree. */
if (fdt_get_mem_regions(mem_regions, &mem_regions_sz,
NULL) != 0)
panic("Cannot get physical memory regions");
add_fdt_mem_regions(mem_regions, mem_regions_sz, physmap,
&physmap_idx);
}
#endif
/* Print the memory map */
mem_len = 0;
for (i = 0; i < physmap_idx; i += 2) {
dump_avail[i] = physmap[i];
dump_avail[i + 1] = physmap[i + 1];
mem_len += physmap[i + 1] - physmap[i];
}
dump_avail[i] = 0;
dump_avail[i + 1] = 0;
/* Set the pcpu data, this is needed by pmap_bootstrap */
pcpup = &__pcpu[0];
pcpu_init(pcpup, 0, sizeof(struct pcpu));
/*
* Set the pcpu pointer with a backup in tpidr_el1 to be
* loaded when entering the kernel from userland.
*/
__asm __volatile(
"mov x18, %0 \n"
"msr tpidr_el1, %0" :: "r"(pcpup));
PCPU_SET(curthread, &thread0);
/* Do basic tuning, hz etc */
init_param1();
cache_setup();
/* Bootstrap enough of pmap to enter the kernel proper */
pmap_bootstrap(abp->kern_l0pt, abp->kern_l1pt,
KERNBASE - abp->kern_delta, lastaddr - KERNBASE);
devmap_bootstrap(0, NULL);
cninit();
init_proc0(abp->kern_stack);
msgbufinit(msgbufp, msgbufsize);
mutex_init();
init_param2(physmem);
dbg_monitor_init();
kdb_init();
early_boot = 0;
}
uint32_t (*arm_cpu_fill_vdso_timehands)(struct vdso_timehands *,
struct timecounter *);
uint32_t
cpu_fill_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
{
return (arm_cpu_fill_vdso_timehands != NULL ?
arm_cpu_fill_vdso_timehands(vdso_th, tc) : 0);
}
#ifdef DDB
#include <ddb/ddb.h>
DB_SHOW_COMMAND(specialregs, db_show_spregs)
{
#define PRINT_REG(reg) \
db_printf(__STRING(reg) " = %#016lx\n", READ_SPECIALREG(reg))
PRINT_REG(actlr_el1);
PRINT_REG(afsr0_el1);
PRINT_REG(afsr1_el1);
PRINT_REG(aidr_el1);
PRINT_REG(amair_el1);
PRINT_REG(ccsidr_el1);
PRINT_REG(clidr_el1);
PRINT_REG(contextidr_el1);
PRINT_REG(cpacr_el1);
PRINT_REG(csselr_el1);
PRINT_REG(ctr_el0);
PRINT_REG(currentel);
PRINT_REG(daif);
PRINT_REG(dczid_el0);
PRINT_REG(elr_el1);
PRINT_REG(esr_el1);
PRINT_REG(far_el1);
#if 0
/* ARM64TODO: Enable VFP before reading floating-point registers */
PRINT_REG(fpcr);
PRINT_REG(fpsr);
#endif
PRINT_REG(id_aa64afr0_el1);
PRINT_REG(id_aa64afr1_el1);
PRINT_REG(id_aa64dfr0_el1);
PRINT_REG(id_aa64dfr1_el1);
PRINT_REG(id_aa64isar0_el1);
PRINT_REG(id_aa64isar1_el1);
PRINT_REG(id_aa64pfr0_el1);
PRINT_REG(id_aa64pfr1_el1);
PRINT_REG(id_afr0_el1);
PRINT_REG(id_dfr0_el1);
PRINT_REG(id_isar0_el1);
PRINT_REG(id_isar1_el1);
PRINT_REG(id_isar2_el1);
PRINT_REG(id_isar3_el1);
PRINT_REG(id_isar4_el1);
PRINT_REG(id_isar5_el1);
PRINT_REG(id_mmfr0_el1);
PRINT_REG(id_mmfr1_el1);
PRINT_REG(id_mmfr2_el1);
PRINT_REG(id_mmfr3_el1);
#if 0
/* Missing from llvm */
PRINT_REG(id_mmfr4_el1);
#endif
PRINT_REG(id_pfr0_el1);
PRINT_REG(id_pfr1_el1);
PRINT_REG(isr_el1);
PRINT_REG(mair_el1);
PRINT_REG(midr_el1);
PRINT_REG(mpidr_el1);
PRINT_REG(mvfr0_el1);
PRINT_REG(mvfr1_el1);
PRINT_REG(mvfr2_el1);
PRINT_REG(revidr_el1);
PRINT_REG(sctlr_el1);
PRINT_REG(sp_el0);
PRINT_REG(spsel);
PRINT_REG(spsr_el1);
PRINT_REG(tcr_el1);
PRINT_REG(tpidr_el0);
PRINT_REG(tpidr_el1);
PRINT_REG(tpidrro_el0);
PRINT_REG(ttbr0_el1);
PRINT_REG(ttbr1_el1);
PRINT_REG(vbar_el1);
#undef PRINT_REG
}
DB_SHOW_COMMAND(vtop, db_show_vtop)
{
uint64_t phys;
if (have_addr) {
phys = arm64_address_translate_s1e1r(addr);
db_printf("Physical address reg: 0x%016lx\n", phys);
} else
db_printf("show vtop <virt_addr>\n");
}
#endif