mirror of https://github.com/F-Stack/f-stack.git
1030 lines
23 KiB
C
1030 lines
23 KiB
C
/*-
|
|
* Copyright (c) 2014 Andrew Turner
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include "opt_platform.h"
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/cons.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/devmap.h>
|
|
#include <sys/efi.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/imgact.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/linker.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/ucontext.h>
|
|
#include <sys/vdso.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_pager.h>
|
|
|
|
#include <machine/armreg.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/debug_monitor.h>
|
|
#include <machine/kdb.h>
|
|
#include <machine/machdep.h>
|
|
#include <machine/metadata.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/reg.h>
|
|
#include <machine/vmparam.h>
|
|
|
|
#ifdef VFP
|
|
#include <machine/vfp.h>
|
|
#endif
|
|
|
|
#ifdef FDT
|
|
#include <dev/fdt/fdt_common.h>
|
|
#include <dev/ofw/openfirm.h>
|
|
#endif
|
|
|
|
struct pcpu __pcpu[MAXCPU];
|
|
|
|
static struct trapframe proc0_tf;
|
|
|
|
vm_paddr_t phys_avail[PHYS_AVAIL_SIZE + 2];
|
|
vm_paddr_t dump_avail[PHYS_AVAIL_SIZE + 2];
|
|
|
|
int early_boot = 1;
|
|
int cold = 1;
|
|
long realmem = 0;
|
|
long Maxmem = 0;
|
|
|
|
#define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1))
|
|
vm_paddr_t physmap[PHYSMAP_SIZE];
|
|
u_int physmap_idx;
|
|
|
|
struct kva_md_info kmi;
|
|
|
|
int64_t dcache_line_size; /* The minimum D cache line size */
|
|
int64_t icache_line_size; /* The minimum I cache line size */
|
|
int64_t idcache_line_size; /* The minimum cache line size */
|
|
int64_t dczva_line_size; /* The size of cache line the dc zva zeroes */
|
|
|
|
/* pagezero_* implementations are provided in support.S */
|
|
void pagezero_simple(void *);
|
|
void pagezero_cache(void *);
|
|
|
|
/* pagezero_simple is default pagezero */
|
|
void (*pagezero)(void *p) = pagezero_simple;
|
|
|
|
static void
|
|
cpu_startup(void *dummy)
|
|
{
|
|
|
|
identify_cpu();
|
|
|
|
vm_ksubmap_init(&kmi);
|
|
bufinit();
|
|
vm_pager_bufferinit();
|
|
}
|
|
|
|
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
|
|
|
|
int
|
|
cpu_idle_wakeup(int cpu)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
fill_regs(struct thread *td, struct reg *regs)
|
|
{
|
|
struct trapframe *frame;
|
|
|
|
frame = td->td_frame;
|
|
regs->sp = frame->tf_sp;
|
|
regs->lr = frame->tf_lr;
|
|
regs->elr = frame->tf_elr;
|
|
regs->spsr = frame->tf_spsr;
|
|
|
|
memcpy(regs->x, frame->tf_x, sizeof(regs->x));
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
set_regs(struct thread *td, struct reg *regs)
|
|
{
|
|
struct trapframe *frame;
|
|
|
|
frame = td->td_frame;
|
|
frame->tf_sp = regs->sp;
|
|
frame->tf_lr = regs->lr;
|
|
frame->tf_elr = regs->elr;
|
|
frame->tf_spsr = regs->spsr;
|
|
|
|
memcpy(frame->tf_x, regs->x, sizeof(frame->tf_x));
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
fill_fpregs(struct thread *td, struct fpreg *regs)
|
|
{
|
|
#ifdef VFP
|
|
struct pcb *pcb;
|
|
|
|
pcb = td->td_pcb;
|
|
if ((pcb->pcb_fpflags & PCB_FP_STARTED) != 0) {
|
|
/*
|
|
* If we have just been running VFP instructions we will
|
|
* need to save the state to memcpy it below.
|
|
*/
|
|
vfp_save_state(td, pcb);
|
|
|
|
memcpy(regs->fp_q, pcb->pcb_vfp, sizeof(regs->fp_q));
|
|
regs->fp_cr = pcb->pcb_fpcr;
|
|
regs->fp_sr = pcb->pcb_fpsr;
|
|
} else
|
|
#endif
|
|
memset(regs->fp_q, 0, sizeof(regs->fp_q));
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
set_fpregs(struct thread *td, struct fpreg *regs)
|
|
{
|
|
#ifdef VFP
|
|
struct pcb *pcb;
|
|
|
|
pcb = td->td_pcb;
|
|
memcpy(pcb->pcb_vfp, regs->fp_q, sizeof(regs->fp_q));
|
|
pcb->pcb_fpcr = regs->fp_cr;
|
|
pcb->pcb_fpsr = regs->fp_sr;
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
fill_dbregs(struct thread *td, struct dbreg *regs)
|
|
{
|
|
|
|
panic("ARM64TODO: fill_dbregs");
|
|
}
|
|
|
|
int
|
|
set_dbregs(struct thread *td, struct dbreg *regs)
|
|
{
|
|
|
|
panic("ARM64TODO: set_dbregs");
|
|
}
|
|
|
|
int
|
|
ptrace_set_pc(struct thread *td, u_long addr)
|
|
{
|
|
|
|
panic("ARM64TODO: ptrace_set_pc");
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ptrace_single_step(struct thread *td)
|
|
{
|
|
|
|
td->td_frame->tf_spsr |= PSR_SS;
|
|
td->td_pcb->pcb_flags |= PCB_SINGLE_STEP;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ptrace_clear_single_step(struct thread *td)
|
|
{
|
|
|
|
td->td_frame->tf_spsr &= ~PSR_SS;
|
|
td->td_pcb->pcb_flags &= ~PCB_SINGLE_STEP;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
|
|
{
|
|
struct trapframe *tf = td->td_frame;
|
|
|
|
memset(tf, 0, sizeof(struct trapframe));
|
|
|
|
/*
|
|
* We need to set x0 for init as it doesn't call
|
|
* cpu_set_syscall_retval to copy the value. We also
|
|
* need to set td_retval for the cases where we do.
|
|
*/
|
|
tf->tf_x[0] = td->td_retval[0] = stack;
|
|
tf->tf_sp = STACKALIGN(stack);
|
|
tf->tf_lr = imgp->entry_addr;
|
|
tf->tf_elr = imgp->entry_addr;
|
|
}
|
|
|
|
/* Sanity check these are the same size, they will be memcpy'd to and fro */
|
|
CTASSERT(sizeof(((struct trapframe *)0)->tf_x) ==
|
|
sizeof((struct gpregs *)0)->gp_x);
|
|
CTASSERT(sizeof(((struct trapframe *)0)->tf_x) ==
|
|
sizeof((struct reg *)0)->x);
|
|
|
|
int
|
|
get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
|
|
{
|
|
struct trapframe *tf = td->td_frame;
|
|
|
|
if (clear_ret & GET_MC_CLEAR_RET) {
|
|
mcp->mc_gpregs.gp_x[0] = 0;
|
|
mcp->mc_gpregs.gp_spsr = tf->tf_spsr & ~PSR_C;
|
|
} else {
|
|
mcp->mc_gpregs.gp_x[0] = tf->tf_x[0];
|
|
mcp->mc_gpregs.gp_spsr = tf->tf_spsr;
|
|
}
|
|
|
|
memcpy(&mcp->mc_gpregs.gp_x[1], &tf->tf_x[1],
|
|
sizeof(mcp->mc_gpregs.gp_x[1]) * (nitems(mcp->mc_gpregs.gp_x) - 1));
|
|
|
|
mcp->mc_gpregs.gp_sp = tf->tf_sp;
|
|
mcp->mc_gpregs.gp_lr = tf->tf_lr;
|
|
mcp->mc_gpregs.gp_elr = tf->tf_elr;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
set_mcontext(struct thread *td, mcontext_t *mcp)
|
|
{
|
|
struct trapframe *tf = td->td_frame;
|
|
|
|
memcpy(tf->tf_x, mcp->mc_gpregs.gp_x, sizeof(tf->tf_x));
|
|
|
|
tf->tf_sp = mcp->mc_gpregs.gp_sp;
|
|
tf->tf_lr = mcp->mc_gpregs.gp_lr;
|
|
tf->tf_elr = mcp->mc_gpregs.gp_elr;
|
|
tf->tf_spsr = mcp->mc_gpregs.gp_spsr;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
get_fpcontext(struct thread *td, mcontext_t *mcp)
|
|
{
|
|
#ifdef VFP
|
|
struct pcb *curpcb;
|
|
|
|
critical_enter();
|
|
|
|
curpcb = curthread->td_pcb;
|
|
|
|
if ((curpcb->pcb_fpflags & PCB_FP_STARTED) != 0) {
|
|
/*
|
|
* If we have just been running VFP instructions we will
|
|
* need to save the state to memcpy it below.
|
|
*/
|
|
vfp_save_state(td, curpcb);
|
|
|
|
memcpy(mcp->mc_fpregs.fp_q, curpcb->pcb_vfp,
|
|
sizeof(mcp->mc_fpregs));
|
|
mcp->mc_fpregs.fp_cr = curpcb->pcb_fpcr;
|
|
mcp->mc_fpregs.fp_sr = curpcb->pcb_fpsr;
|
|
mcp->mc_fpregs.fp_flags = curpcb->pcb_fpflags;
|
|
mcp->mc_flags |= _MC_FP_VALID;
|
|
}
|
|
|
|
critical_exit();
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
set_fpcontext(struct thread *td, mcontext_t *mcp)
|
|
{
|
|
#ifdef VFP
|
|
struct pcb *curpcb;
|
|
|
|
critical_enter();
|
|
|
|
if ((mcp->mc_flags & _MC_FP_VALID) != 0) {
|
|
curpcb = curthread->td_pcb;
|
|
|
|
/*
|
|
* Discard any vfp state for the current thread, we
|
|
* are about to override it.
|
|
*/
|
|
vfp_discard(td);
|
|
|
|
memcpy(curpcb->pcb_vfp, mcp->mc_fpregs.fp_q,
|
|
sizeof(mcp->mc_fpregs));
|
|
curpcb->pcb_fpcr = mcp->mc_fpregs.fp_cr;
|
|
curpcb->pcb_fpsr = mcp->mc_fpregs.fp_sr;
|
|
curpcb->pcb_fpflags = mcp->mc_fpregs.fp_flags;
|
|
}
|
|
|
|
critical_exit();
|
|
#endif
|
|
}
|
|
|
|
void
|
|
cpu_idle(int busy)
|
|
{
|
|
|
|
spinlock_enter();
|
|
if (!busy)
|
|
cpu_idleclock();
|
|
if (!sched_runnable())
|
|
__asm __volatile(
|
|
"dsb sy \n"
|
|
"wfi \n");
|
|
if (!busy)
|
|
cpu_activeclock();
|
|
spinlock_exit();
|
|
}
|
|
|
|
void
|
|
cpu_halt(void)
|
|
{
|
|
|
|
/* We should have shutdown by now, if not enter a low power sleep */
|
|
intr_disable();
|
|
while (1) {
|
|
__asm __volatile("wfi");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Flush the D-cache for non-DMA I/O so that the I-cache can
|
|
* be made coherent later.
|
|
*/
|
|
void
|
|
cpu_flush_dcache(void *ptr, size_t len)
|
|
{
|
|
|
|
/* ARM64TODO TBD */
|
|
}
|
|
|
|
/* Get current clock frequency for the given CPU ID. */
|
|
int
|
|
cpu_est_clockrate(int cpu_id, uint64_t *rate)
|
|
{
|
|
|
|
panic("ARM64TODO: cpu_est_clockrate");
|
|
}
|
|
|
|
void
|
|
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
|
|
{
|
|
|
|
pcpu->pc_acpi_id = 0xffffffff;
|
|
}
|
|
|
|
void
|
|
spinlock_enter(void)
|
|
{
|
|
struct thread *td;
|
|
register_t daif;
|
|
|
|
td = curthread;
|
|
if (td->td_md.md_spinlock_count == 0) {
|
|
daif = intr_disable();
|
|
td->td_md.md_spinlock_count = 1;
|
|
td->td_md.md_saved_daif = daif;
|
|
} else
|
|
td->td_md.md_spinlock_count++;
|
|
critical_enter();
|
|
}
|
|
|
|
void
|
|
spinlock_exit(void)
|
|
{
|
|
struct thread *td;
|
|
register_t daif;
|
|
|
|
td = curthread;
|
|
critical_exit();
|
|
daif = td->td_md.md_saved_daif;
|
|
td->td_md.md_spinlock_count--;
|
|
if (td->td_md.md_spinlock_count == 0)
|
|
intr_restore(daif);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct sigreturn_args {
|
|
ucontext_t *ucp;
|
|
};
|
|
#endif
|
|
|
|
int
|
|
sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
|
|
{
|
|
ucontext_t uc;
|
|
uint32_t spsr;
|
|
|
|
if (uap == NULL)
|
|
return (EFAULT);
|
|
if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
|
|
return (EFAULT);
|
|
|
|
spsr = uc.uc_mcontext.mc_gpregs.gp_spsr;
|
|
if ((spsr & PSR_M_MASK) != PSR_M_EL0t ||
|
|
(spsr & (PSR_F | PSR_I | PSR_A | PSR_D)) != 0)
|
|
return (EINVAL);
|
|
|
|
set_mcontext(td, &uc.uc_mcontext);
|
|
set_fpcontext(td, &uc.uc_mcontext);
|
|
|
|
/* Restore signal mask. */
|
|
kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
|
|
|
|
return (EJUSTRETURN);
|
|
}
|
|
|
|
/*
|
|
* Construct a PCB from a trapframe. This is called from kdb_trap() where
|
|
* we want to start a backtrace from the function that caused us to enter
|
|
* the debugger. We have the context in the trapframe, but base the trace
|
|
* on the PCB. The PCB doesn't have to be perfect, as long as it contains
|
|
* enough for a backtrace.
|
|
*/
|
|
void
|
|
makectx(struct trapframe *tf, struct pcb *pcb)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < PCB_LR; i++)
|
|
pcb->pcb_x[i] = tf->tf_x[i];
|
|
|
|
pcb->pcb_x[PCB_LR] = tf->tf_lr;
|
|
pcb->pcb_pc = tf->tf_elr;
|
|
pcb->pcb_sp = tf->tf_sp;
|
|
}
|
|
|
|
void
|
|
sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
|
|
{
|
|
struct thread *td;
|
|
struct proc *p;
|
|
struct trapframe *tf;
|
|
struct sigframe *fp, frame;
|
|
struct sigacts *psp;
|
|
struct sysentvec *sysent;
|
|
int code, onstack, sig;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
sig = ksi->ksi_signo;
|
|
code = ksi->ksi_code;
|
|
psp = p->p_sigacts;
|
|
mtx_assert(&psp->ps_mtx, MA_OWNED);
|
|
|
|
tf = td->td_frame;
|
|
onstack = sigonstack(tf->tf_sp);
|
|
|
|
CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
|
|
catcher, sig);
|
|
|
|
/* Allocate and validate space for the signal handler context. */
|
|
if ((td->td_pflags & TDP_ALTSTACK) != 0 && !onstack &&
|
|
SIGISMEMBER(psp->ps_sigonstack, sig)) {
|
|
fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp +
|
|
td->td_sigstk.ss_size);
|
|
#if defined(COMPAT_43)
|
|
td->td_sigstk.ss_flags |= SS_ONSTACK;
|
|
#endif
|
|
} else {
|
|
fp = (struct sigframe *)td->td_frame->tf_sp;
|
|
}
|
|
|
|
/* Make room, keeping the stack aligned */
|
|
fp--;
|
|
fp = (struct sigframe *)STACKALIGN(fp);
|
|
|
|
/* Fill in the frame to copy out */
|
|
get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
|
|
get_fpcontext(td, &frame.sf_uc.uc_mcontext);
|
|
frame.sf_si = ksi->ksi_info;
|
|
frame.sf_uc.uc_sigmask = *mask;
|
|
frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
|
|
((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
|
|
frame.sf_uc.uc_stack = td->td_sigstk;
|
|
mtx_unlock(&psp->ps_mtx);
|
|
PROC_UNLOCK(td->td_proc);
|
|
|
|
/* Copy the sigframe out to the user's stack. */
|
|
if (copyout(&frame, fp, sizeof(*fp)) != 0) {
|
|
/* Process has trashed its stack. Kill it. */
|
|
CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
|
|
PROC_LOCK(p);
|
|
sigexit(td, SIGILL);
|
|
}
|
|
|
|
tf->tf_x[0]= sig;
|
|
tf->tf_x[1] = (register_t)&fp->sf_si;
|
|
tf->tf_x[2] = (register_t)&fp->sf_uc;
|
|
|
|
tf->tf_elr = (register_t)catcher;
|
|
tf->tf_sp = (register_t)fp;
|
|
sysent = p->p_sysent;
|
|
if (sysent->sv_sigcode_base != 0)
|
|
tf->tf_lr = (register_t)sysent->sv_sigcode_base;
|
|
else
|
|
tf->tf_lr = (register_t)(sysent->sv_psstrings -
|
|
*(sysent->sv_szsigcode));
|
|
|
|
CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_elr,
|
|
tf->tf_sp);
|
|
|
|
PROC_LOCK(p);
|
|
mtx_lock(&psp->ps_mtx);
|
|
}
|
|
|
|
static void
|
|
init_proc0(vm_offset_t kstack)
|
|
{
|
|
struct pcpu *pcpup = &__pcpu[0];
|
|
|
|
proc_linkup0(&proc0, &thread0);
|
|
thread0.td_kstack = kstack;
|
|
thread0.td_pcb = (struct pcb *)(thread0.td_kstack) - 1;
|
|
thread0.td_pcb->pcb_fpflags = 0;
|
|
thread0.td_pcb->pcb_vfpcpu = UINT_MAX;
|
|
thread0.td_frame = &proc0_tf;
|
|
pcpup->pc_curpcb = thread0.td_pcb;
|
|
}
|
|
|
|
typedef struct {
|
|
uint32_t type;
|
|
uint64_t phys_start;
|
|
uint64_t virt_start;
|
|
uint64_t num_pages;
|
|
uint64_t attr;
|
|
} EFI_MEMORY_DESCRIPTOR;
|
|
|
|
static int
|
|
add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
|
|
u_int *physmap_idxp)
|
|
{
|
|
u_int i, insert_idx, _physmap_idx;
|
|
|
|
_physmap_idx = *physmap_idxp;
|
|
|
|
if (length == 0)
|
|
return (1);
|
|
|
|
/*
|
|
* Find insertion point while checking for overlap. Start off by
|
|
* assuming the new entry will be added to the end.
|
|
*/
|
|
insert_idx = _physmap_idx;
|
|
for (i = 0; i <= _physmap_idx; i += 2) {
|
|
if (base < physmap[i + 1]) {
|
|
if (base + length <= physmap[i]) {
|
|
insert_idx = i;
|
|
break;
|
|
}
|
|
if (boothowto & RB_VERBOSE)
|
|
printf(
|
|
"Overlapping memory regions, ignoring second region\n");
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
/* See if we can prepend to the next entry. */
|
|
if (insert_idx <= _physmap_idx &&
|
|
base + length == physmap[insert_idx]) {
|
|
physmap[insert_idx] = base;
|
|
return (1);
|
|
}
|
|
|
|
/* See if we can append to the previous entry. */
|
|
if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
|
|
physmap[insert_idx - 1] += length;
|
|
return (1);
|
|
}
|
|
|
|
_physmap_idx += 2;
|
|
*physmap_idxp = _physmap_idx;
|
|
if (_physmap_idx == PHYSMAP_SIZE) {
|
|
printf(
|
|
"Too many segments in the physical address map, giving up\n");
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Move the last 'N' entries down to make room for the new
|
|
* entry if needed.
|
|
*/
|
|
for (i = _physmap_idx; i > insert_idx; i -= 2) {
|
|
physmap[i] = physmap[i - 2];
|
|
physmap[i + 1] = physmap[i - 1];
|
|
}
|
|
|
|
/* Insert the new entry. */
|
|
physmap[insert_idx] = base;
|
|
physmap[insert_idx + 1] = base + length;
|
|
return (1);
|
|
}
|
|
|
|
#ifdef FDT
|
|
static void
|
|
add_fdt_mem_regions(struct mem_region *mr, int mrcnt, vm_paddr_t *physmap,
|
|
u_int *physmap_idxp)
|
|
{
|
|
|
|
for (int i = 0; i < mrcnt; i++) {
|
|
if (!add_physmap_entry(mr[i].mr_start, mr[i].mr_size, physmap,
|
|
physmap_idxp))
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#define efi_next_descriptor(ptr, size) \
|
|
((struct efi_md *)(((uint8_t *) ptr) + size))
|
|
|
|
static void
|
|
add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap,
|
|
u_int *physmap_idxp)
|
|
{
|
|
struct efi_md *map, *p;
|
|
const char *type;
|
|
size_t efisz;
|
|
int ndesc, i;
|
|
|
|
static const char *types[] = {
|
|
"Reserved",
|
|
"LoaderCode",
|
|
"LoaderData",
|
|
"BootServicesCode",
|
|
"BootServicesData",
|
|
"RuntimeServicesCode",
|
|
"RuntimeServicesData",
|
|
"ConventionalMemory",
|
|
"UnusableMemory",
|
|
"ACPIReclaimMemory",
|
|
"ACPIMemoryNVS",
|
|
"MemoryMappedIO",
|
|
"MemoryMappedIOPortSpace",
|
|
"PalCode"
|
|
};
|
|
|
|
/*
|
|
* Memory map data provided by UEFI via the GetMemoryMap
|
|
* Boot Services API.
|
|
*/
|
|
efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
|
|
map = (struct efi_md *)((uint8_t *)efihdr + efisz);
|
|
|
|
if (efihdr->descriptor_size == 0)
|
|
return;
|
|
ndesc = efihdr->memory_size / efihdr->descriptor_size;
|
|
|
|
if (boothowto & RB_VERBOSE)
|
|
printf("%23s %12s %12s %8s %4s\n",
|
|
"Type", "Physical", "Virtual", "#Pages", "Attr");
|
|
|
|
for (i = 0, p = map; i < ndesc; i++,
|
|
p = efi_next_descriptor(p, efihdr->descriptor_size)) {
|
|
if (boothowto & RB_VERBOSE) {
|
|
if (p->md_type <= EFI_MD_TYPE_PALCODE)
|
|
type = types[p->md_type];
|
|
else
|
|
type = "<INVALID>";
|
|
printf("%23s %012lx %12p %08lx ", type, p->md_phys,
|
|
p->md_virt, p->md_pages);
|
|
if (p->md_attr & EFI_MD_ATTR_UC)
|
|
printf("UC ");
|
|
if (p->md_attr & EFI_MD_ATTR_WC)
|
|
printf("WC ");
|
|
if (p->md_attr & EFI_MD_ATTR_WT)
|
|
printf("WT ");
|
|
if (p->md_attr & EFI_MD_ATTR_WB)
|
|
printf("WB ");
|
|
if (p->md_attr & EFI_MD_ATTR_UCE)
|
|
printf("UCE ");
|
|
if (p->md_attr & EFI_MD_ATTR_WP)
|
|
printf("WP ");
|
|
if (p->md_attr & EFI_MD_ATTR_RP)
|
|
printf("RP ");
|
|
if (p->md_attr & EFI_MD_ATTR_XP)
|
|
printf("XP ");
|
|
if (p->md_attr & EFI_MD_ATTR_RT)
|
|
printf("RUNTIME");
|
|
printf("\n");
|
|
}
|
|
|
|
switch (p->md_type) {
|
|
case EFI_MD_TYPE_CODE:
|
|
case EFI_MD_TYPE_DATA:
|
|
case EFI_MD_TYPE_BS_CODE:
|
|
case EFI_MD_TYPE_BS_DATA:
|
|
case EFI_MD_TYPE_FREE:
|
|
/*
|
|
* We're allowed to use any entry with these types.
|
|
*/
|
|
break;
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE),
|
|
physmap, physmap_idxp))
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef FDT
|
|
static void
|
|
try_load_dtb(caddr_t kmdp)
|
|
{
|
|
vm_offset_t dtbp;
|
|
|
|
dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
|
|
if (dtbp == (vm_offset_t)NULL) {
|
|
printf("ERROR loading DTB\n");
|
|
return;
|
|
}
|
|
|
|
if (OF_install(OFW_FDT, 0) == FALSE)
|
|
panic("Cannot install FDT");
|
|
|
|
if (OF_init((void *)dtbp) != 0)
|
|
panic("OF_init failed with the found device tree");
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
cache_setup(void)
|
|
{
|
|
int dcache_line_shift, icache_line_shift, dczva_line_shift;
|
|
uint32_t ctr_el0;
|
|
uint32_t dczid_el0;
|
|
|
|
ctr_el0 = READ_SPECIALREG(ctr_el0);
|
|
|
|
/* Read the log2 words in each D cache line */
|
|
dcache_line_shift = CTR_DLINE_SIZE(ctr_el0);
|
|
/* Get the D cache line size */
|
|
dcache_line_size = sizeof(int) << dcache_line_shift;
|
|
|
|
/* And the same for the I cache */
|
|
icache_line_shift = CTR_ILINE_SIZE(ctr_el0);
|
|
icache_line_size = sizeof(int) << icache_line_shift;
|
|
|
|
idcache_line_size = MIN(dcache_line_size, icache_line_size);
|
|
|
|
dczid_el0 = READ_SPECIALREG(dczid_el0);
|
|
|
|
/* Check if dc zva is not prohibited */
|
|
if (dczid_el0 & DCZID_DZP)
|
|
dczva_line_size = 0;
|
|
else {
|
|
/* Same as with above calculations */
|
|
dczva_line_shift = DCZID_BS_SIZE(dczid_el0);
|
|
dczva_line_size = sizeof(int) << dczva_line_shift;
|
|
|
|
/* Change pagezero function */
|
|
pagezero = pagezero_cache;
|
|
}
|
|
}
|
|
|
|
void
|
|
initarm(struct arm64_bootparams *abp)
|
|
{
|
|
struct efi_map_header *efihdr;
|
|
struct pcpu *pcpup;
|
|
#ifdef FDT
|
|
struct mem_region mem_regions[FDT_MEM_REGIONS];
|
|
int mem_regions_sz;
|
|
#endif
|
|
vm_offset_t lastaddr;
|
|
caddr_t kmdp;
|
|
vm_paddr_t mem_len;
|
|
int i;
|
|
|
|
/* Set the module data location */
|
|
preload_metadata = (caddr_t)(uintptr_t)(abp->modulep);
|
|
|
|
/* Find the kernel address */
|
|
kmdp = preload_search_by_type("elf kernel");
|
|
if (kmdp == NULL)
|
|
kmdp = preload_search_by_type("elf64 kernel");
|
|
|
|
boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
|
|
init_static_kenv(MD_FETCH(kmdp, MODINFOMD_ENVP, char *), 0);
|
|
|
|
#ifdef FDT
|
|
try_load_dtb(kmdp);
|
|
#endif
|
|
|
|
/* Find the address to start allocating from */
|
|
lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
|
|
|
|
/* Load the physical memory ranges */
|
|
physmap_idx = 0;
|
|
efihdr = (struct efi_map_header *)preload_search_info(kmdp,
|
|
MODINFO_METADATA | MODINFOMD_EFI_MAP);
|
|
if (efihdr != NULL)
|
|
add_efi_map_entries(efihdr, physmap, &physmap_idx);
|
|
#ifdef FDT
|
|
else {
|
|
/* Grab physical memory regions information from device tree. */
|
|
if (fdt_get_mem_regions(mem_regions, &mem_regions_sz,
|
|
NULL) != 0)
|
|
panic("Cannot get physical memory regions");
|
|
add_fdt_mem_regions(mem_regions, mem_regions_sz, physmap,
|
|
&physmap_idx);
|
|
}
|
|
#endif
|
|
|
|
/* Print the memory map */
|
|
mem_len = 0;
|
|
for (i = 0; i < physmap_idx; i += 2) {
|
|
dump_avail[i] = physmap[i];
|
|
dump_avail[i + 1] = physmap[i + 1];
|
|
mem_len += physmap[i + 1] - physmap[i];
|
|
}
|
|
dump_avail[i] = 0;
|
|
dump_avail[i + 1] = 0;
|
|
|
|
/* Set the pcpu data, this is needed by pmap_bootstrap */
|
|
pcpup = &__pcpu[0];
|
|
pcpu_init(pcpup, 0, sizeof(struct pcpu));
|
|
|
|
/*
|
|
* Set the pcpu pointer with a backup in tpidr_el1 to be
|
|
* loaded when entering the kernel from userland.
|
|
*/
|
|
__asm __volatile(
|
|
"mov x18, %0 \n"
|
|
"msr tpidr_el1, %0" :: "r"(pcpup));
|
|
|
|
PCPU_SET(curthread, &thread0);
|
|
|
|
/* Do basic tuning, hz etc */
|
|
init_param1();
|
|
|
|
cache_setup();
|
|
|
|
/* Bootstrap enough of pmap to enter the kernel proper */
|
|
pmap_bootstrap(abp->kern_l0pt, abp->kern_l1pt,
|
|
KERNBASE - abp->kern_delta, lastaddr - KERNBASE);
|
|
|
|
devmap_bootstrap(0, NULL);
|
|
|
|
cninit();
|
|
|
|
init_proc0(abp->kern_stack);
|
|
msgbufinit(msgbufp, msgbufsize);
|
|
mutex_init();
|
|
init_param2(physmem);
|
|
|
|
dbg_monitor_init();
|
|
kdb_init();
|
|
|
|
early_boot = 0;
|
|
}
|
|
|
|
uint32_t (*arm_cpu_fill_vdso_timehands)(struct vdso_timehands *,
|
|
struct timecounter *);
|
|
|
|
uint32_t
|
|
cpu_fill_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
|
|
{
|
|
|
|
return (arm_cpu_fill_vdso_timehands != NULL ?
|
|
arm_cpu_fill_vdso_timehands(vdso_th, tc) : 0);
|
|
}
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
|
|
DB_SHOW_COMMAND(specialregs, db_show_spregs)
|
|
{
|
|
#define PRINT_REG(reg) \
|
|
db_printf(__STRING(reg) " = %#016lx\n", READ_SPECIALREG(reg))
|
|
|
|
PRINT_REG(actlr_el1);
|
|
PRINT_REG(afsr0_el1);
|
|
PRINT_REG(afsr1_el1);
|
|
PRINT_REG(aidr_el1);
|
|
PRINT_REG(amair_el1);
|
|
PRINT_REG(ccsidr_el1);
|
|
PRINT_REG(clidr_el1);
|
|
PRINT_REG(contextidr_el1);
|
|
PRINT_REG(cpacr_el1);
|
|
PRINT_REG(csselr_el1);
|
|
PRINT_REG(ctr_el0);
|
|
PRINT_REG(currentel);
|
|
PRINT_REG(daif);
|
|
PRINT_REG(dczid_el0);
|
|
PRINT_REG(elr_el1);
|
|
PRINT_REG(esr_el1);
|
|
PRINT_REG(far_el1);
|
|
#if 0
|
|
/* ARM64TODO: Enable VFP before reading floating-point registers */
|
|
PRINT_REG(fpcr);
|
|
PRINT_REG(fpsr);
|
|
#endif
|
|
PRINT_REG(id_aa64afr0_el1);
|
|
PRINT_REG(id_aa64afr1_el1);
|
|
PRINT_REG(id_aa64dfr0_el1);
|
|
PRINT_REG(id_aa64dfr1_el1);
|
|
PRINT_REG(id_aa64isar0_el1);
|
|
PRINT_REG(id_aa64isar1_el1);
|
|
PRINT_REG(id_aa64pfr0_el1);
|
|
PRINT_REG(id_aa64pfr1_el1);
|
|
PRINT_REG(id_afr0_el1);
|
|
PRINT_REG(id_dfr0_el1);
|
|
PRINT_REG(id_isar0_el1);
|
|
PRINT_REG(id_isar1_el1);
|
|
PRINT_REG(id_isar2_el1);
|
|
PRINT_REG(id_isar3_el1);
|
|
PRINT_REG(id_isar4_el1);
|
|
PRINT_REG(id_isar5_el1);
|
|
PRINT_REG(id_mmfr0_el1);
|
|
PRINT_REG(id_mmfr1_el1);
|
|
PRINT_REG(id_mmfr2_el1);
|
|
PRINT_REG(id_mmfr3_el1);
|
|
#if 0
|
|
/* Missing from llvm */
|
|
PRINT_REG(id_mmfr4_el1);
|
|
#endif
|
|
PRINT_REG(id_pfr0_el1);
|
|
PRINT_REG(id_pfr1_el1);
|
|
PRINT_REG(isr_el1);
|
|
PRINT_REG(mair_el1);
|
|
PRINT_REG(midr_el1);
|
|
PRINT_REG(mpidr_el1);
|
|
PRINT_REG(mvfr0_el1);
|
|
PRINT_REG(mvfr1_el1);
|
|
PRINT_REG(mvfr2_el1);
|
|
PRINT_REG(revidr_el1);
|
|
PRINT_REG(sctlr_el1);
|
|
PRINT_REG(sp_el0);
|
|
PRINT_REG(spsel);
|
|
PRINT_REG(spsr_el1);
|
|
PRINT_REG(tcr_el1);
|
|
PRINT_REG(tpidr_el0);
|
|
PRINT_REG(tpidr_el1);
|
|
PRINT_REG(tpidrro_el0);
|
|
PRINT_REG(ttbr0_el1);
|
|
PRINT_REG(ttbr1_el1);
|
|
PRINT_REG(vbar_el1);
|
|
#undef PRINT_REG
|
|
}
|
|
|
|
DB_SHOW_COMMAND(vtop, db_show_vtop)
|
|
{
|
|
uint64_t phys;
|
|
|
|
if (have_addr) {
|
|
phys = arm64_address_translate_s1e1r(addr);
|
|
db_printf("Physical address reg: 0x%016lx\n", phys);
|
|
} else
|
|
db_printf("show vtop <virt_addr>\n");
|
|
}
|
|
#endif
|