f-stack/dpdk/lib/librte_eal/linuxapp/eal/eal_pci_uio.c

567 lines
14 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <dirent.h>
#include <inttypes.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <linux/pci_regs.h>
#if defined(RTE_ARCH_X86)
#include <sys/io.h>
#endif
#include <rte_log.h>
#include <rte_pci.h>
#include <rte_eal_memconfig.h>
#include <rte_common.h>
#include <rte_malloc.h>
#include "eal_filesystem.h"
#include "eal_pci_init.h"
void *pci_map_addr = NULL;
#define OFF_MAX ((uint64_t)(off_t)-1)
int
pci_uio_read_config(const struct rte_intr_handle *intr_handle,
void *buf, size_t len, off_t offset)
{
return pread(intr_handle->uio_cfg_fd, buf, len, offset);
}
int
pci_uio_write_config(const struct rte_intr_handle *intr_handle,
const void *buf, size_t len, off_t offset)
{
return pwrite(intr_handle->uio_cfg_fd, buf, len, offset);
}
static int
pci_uio_set_bus_master(int dev_fd)
{
uint16_t reg;
int ret;
ret = pread(dev_fd, &reg, sizeof(reg), PCI_COMMAND);
if (ret != sizeof(reg)) {
RTE_LOG(ERR, EAL,
"Cannot read command from PCI config space!\n");
return -1;
}
/* return if bus mastering is already on */
if (reg & PCI_COMMAND_MASTER)
return 0;
reg |= PCI_COMMAND_MASTER;
ret = pwrite(dev_fd, &reg, sizeof(reg), PCI_COMMAND);
if (ret != sizeof(reg)) {
RTE_LOG(ERR, EAL,
"Cannot write command to PCI config space!\n");
return -1;
}
return 0;
}
static int
pci_mknod_uio_dev(const char *sysfs_uio_path, unsigned uio_num)
{
FILE *f;
char filename[PATH_MAX];
int ret;
unsigned major, minor;
dev_t dev;
/* get the name of the sysfs file that contains the major and minor
* of the uio device and read its content */
snprintf(filename, sizeof(filename), "%s/dev", sysfs_uio_path);
f = fopen(filename, "r");
if (f == NULL) {
RTE_LOG(ERR, EAL, "%s(): cannot open sysfs to get major:minor\n",
__func__);
return -1;
}
ret = fscanf(f, "%u:%u", &major, &minor);
if (ret != 2) {
RTE_LOG(ERR, EAL, "%s(): cannot parse sysfs to get major:minor\n",
__func__);
fclose(f);
return -1;
}
fclose(f);
/* create the char device "mknod /dev/uioX c major minor" */
snprintf(filename, sizeof(filename), "/dev/uio%u", uio_num);
dev = makedev(major, minor);
ret = mknod(filename, S_IFCHR | S_IRUSR | S_IWUSR, dev);
if (f == NULL) {
RTE_LOG(ERR, EAL, "%s(): mknod() failed %s\n",
__func__, strerror(errno));
return -1;
}
return ret;
}
/*
* Return the uioX char device used for a pci device. On success, return
* the UIO number and fill dstbuf string with the path of the device in
* sysfs. On error, return a negative value. In this case dstbuf is
* invalid.
*/
static int
pci_get_uio_dev(struct rte_pci_device *dev, char *dstbuf,
unsigned int buflen, int create)
{
struct rte_pci_addr *loc = &dev->addr;
unsigned int uio_num;
struct dirent *e;
DIR *dir;
char dirname[PATH_MAX];
/* depending on kernel version, uio can be located in uio/uioX
* or uio:uioX */
snprintf(dirname, sizeof(dirname),
"%s/" PCI_PRI_FMT "/uio", pci_get_sysfs_path(),
loc->domain, loc->bus, loc->devid, loc->function);
dir = opendir(dirname);
if (dir == NULL) {
/* retry with the parent directory */
snprintf(dirname, sizeof(dirname),
"%s/" PCI_PRI_FMT, pci_get_sysfs_path(),
loc->domain, loc->bus, loc->devid, loc->function);
dir = opendir(dirname);
if (dir == NULL) {
RTE_LOG(ERR, EAL, "Cannot opendir %s\n", dirname);
return -1;
}
}
/* take the first file starting with "uio" */
while ((e = readdir(dir)) != NULL) {
/* format could be uio%d ...*/
int shortprefix_len = sizeof("uio") - 1;
/* ... or uio:uio%d */
int longprefix_len = sizeof("uio:uio") - 1;
char *endptr;
if (strncmp(e->d_name, "uio", 3) != 0)
continue;
/* first try uio%d */
errno = 0;
uio_num = strtoull(e->d_name + shortprefix_len, &endptr, 10);
if (errno == 0 && endptr != (e->d_name + shortprefix_len)) {
snprintf(dstbuf, buflen, "%s/uio%u", dirname, uio_num);
break;
}
/* then try uio:uio%d */
errno = 0;
uio_num = strtoull(e->d_name + longprefix_len, &endptr, 10);
if (errno == 0 && endptr != (e->d_name + longprefix_len)) {
snprintf(dstbuf, buflen, "%s/uio:uio%u", dirname, uio_num);
break;
}
}
closedir(dir);
/* No uio resource found */
if (e == NULL)
return -1;
/* create uio device if we've been asked to */
if (internal_config.create_uio_dev && create &&
pci_mknod_uio_dev(dstbuf, uio_num) < 0)
RTE_LOG(WARNING, EAL, "Cannot create /dev/uio%u\n", uio_num);
return uio_num;
}
void
pci_uio_free_resource(struct rte_pci_device *dev,
struct mapped_pci_resource *uio_res)
{
rte_free(uio_res);
if (dev->intr_handle.uio_cfg_fd >= 0) {
close(dev->intr_handle.uio_cfg_fd);
dev->intr_handle.uio_cfg_fd = -1;
}
if (dev->intr_handle.fd) {
close(dev->intr_handle.fd);
dev->intr_handle.fd = -1;
dev->intr_handle.type = RTE_INTR_HANDLE_UNKNOWN;
}
}
int
pci_uio_alloc_resource(struct rte_pci_device *dev,
struct mapped_pci_resource **uio_res)
{
char dirname[PATH_MAX];
char cfgname[PATH_MAX];
char devname[PATH_MAX]; /* contains the /dev/uioX */
int uio_num;
struct rte_pci_addr *loc;
loc = &dev->addr;
/* find uio resource */
uio_num = pci_get_uio_dev(dev, dirname, sizeof(dirname), 1);
if (uio_num < 0) {
RTE_LOG(WARNING, EAL, " "PCI_PRI_FMT" not managed by UIO driver, "
"skipping\n", loc->domain, loc->bus, loc->devid, loc->function);
return 1;
}
snprintf(devname, sizeof(devname), "/dev/uio%u", uio_num);
/* save fd if in primary process */
dev->intr_handle.fd = open(devname, O_RDWR);
if (dev->intr_handle.fd < 0) {
RTE_LOG(ERR, EAL, "Cannot open %s: %s\n",
devname, strerror(errno));
goto error;
}
snprintf(cfgname, sizeof(cfgname),
"/sys/class/uio/uio%u/device/config", uio_num);
dev->intr_handle.uio_cfg_fd = open(cfgname, O_RDWR);
if (dev->intr_handle.uio_cfg_fd < 0) {
RTE_LOG(ERR, EAL, "Cannot open %s: %s\n",
cfgname, strerror(errno));
goto error;
}
if (dev->kdrv == RTE_KDRV_IGB_UIO)
dev->intr_handle.type = RTE_INTR_HANDLE_UIO;
else {
dev->intr_handle.type = RTE_INTR_HANDLE_UIO_INTX;
/* set bus master that is not done by uio_pci_generic */
if (pci_uio_set_bus_master(dev->intr_handle.uio_cfg_fd)) {
RTE_LOG(ERR, EAL, "Cannot set up bus mastering!\n");
goto error;
}
}
/* allocate the mapping details for secondary processes*/
*uio_res = rte_zmalloc("UIO_RES", sizeof(**uio_res), 0);
if (*uio_res == NULL) {
RTE_LOG(ERR, EAL,
"%s(): cannot store uio mmap details\n", __func__);
goto error;
}
snprintf((*uio_res)->path, sizeof((*uio_res)->path), "%s", devname);
memcpy(&(*uio_res)->pci_addr, &dev->addr, sizeof((*uio_res)->pci_addr));
return 0;
error:
pci_uio_free_resource(dev, *uio_res);
return -1;
}
int
pci_uio_map_resource_by_index(struct rte_pci_device *dev, int res_idx,
struct mapped_pci_resource *uio_res, int map_idx)
{
int fd;
char devname[PATH_MAX];
void *mapaddr;
struct rte_pci_addr *loc;
struct pci_map *maps;
loc = &dev->addr;
maps = uio_res->maps;
/* update devname for mmap */
snprintf(devname, sizeof(devname),
"%s/" PCI_PRI_FMT "/resource%d",
pci_get_sysfs_path(),
loc->domain, loc->bus, loc->devid,
loc->function, res_idx);
/* allocate memory to keep path */
maps[map_idx].path = rte_malloc(NULL, strlen(devname) + 1, 0);
if (maps[map_idx].path == NULL) {
RTE_LOG(ERR, EAL, "Cannot allocate memory for path: %s\n",
strerror(errno));
return -1;
}
/*
* open resource file, to mmap it
*/
fd = open(devname, O_RDWR);
if (fd < 0) {
RTE_LOG(ERR, EAL, "Cannot open %s: %s\n",
devname, strerror(errno));
goto error;
}
/* try mapping somewhere close to the end of hugepages */
if (pci_map_addr == NULL)
pci_map_addr = pci_find_max_end_va();
mapaddr = pci_map_resource(pci_map_addr, fd, 0,
(size_t)dev->mem_resource[res_idx].len, 0);
close(fd);
if (mapaddr == MAP_FAILED)
goto error;
pci_map_addr = RTE_PTR_ADD(mapaddr,
(size_t)dev->mem_resource[res_idx].len);
maps[map_idx].phaddr = dev->mem_resource[res_idx].phys_addr;
maps[map_idx].size = dev->mem_resource[res_idx].len;
maps[map_idx].addr = mapaddr;
maps[map_idx].offset = 0;
strcpy(maps[map_idx].path, devname);
dev->mem_resource[res_idx].addr = mapaddr;
return 0;
error:
rte_free(maps[map_idx].path);
return -1;
}
#if defined(RTE_ARCH_X86)
int
pci_uio_ioport_map(struct rte_pci_device *dev, int bar,
struct rte_pci_ioport *p)
{
char dirname[PATH_MAX];
char filename[PATH_MAX];
int uio_num;
unsigned long start;
uio_num = pci_get_uio_dev(dev, dirname, sizeof(dirname), 0);
if (uio_num < 0)
return -1;
/* get portio start */
snprintf(filename, sizeof(filename),
"%s/portio/port%d/start", dirname, bar);
if (eal_parse_sysfs_value(filename, &start) < 0) {
RTE_LOG(ERR, EAL, "%s(): cannot parse portio start\n",
__func__);
return -1;
}
/* ensure we don't get anything funny here, read/write will cast to
* uin16_t */
if (start > UINT16_MAX)
return -1;
/* FIXME only for primary process ? */
if (dev->intr_handle.type == RTE_INTR_HANDLE_UNKNOWN) {
snprintf(filename, sizeof(filename), "/dev/uio%u", uio_num);
dev->intr_handle.fd = open(filename, O_RDWR);
if (dev->intr_handle.fd < 0) {
RTE_LOG(ERR, EAL, "Cannot open %s: %s\n",
filename, strerror(errno));
return -1;
}
dev->intr_handle.type = RTE_INTR_HANDLE_UIO;
}
RTE_LOG(DEBUG, EAL, "PCI Port IO found start=0x%lx\n", start);
p->base = start;
p->len = 0;
return 0;
}
#else
int
pci_uio_ioport_map(struct rte_pci_device *dev, int bar,
struct rte_pci_ioport *p)
{
FILE *f;
char buf[BUFSIZ];
char filename[PATH_MAX];
uint64_t phys_addr, end_addr, flags;
int fd, i;
void *addr;
/* open and read addresses of the corresponding resource in sysfs */
snprintf(filename, sizeof(filename), "%s/" PCI_PRI_FMT "/resource",
pci_get_sysfs_path(), dev->addr.domain, dev->addr.bus,
dev->addr.devid, dev->addr.function);
f = fopen(filename, "r");
if (f == NULL) {
RTE_LOG(ERR, EAL, "Cannot open sysfs resource: %s\n",
strerror(errno));
return -1;
}
for (i = 0; i < bar + 1; i++) {
if (fgets(buf, sizeof(buf), f) == NULL) {
RTE_LOG(ERR, EAL, "Cannot read sysfs resource\n");
goto error;
}
}
if (pci_parse_one_sysfs_resource(buf, sizeof(buf), &phys_addr,
&end_addr, &flags) < 0)
goto error;
if ((flags & IORESOURCE_IO) == 0) {
RTE_LOG(ERR, EAL, "BAR %d is not an IO resource\n", bar);
goto error;
}
snprintf(filename, sizeof(filename), "%s/" PCI_PRI_FMT "/resource%d",
pci_get_sysfs_path(), dev->addr.domain, dev->addr.bus,
dev->addr.devid, dev->addr.function, bar);
/* mmap the pci resource */
fd = open(filename, O_RDWR);
if (fd < 0) {
RTE_LOG(ERR, EAL, "Cannot open %s: %s\n", filename,
strerror(errno));
goto error;
}
addr = mmap(NULL, end_addr + 1, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);
close(fd);
if (addr == MAP_FAILED) {
RTE_LOG(ERR, EAL, "Cannot mmap IO port resource: %s\n",
strerror(errno));
goto error;
}
/* strangely, the base address is mmap addr + phys_addr */
p->base = (uintptr_t)addr + phys_addr;
p->len = end_addr + 1;
RTE_LOG(DEBUG, EAL, "PCI Port IO found start=0x%"PRIx64"\n", p->base);
fclose(f);
return 0;
error:
fclose(f);
return -1;
}
#endif
void
pci_uio_ioport_read(struct rte_pci_ioport *p,
void *data, size_t len, off_t offset)
{
uint8_t *d;
int size;
uintptr_t reg = p->base + offset;
for (d = data; len > 0; d += size, reg += size, len -= size) {
if (len >= 4) {
size = 4;
#if defined(RTE_ARCH_X86)
*(uint32_t *)d = inl(reg);
#else
*(uint32_t *)d = *(volatile uint32_t *)reg;
#endif
} else if (len >= 2) {
size = 2;
#if defined(RTE_ARCH_X86)
*(uint16_t *)d = inw(reg);
#else
*(uint16_t *)d = *(volatile uint16_t *)reg;
#endif
} else {
size = 1;
#if defined(RTE_ARCH_X86)
*d = inb(reg);
#else
*d = *(volatile uint8_t *)reg;
#endif
}
}
}
void
pci_uio_ioport_write(struct rte_pci_ioport *p,
const void *data, size_t len, off_t offset)
{
const uint8_t *s;
int size;
uintptr_t reg = p->base + offset;
for (s = data; len > 0; s += size, reg += size, len -= size) {
if (len >= 4) {
size = 4;
#if defined(RTE_ARCH_X86)
outl_p(*(const uint32_t *)s, reg);
#else
*(volatile uint32_t *)reg = *(const uint32_t *)s;
#endif
} else if (len >= 2) {
size = 2;
#if defined(RTE_ARCH_X86)
outw_p(*(const uint16_t *)s, reg);
#else
*(volatile uint16_t *)reg = *(const uint16_t *)s;
#endif
} else {
size = 1;
#if defined(RTE_ARCH_X86)
outb_p(*s, reg);
#else
*(volatile uint8_t *)reg = *s;
#endif
}
}
}
int
pci_uio_ioport_unmap(struct rte_pci_ioport *p)
{
#if defined(RTE_ARCH_X86)
RTE_SET_USED(p);
/* FIXME close intr fd ? */
return 0;
#else
return munmap((void *)(uintptr_t)p->base, p->len);
#endif
}