f-stack/dpdk/lib/librte_eal/linuxapp/eal/eal_interrupts.c

1223 lines
29 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <pthread.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <inttypes.h>
#include <sys/epoll.h>
#include <sys/signalfd.h>
#include <sys/ioctl.h>
#include <sys/eventfd.h>
#include <assert.h>
#include <rte_common.h>
#include <rte_interrupts.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_debug.h>
#include <rte_log.h>
#include <rte_pci.h>
#include <rte_malloc.h>
#include <rte_errno.h>
#include <rte_spinlock.h>
#include "eal_private.h"
#include "eal_vfio.h"
#include "eal_thread.h"
#define EAL_INTR_EPOLL_WAIT_FOREVER (-1)
#define NB_OTHER_INTR 1
static RTE_DEFINE_PER_LCORE(int, _epfd) = -1; /**< epoll fd per thread */
/**
* union for pipe fds.
*/
union intr_pipefds{
struct {
int pipefd[2];
};
struct {
int readfd;
int writefd;
};
};
/**
* union buffer for reading on different devices
*/
union rte_intr_read_buffer {
int uio_intr_count; /* for uio device */
#ifdef VFIO_PRESENT
uint64_t vfio_intr_count; /* for vfio device */
#endif
uint64_t timerfd_num; /* for timerfd */
char charbuf[16]; /* for others */
};
TAILQ_HEAD(rte_intr_cb_list, rte_intr_callback);
TAILQ_HEAD(rte_intr_source_list, rte_intr_source);
struct rte_intr_callback {
TAILQ_ENTRY(rte_intr_callback) next;
rte_intr_callback_fn cb_fn; /**< callback address */
void *cb_arg; /**< parameter for callback */
};
struct rte_intr_source {
TAILQ_ENTRY(rte_intr_source) next;
struct rte_intr_handle intr_handle; /**< interrupt handle */
struct rte_intr_cb_list callbacks; /**< user callbacks */
uint32_t active;
};
/* global spinlock for interrupt data operation */
static rte_spinlock_t intr_lock = RTE_SPINLOCK_INITIALIZER;
/* union buffer for pipe read/write */
static union intr_pipefds intr_pipe;
/* interrupt sources list */
static struct rte_intr_source_list intr_sources;
/* interrupt handling thread */
static pthread_t intr_thread;
/* VFIO interrupts */
#ifdef VFIO_PRESENT
#define IRQ_SET_BUF_LEN (sizeof(struct vfio_irq_set) + sizeof(int))
/* irq set buffer length for queue interrupts and LSC interrupt */
#define MSIX_IRQ_SET_BUF_LEN (sizeof(struct vfio_irq_set) + \
sizeof(int) * (RTE_MAX_RXTX_INTR_VEC_ID + 1))
/* enable legacy (INTx) interrupts */
static int
vfio_enable_intx(struct rte_intr_handle *intr_handle) {
struct vfio_irq_set *irq_set;
char irq_set_buf[IRQ_SET_BUF_LEN];
int len, ret;
int *fd_ptr;
len = sizeof(irq_set_buf);
/* enable INTx */
irq_set = (struct vfio_irq_set *) irq_set_buf;
irq_set->argsz = len;
irq_set->count = 1;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
irq_set->start = 0;
fd_ptr = (int *) &irq_set->data;
*fd_ptr = intr_handle->fd;
ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set);
if (ret) {
RTE_LOG(ERR, EAL, "Error enabling INTx interrupts for fd %d\n",
intr_handle->fd);
return -1;
}
/* unmask INTx after enabling */
memset(irq_set, 0, len);
len = sizeof(struct vfio_irq_set);
irq_set->argsz = len;
irq_set->count = 1;
irq_set->flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK;
irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
irq_set->start = 0;
ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set);
if (ret) {
RTE_LOG(ERR, EAL, "Error unmasking INTx interrupts for fd %d\n",
intr_handle->fd);
return -1;
}
return 0;
}
/* disable legacy (INTx) interrupts */
static int
vfio_disable_intx(struct rte_intr_handle *intr_handle) {
struct vfio_irq_set *irq_set;
char irq_set_buf[IRQ_SET_BUF_LEN];
int len, ret;
len = sizeof(struct vfio_irq_set);
/* mask interrupts before disabling */
irq_set = (struct vfio_irq_set *) irq_set_buf;
irq_set->argsz = len;
irq_set->count = 1;
irq_set->flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK;
irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
irq_set->start = 0;
ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set);
if (ret) {
RTE_LOG(ERR, EAL, "Error unmasking INTx interrupts for fd %d\n",
intr_handle->fd);
return -1;
}
/* disable INTx*/
memset(irq_set, 0, len);
irq_set->argsz = len;
irq_set->count = 0;
irq_set->flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
irq_set->start = 0;
ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set);
if (ret) {
RTE_LOG(ERR, EAL,
"Error disabling INTx interrupts for fd %d\n", intr_handle->fd);
return -1;
}
return 0;
}
/* enable MSI interrupts */
static int
vfio_enable_msi(struct rte_intr_handle *intr_handle) {
int len, ret;
char irq_set_buf[IRQ_SET_BUF_LEN];
struct vfio_irq_set *irq_set;
int *fd_ptr;
len = sizeof(irq_set_buf);
irq_set = (struct vfio_irq_set *) irq_set_buf;
irq_set->argsz = len;
irq_set->count = 1;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_MSI_IRQ_INDEX;
irq_set->start = 0;
fd_ptr = (int *) &irq_set->data;
*fd_ptr = intr_handle->fd;
ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set);
if (ret) {
RTE_LOG(ERR, EAL, "Error enabling MSI interrupts for fd %d\n",
intr_handle->fd);
return -1;
}
return 0;
}
/* disable MSI interrupts */
static int
vfio_disable_msi(struct rte_intr_handle *intr_handle) {
struct vfio_irq_set *irq_set;
char irq_set_buf[IRQ_SET_BUF_LEN];
int len, ret;
len = sizeof(struct vfio_irq_set);
irq_set = (struct vfio_irq_set *) irq_set_buf;
irq_set->argsz = len;
irq_set->count = 0;
irq_set->flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_MSI_IRQ_INDEX;
irq_set->start = 0;
ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set);
if (ret)
RTE_LOG(ERR, EAL,
"Error disabling MSI interrupts for fd %d\n", intr_handle->fd);
return ret;
}
/* enable MSI-X interrupts */
static int
vfio_enable_msix(struct rte_intr_handle *intr_handle) {
int len, ret;
char irq_set_buf[MSIX_IRQ_SET_BUF_LEN];
struct vfio_irq_set *irq_set;
int *fd_ptr;
len = sizeof(irq_set_buf);
irq_set = (struct vfio_irq_set *) irq_set_buf;
irq_set->argsz = len;
if (!intr_handle->max_intr)
intr_handle->max_intr = 1;
else if (intr_handle->max_intr > RTE_MAX_RXTX_INTR_VEC_ID)
intr_handle->max_intr = RTE_MAX_RXTX_INTR_VEC_ID + 1;
irq_set->count = intr_handle->max_intr;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
irq_set->start = 0;
fd_ptr = (int *) &irq_set->data;
/* INTR vector offset 0 reserve for non-efds mapping */
fd_ptr[RTE_INTR_VEC_ZERO_OFFSET] = intr_handle->fd;
memcpy(&fd_ptr[RTE_INTR_VEC_RXTX_OFFSET], intr_handle->efds,
sizeof(*intr_handle->efds) * intr_handle->nb_efd);
ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set);
if (ret) {
RTE_LOG(ERR, EAL, "Error enabling MSI-X interrupts for fd %d\n",
intr_handle->fd);
return -1;
}
return 0;
}
/* disable MSI-X interrupts */
static int
vfio_disable_msix(struct rte_intr_handle *intr_handle) {
struct vfio_irq_set *irq_set;
char irq_set_buf[MSIX_IRQ_SET_BUF_LEN];
int len, ret;
len = sizeof(struct vfio_irq_set);
irq_set = (struct vfio_irq_set *) irq_set_buf;
irq_set->argsz = len;
irq_set->count = 0;
irq_set->flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
irq_set->start = 0;
ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set);
if (ret)
RTE_LOG(ERR, EAL,
"Error disabling MSI-X interrupts for fd %d\n", intr_handle->fd);
return ret;
}
#endif
static int
uio_intx_intr_disable(struct rte_intr_handle *intr_handle)
{
unsigned char command_high;
/* use UIO config file descriptor for uio_pci_generic */
if (pread(intr_handle->uio_cfg_fd, &command_high, 1, 5) != 1) {
RTE_LOG(ERR, EAL,
"Error reading interrupts status for fd %d\n",
intr_handle->uio_cfg_fd);
return -1;
}
/* disable interrupts */
command_high |= 0x4;
if (pwrite(intr_handle->uio_cfg_fd, &command_high, 1, 5) != 1) {
RTE_LOG(ERR, EAL,
"Error disabling interrupts for fd %d\n",
intr_handle->uio_cfg_fd);
return -1;
}
return 0;
}
static int
uio_intx_intr_enable(struct rte_intr_handle *intr_handle)
{
unsigned char command_high;
/* use UIO config file descriptor for uio_pci_generic */
if (pread(intr_handle->uio_cfg_fd, &command_high, 1, 5) != 1) {
RTE_LOG(ERR, EAL,
"Error reading interrupts status for fd %d\n",
intr_handle->uio_cfg_fd);
return -1;
}
/* enable interrupts */
command_high &= ~0x4;
if (pwrite(intr_handle->uio_cfg_fd, &command_high, 1, 5) != 1) {
RTE_LOG(ERR, EAL,
"Error enabling interrupts for fd %d\n",
intr_handle->uio_cfg_fd);
return -1;
}
return 0;
}
static int
uio_intr_disable(struct rte_intr_handle *intr_handle)
{
const int value = 0;
if (write(intr_handle->fd, &value, sizeof(value)) < 0) {
RTE_LOG(ERR, EAL,
"Error disabling interrupts for fd %d (%s)\n",
intr_handle->fd, strerror(errno));
return -1;
}
return 0;
}
static int
uio_intr_enable(struct rte_intr_handle *intr_handle)
{
const int value = 1;
if (write(intr_handle->fd, &value, sizeof(value)) < 0) {
RTE_LOG(ERR, EAL,
"Error enabling interrupts for fd %d (%s)\n",
intr_handle->fd, strerror(errno));
return -1;
}
return 0;
}
int
rte_intr_callback_register(struct rte_intr_handle *intr_handle,
rte_intr_callback_fn cb, void *cb_arg)
{
int ret, wake_thread;
struct rte_intr_source *src;
struct rte_intr_callback *callback;
wake_thread = 0;
/* first do parameter checking */
if (intr_handle == NULL || intr_handle->fd < 0 || cb == NULL) {
RTE_LOG(ERR, EAL,
"Registering with invalid input parameter\n");
return -EINVAL;
}
/* allocate a new interrupt callback entity */
callback = rte_zmalloc("interrupt callback list",
sizeof(*callback), 0);
if (callback == NULL) {
RTE_LOG(ERR, EAL, "Can not allocate memory\n");
return -ENOMEM;
}
callback->cb_fn = cb;
callback->cb_arg = cb_arg;
rte_spinlock_lock(&intr_lock);
/* check if there is at least one callback registered for the fd */
TAILQ_FOREACH(src, &intr_sources, next) {
if (src->intr_handle.fd == intr_handle->fd) {
/* we had no interrupts for this */
if TAILQ_EMPTY(&src->callbacks)
wake_thread = 1;
TAILQ_INSERT_TAIL(&(src->callbacks), callback, next);
ret = 0;
break;
}
}
/* no existing callbacks for this - add new source */
if (src == NULL) {
if ((src = rte_zmalloc("interrupt source list",
sizeof(*src), 0)) == NULL) {
RTE_LOG(ERR, EAL, "Can not allocate memory\n");
rte_free(callback);
ret = -ENOMEM;
} else {
src->intr_handle = *intr_handle;
TAILQ_INIT(&src->callbacks);
TAILQ_INSERT_TAIL(&(src->callbacks), callback, next);
TAILQ_INSERT_TAIL(&intr_sources, src, next);
wake_thread = 1;
ret = 0;
}
}
rte_spinlock_unlock(&intr_lock);
/**
* check if need to notify the pipe fd waited by epoll_wait to
* rebuild the wait list.
*/
if (wake_thread)
if (write(intr_pipe.writefd, "1", 1) < 0)
return -EPIPE;
return ret;
}
int
rte_intr_callback_unregister(struct rte_intr_handle *intr_handle,
rte_intr_callback_fn cb_fn, void *cb_arg)
{
int ret;
struct rte_intr_source *src;
struct rte_intr_callback *cb, *next;
/* do parameter checking first */
if (intr_handle == NULL || intr_handle->fd < 0) {
RTE_LOG(ERR, EAL,
"Unregistering with invalid input parameter\n");
return -EINVAL;
}
rte_spinlock_lock(&intr_lock);
/* check if the insterrupt source for the fd is existent */
TAILQ_FOREACH(src, &intr_sources, next)
if (src->intr_handle.fd == intr_handle->fd)
break;
/* No interrupt source registered for the fd */
if (src == NULL) {
ret = -ENOENT;
/* interrupt source has some active callbacks right now. */
} else if (src->active != 0) {
ret = -EAGAIN;
/* ok to remove. */
} else {
ret = 0;
/*walk through the callbacks and remove all that match. */
for (cb = TAILQ_FIRST(&src->callbacks); cb != NULL; cb = next) {
next = TAILQ_NEXT(cb, next);
if (cb->cb_fn == cb_fn && (cb_arg == (void *)-1 ||
cb->cb_arg == cb_arg)) {
TAILQ_REMOVE(&src->callbacks, cb, next);
rte_free(cb);
ret++;
}
}
/* all callbacks for that source are removed. */
if (TAILQ_EMPTY(&src->callbacks)) {
TAILQ_REMOVE(&intr_sources, src, next);
rte_free(src);
}
}
rte_spinlock_unlock(&intr_lock);
/* notify the pipe fd waited by epoll_wait to rebuild the wait list */
if (ret >= 0 && write(intr_pipe.writefd, "1", 1) < 0) {
ret = -EPIPE;
}
return ret;
}
int
rte_intr_enable(struct rte_intr_handle *intr_handle)
{
if (!intr_handle || intr_handle->fd < 0 || intr_handle->uio_cfg_fd < 0)
return -1;
switch (intr_handle->type){
/* write to the uio fd to enable the interrupt */
case RTE_INTR_HANDLE_UIO:
if (uio_intr_enable(intr_handle))
return -1;
break;
case RTE_INTR_HANDLE_UIO_INTX:
if (uio_intx_intr_enable(intr_handle))
return -1;
break;
/* not used at this moment */
case RTE_INTR_HANDLE_ALARM:
return -1;
#ifdef VFIO_PRESENT
case RTE_INTR_HANDLE_VFIO_MSIX:
if (vfio_enable_msix(intr_handle))
return -1;
break;
case RTE_INTR_HANDLE_VFIO_MSI:
if (vfio_enable_msi(intr_handle))
return -1;
break;
case RTE_INTR_HANDLE_VFIO_LEGACY:
if (vfio_enable_intx(intr_handle))
return -1;
break;
#endif
/* unknown handle type */
default:
RTE_LOG(ERR, EAL,
"Unknown handle type of fd %d\n",
intr_handle->fd);
return -1;
}
return 0;
}
int
rte_intr_disable(struct rte_intr_handle *intr_handle)
{
if (!intr_handle || intr_handle->fd < 0 || intr_handle->uio_cfg_fd < 0)
return -1;
switch (intr_handle->type){
/* write to the uio fd to disable the interrupt */
case RTE_INTR_HANDLE_UIO:
if (uio_intr_disable(intr_handle))
return -1;
break;
case RTE_INTR_HANDLE_UIO_INTX:
if (uio_intx_intr_disable(intr_handle))
return -1;
break;
/* not used at this moment */
case RTE_INTR_HANDLE_ALARM:
return -1;
#ifdef VFIO_PRESENT
case RTE_INTR_HANDLE_VFIO_MSIX:
if (vfio_disable_msix(intr_handle))
return -1;
break;
case RTE_INTR_HANDLE_VFIO_MSI:
if (vfio_disable_msi(intr_handle))
return -1;
break;
case RTE_INTR_HANDLE_VFIO_LEGACY:
if (vfio_disable_intx(intr_handle))
return -1;
break;
#endif
/* unknown handle type */
default:
RTE_LOG(ERR, EAL,
"Unknown handle type of fd %d\n",
intr_handle->fd);
return -1;
}
return 0;
}
static int
eal_intr_process_interrupts(struct epoll_event *events, int nfds)
{
int n, bytes_read;
struct rte_intr_source *src;
struct rte_intr_callback *cb;
union rte_intr_read_buffer buf;
struct rte_intr_callback active_cb;
for (n = 0; n < nfds; n++) {
/**
* if the pipe fd is ready to read, return out to
* rebuild the wait list.
*/
if (events[n].data.fd == intr_pipe.readfd){
int r = read(intr_pipe.readfd, buf.charbuf,
sizeof(buf.charbuf));
RTE_SET_USED(r);
return -1;
}
rte_spinlock_lock(&intr_lock);
TAILQ_FOREACH(src, &intr_sources, next)
if (src->intr_handle.fd ==
events[n].data.fd)
break;
if (src == NULL){
rte_spinlock_unlock(&intr_lock);
continue;
}
/* mark this interrupt source as active and release the lock. */
src->active = 1;
rte_spinlock_unlock(&intr_lock);
/* set the length to be read dor different handle type */
switch (src->intr_handle.type) {
case RTE_INTR_HANDLE_UIO:
case RTE_INTR_HANDLE_UIO_INTX:
bytes_read = sizeof(buf.uio_intr_count);
break;
case RTE_INTR_HANDLE_ALARM:
bytes_read = sizeof(buf.timerfd_num);
break;
#ifdef VFIO_PRESENT
case RTE_INTR_HANDLE_VFIO_MSIX:
case RTE_INTR_HANDLE_VFIO_MSI:
case RTE_INTR_HANDLE_VFIO_LEGACY:
bytes_read = sizeof(buf.vfio_intr_count);
break;
#endif
case RTE_INTR_HANDLE_EXT:
default:
bytes_read = 1;
break;
}
if (src->intr_handle.type != RTE_INTR_HANDLE_EXT) {
/**
* read out to clear the ready-to-be-read flag
* for epoll_wait.
*/
bytes_read = read(events[n].data.fd, &buf, bytes_read);
if (bytes_read < 0) {
if (errno == EINTR || errno == EWOULDBLOCK)
continue;
RTE_LOG(ERR, EAL, "Error reading from file "
"descriptor %d: %s\n",
events[n].data.fd,
strerror(errno));
} else if (bytes_read == 0)
RTE_LOG(ERR, EAL, "Read nothing from file "
"descriptor %d\n", events[n].data.fd);
}
/* grab a lock, again to call callbacks and update status. */
rte_spinlock_lock(&intr_lock);
if (bytes_read > 0) {
/* Finally, call all callbacks. */
TAILQ_FOREACH(cb, &src->callbacks, next) {
/* make a copy and unlock. */
active_cb = *cb;
rte_spinlock_unlock(&intr_lock);
/* call the actual callback */
active_cb.cb_fn(&src->intr_handle,
active_cb.cb_arg);
/*get the lock back. */
rte_spinlock_lock(&intr_lock);
}
}
/* we done with that interrupt source, release it. */
src->active = 0;
rte_spinlock_unlock(&intr_lock);
}
return 0;
}
/**
* It handles all the interrupts.
*
* @param pfd
* epoll file descriptor.
* @param totalfds
* The number of file descriptors added in epoll.
*
* @return
* void
*/
static void
eal_intr_handle_interrupts(int pfd, unsigned totalfds)
{
struct epoll_event events[totalfds];
int nfds = 0;
for(;;) {
nfds = epoll_wait(pfd, events, totalfds,
EAL_INTR_EPOLL_WAIT_FOREVER);
/* epoll_wait fail */
if (nfds < 0) {
if (errno == EINTR)
continue;
RTE_LOG(ERR, EAL,
"epoll_wait returns with fail\n");
return;
}
/* epoll_wait timeout, will never happens here */
else if (nfds == 0)
continue;
/* epoll_wait has at least one fd ready to read */
if (eal_intr_process_interrupts(events, nfds) < 0)
return;
}
}
/**
* It builds/rebuilds up the epoll file descriptor with all the
* file descriptors being waited on. Then handles the interrupts.
*
* @param arg
* pointer. (unused)
*
* @return
* never return;
*/
static __attribute__((noreturn)) void *
eal_intr_thread_main(__rte_unused void *arg)
{
struct epoll_event ev;
/* host thread, never break out */
for (;;) {
/* build up the epoll fd with all descriptors we are to
* wait on then pass it to the handle_interrupts function
*/
static struct epoll_event pipe_event = {
.events = EPOLLIN | EPOLLPRI,
};
struct rte_intr_source *src;
unsigned numfds = 0;
/* create epoll fd */
int pfd = epoll_create(1);
if (pfd < 0)
rte_panic("Cannot create epoll instance\n");
pipe_event.data.fd = intr_pipe.readfd;
/**
* add pipe fd into wait list, this pipe is used to
* rebuild the wait list.
*/
if (epoll_ctl(pfd, EPOLL_CTL_ADD, intr_pipe.readfd,
&pipe_event) < 0) {
rte_panic("Error adding fd to %d epoll_ctl, %s\n",
intr_pipe.readfd, strerror(errno));
}
numfds++;
rte_spinlock_lock(&intr_lock);
TAILQ_FOREACH(src, &intr_sources, next) {
if (src->callbacks.tqh_first == NULL)
continue; /* skip those with no callbacks */
ev.events = EPOLLIN | EPOLLPRI;
ev.data.fd = src->intr_handle.fd;
/**
* add all the uio device file descriptor
* into wait list.
*/
if (epoll_ctl(pfd, EPOLL_CTL_ADD,
src->intr_handle.fd, &ev) < 0){
rte_panic("Error adding fd %d epoll_ctl, %s\n",
src->intr_handle.fd, strerror(errno));
}
else
numfds++;
}
rte_spinlock_unlock(&intr_lock);
/* serve the interrupt */
eal_intr_handle_interrupts(pfd, numfds);
/**
* when we return, we need to rebuild the
* list of fds to monitor.
*/
close(pfd);
}
}
int
rte_eal_intr_init(void)
{
int ret = 0, ret_1 = 0;
char thread_name[RTE_MAX_THREAD_NAME_LEN];
/* init the global interrupt source head */
TAILQ_INIT(&intr_sources);
/**
* create a pipe which will be waited by epoll and notified to
* rebuild the wait list of epoll.
*/
if (pipe(intr_pipe.pipefd) < 0)
return -1;
/* create the host thread to wait/handle the interrupt */
ret = pthread_create(&intr_thread, NULL,
eal_intr_thread_main, NULL);
if (ret != 0) {
RTE_LOG(ERR, EAL,
"Failed to create thread for interrupt handling\n");
} else {
/* Set thread_name for aid in debugging. */
snprintf(thread_name, RTE_MAX_THREAD_NAME_LEN,
"eal-intr-thread");
ret_1 = rte_thread_setname(intr_thread, thread_name);
if (ret_1 != 0)
RTE_LOG(DEBUG, EAL,
"Failed to set thread name for interrupt handling\n");
}
return -ret;
}
static void
eal_intr_proc_rxtx_intr(int fd, const struct rte_intr_handle *intr_handle)
{
union rte_intr_read_buffer buf;
int bytes_read = 1;
int nbytes;
switch (intr_handle->type) {
case RTE_INTR_HANDLE_UIO:
case RTE_INTR_HANDLE_UIO_INTX:
bytes_read = sizeof(buf.uio_intr_count);
break;
#ifdef VFIO_PRESENT
case RTE_INTR_HANDLE_VFIO_MSIX:
case RTE_INTR_HANDLE_VFIO_MSI:
case RTE_INTR_HANDLE_VFIO_LEGACY:
bytes_read = sizeof(buf.vfio_intr_count);
break;
#endif
default:
bytes_read = 1;
RTE_LOG(INFO, EAL, "unexpected intr type\n");
break;
}
/**
* read out to clear the ready-to-be-read flag
* for epoll_wait.
*/
do {
nbytes = read(fd, &buf, bytes_read);
if (nbytes < 0) {
if (errno == EINTR || errno == EWOULDBLOCK ||
errno == EAGAIN)
continue;
RTE_LOG(ERR, EAL,
"Error reading from fd %d: %s\n",
fd, strerror(errno));
} else if (nbytes == 0)
RTE_LOG(ERR, EAL, "Read nothing from fd %d\n", fd);
return;
} while (1);
}
static int
eal_epoll_process_event(struct epoll_event *evs, unsigned int n,
struct rte_epoll_event *events)
{
unsigned int i, count = 0;
struct rte_epoll_event *rev;
for (i = 0; i < n; i++) {
rev = evs[i].data.ptr;
if (!rev || !rte_atomic32_cmpset(&rev->status, RTE_EPOLL_VALID,
RTE_EPOLL_EXEC))
continue;
events[count].status = RTE_EPOLL_VALID;
events[count].fd = rev->fd;
events[count].epfd = rev->epfd;
events[count].epdata.event = rev->epdata.event;
events[count].epdata.data = rev->epdata.data;
if (rev->epdata.cb_fun)
rev->epdata.cb_fun(rev->fd,
rev->epdata.cb_arg);
rte_compiler_barrier();
rev->status = RTE_EPOLL_VALID;
count++;
}
return count;
}
static inline int
eal_init_tls_epfd(void)
{
int pfd = epoll_create(255);
if (pfd < 0) {
RTE_LOG(ERR, EAL,
"Cannot create epoll instance\n");
return -1;
}
return pfd;
}
int
rte_intr_tls_epfd(void)
{
if (RTE_PER_LCORE(_epfd) == -1)
RTE_PER_LCORE(_epfd) = eal_init_tls_epfd();
return RTE_PER_LCORE(_epfd);
}
int
rte_epoll_wait(int epfd, struct rte_epoll_event *events,
int maxevents, int timeout)
{
struct epoll_event evs[maxevents];
int rc;
if (!events) {
RTE_LOG(ERR, EAL, "rte_epoll_event can't be NULL\n");
return -1;
}
/* using per thread epoll fd */
if (epfd == RTE_EPOLL_PER_THREAD)
epfd = rte_intr_tls_epfd();
while (1) {
rc = epoll_wait(epfd, evs, maxevents, timeout);
if (likely(rc > 0)) {
/* epoll_wait has at least one fd ready to read */
rc = eal_epoll_process_event(evs, rc, events);
break;
} else if (rc < 0) {
if (errno == EINTR)
continue;
/* epoll_wait fail */
RTE_LOG(ERR, EAL, "epoll_wait returns with fail %s\n",
strerror(errno));
rc = -1;
break;
} else {
/* rc == 0, epoll_wait timed out */
break;
}
}
return rc;
}
static inline void
eal_epoll_data_safe_free(struct rte_epoll_event *ev)
{
while (!rte_atomic32_cmpset(&ev->status, RTE_EPOLL_VALID,
RTE_EPOLL_INVALID))
while (ev->status != RTE_EPOLL_VALID)
rte_pause();
memset(&ev->epdata, 0, sizeof(ev->epdata));
ev->fd = -1;
ev->epfd = -1;
}
int
rte_epoll_ctl(int epfd, int op, int fd,
struct rte_epoll_event *event)
{
struct epoll_event ev;
if (!event) {
RTE_LOG(ERR, EAL, "rte_epoll_event can't be NULL\n");
return -1;
}
/* using per thread epoll fd */
if (epfd == RTE_EPOLL_PER_THREAD)
epfd = rte_intr_tls_epfd();
if (op == EPOLL_CTL_ADD) {
event->status = RTE_EPOLL_VALID;
event->fd = fd; /* ignore fd in event */
event->epfd = epfd;
ev.data.ptr = (void *)event;
}
ev.events = event->epdata.event;
if (epoll_ctl(epfd, op, fd, &ev) < 0) {
RTE_LOG(ERR, EAL, "Error op %d fd %d epoll_ctl, %s\n",
op, fd, strerror(errno));
if (op == EPOLL_CTL_ADD)
/* rollback status when CTL_ADD fail */
event->status = RTE_EPOLL_INVALID;
return -1;
}
if (op == EPOLL_CTL_DEL && event->status != RTE_EPOLL_INVALID)
eal_epoll_data_safe_free(event);
return 0;
}
int
rte_intr_rx_ctl(struct rte_intr_handle *intr_handle, int epfd,
int op, unsigned int vec, void *data)
{
struct rte_epoll_event *rev;
struct rte_epoll_data *epdata;
int epfd_op;
unsigned int efd_idx;
int rc = 0;
efd_idx = (vec >= RTE_INTR_VEC_RXTX_OFFSET) ?
(vec - RTE_INTR_VEC_RXTX_OFFSET) : vec;
if (!intr_handle || intr_handle->nb_efd == 0 ||
efd_idx >= intr_handle->nb_efd) {
RTE_LOG(ERR, EAL, "Wrong intr vector number.\n");
return -EPERM;
}
switch (op) {
case RTE_INTR_EVENT_ADD:
epfd_op = EPOLL_CTL_ADD;
rev = &intr_handle->elist[efd_idx];
if (rev->status != RTE_EPOLL_INVALID) {
RTE_LOG(INFO, EAL, "Event already been added.\n");
return -EEXIST;
}
/* attach to intr vector fd */
epdata = &rev->epdata;
epdata->event = EPOLLIN | EPOLLPRI | EPOLLET;
epdata->data = data;
epdata->cb_fun = (rte_intr_event_cb_t)eal_intr_proc_rxtx_intr;
epdata->cb_arg = (void *)intr_handle;
rc = rte_epoll_ctl(epfd, epfd_op,
intr_handle->efds[efd_idx], rev);
if (!rc)
RTE_LOG(DEBUG, EAL,
"efd %d associated with vec %d added on epfd %d"
"\n", rev->fd, vec, epfd);
else
rc = -EPERM;
break;
case RTE_INTR_EVENT_DEL:
epfd_op = EPOLL_CTL_DEL;
rev = &intr_handle->elist[efd_idx];
if (rev->status == RTE_EPOLL_INVALID) {
RTE_LOG(INFO, EAL, "Event does not exist.\n");
return -EPERM;
}
rc = rte_epoll_ctl(rev->epfd, epfd_op, rev->fd, rev);
if (rc)
rc = -EPERM;
break;
default:
RTE_LOG(ERR, EAL, "event op type mismatch\n");
rc = -EPERM;
}
return rc;
}
int
rte_intr_efd_enable(struct rte_intr_handle *intr_handle, uint32_t nb_efd)
{
uint32_t i;
int fd;
uint32_t n = RTE_MIN(nb_efd, (uint32_t)RTE_MAX_RXTX_INTR_VEC_ID);
assert(nb_efd != 0);
if (intr_handle->type == RTE_INTR_HANDLE_VFIO_MSIX) {
for (i = 0; i < n; i++) {
fd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
if (fd < 0) {
RTE_LOG(ERR, EAL,
"can't setup eventfd, error %i (%s)\n",
errno, strerror(errno));
return -1;
}
intr_handle->efds[i] = fd;
}
intr_handle->nb_efd = n;
intr_handle->max_intr = NB_OTHER_INTR + n;
} else {
intr_handle->efds[0] = intr_handle->fd;
intr_handle->nb_efd = RTE_MIN(nb_efd, 1U);
intr_handle->max_intr = NB_OTHER_INTR;
}
return 0;
}
void
rte_intr_efd_disable(struct rte_intr_handle *intr_handle)
{
uint32_t i;
struct rte_epoll_event *rev;
for (i = 0; i < intr_handle->nb_efd; i++) {
rev = &intr_handle->elist[i];
if (rev->status == RTE_EPOLL_INVALID)
continue;
if (rte_epoll_ctl(rev->epfd, EPOLL_CTL_DEL, rev->fd, rev)) {
/* force free if the entry valid */
eal_epoll_data_safe_free(rev);
rev->status = RTE_EPOLL_INVALID;
}
}
if (intr_handle->max_intr > intr_handle->nb_efd) {
for (i = 0; i < intr_handle->nb_efd; i++)
close(intr_handle->efds[i]);
}
intr_handle->nb_efd = 0;
intr_handle->max_intr = 0;
}
int
rte_intr_dp_is_en(struct rte_intr_handle *intr_handle)
{
return !(!intr_handle->nb_efd);
}
int
rte_intr_allow_others(struct rte_intr_handle *intr_handle)
{
if (!rte_intr_dp_is_en(intr_handle))
return 1;
else
return !!(intr_handle->max_intr - intr_handle->nb_efd);
}
int
rte_intr_cap_multiple(struct rte_intr_handle *intr_handle)
{
if (intr_handle->type == RTE_INTR_HANDLE_VFIO_MSIX)
return 1;
return 0;
}