f-stack/dpdk/examples/ipsec-secgw/sa.c

511 lines
13 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2016 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Security Associations
*/
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <rte_memzone.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>
#include <rte_byteorder.h>
#include <rte_errno.h>
#include <rte_ip.h>
#include "ipsec.h"
#include "esp.h"
/* SAs Outbound */
const struct ipsec_sa sa_out[] = {
{
.spi = 5,
.src.ip.ip4 = IPv4(172, 16, 1, 5),
.dst.ip.ip4 = IPv4(172, 16, 2, 5),
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = IP4_TUNNEL
},
{
.spi = 6,
.src.ip.ip4 = IPv4(172, 16, 1, 6),
.dst.ip.ip4 = IPv4(172, 16, 2, 6),
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = IP4_TUNNEL
},
{
.spi = 10,
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = TRANSPORT
},
{
.spi = 11,
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = TRANSPORT
},
{
.spi = 15,
.src.ip.ip4 = IPv4(172, 16, 1, 5),
.dst.ip.ip4 = IPv4(172, 16, 2, 5),
.cipher_algo = RTE_CRYPTO_CIPHER_NULL,
.auth_algo = RTE_CRYPTO_AUTH_NULL,
.digest_len = 0,
.iv_len = 0,
.block_size = 4,
.flags = IP4_TUNNEL
},
{
.spi = 16,
.src.ip.ip4 = IPv4(172, 16, 1, 6),
.dst.ip.ip4 = IPv4(172, 16, 2, 6),
.cipher_algo = RTE_CRYPTO_CIPHER_NULL,
.auth_algo = RTE_CRYPTO_AUTH_NULL,
.digest_len = 0,
.iv_len = 0,
.block_size = 4,
.flags = IP4_TUNNEL
},
{
.spi = 25,
.src.ip.ip6.ip6_b = { 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x55, 0x55 },
.dst.ip.ip6.ip6_b = { 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,
0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x55, 0x55 },
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = IP6_TUNNEL
},
{
.spi = 26,
.src.ip.ip6.ip6_b = { 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x66, 0x66 },
.dst.ip.ip6.ip6_b = { 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,
0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x66, 0x66 },
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = IP6_TUNNEL
},
};
/* SAs Inbound */
const struct ipsec_sa sa_in[] = {
{
.spi = 105,
.src.ip.ip4 = IPv4(172, 16, 2, 5),
.dst.ip.ip4 = IPv4(172, 16, 1, 5),
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = IP4_TUNNEL
},
{
.spi = 106,
.src.ip.ip4 = IPv4(172, 16, 2, 6),
.dst.ip.ip4 = IPv4(172, 16, 1, 6),
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = IP4_TUNNEL
},
{
.spi = 110,
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = TRANSPORT
},
{
.spi = 111,
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = TRANSPORT
},
{
.spi = 115,
.src.ip.ip4 = IPv4(172, 16, 2, 5),
.dst.ip.ip4 = IPv4(172, 16, 1, 5),
.cipher_algo = RTE_CRYPTO_CIPHER_NULL,
.auth_algo = RTE_CRYPTO_AUTH_NULL,
.digest_len = 0,
.iv_len = 0,
.block_size = 4,
.flags = IP4_TUNNEL
},
{
.spi = 116,
.src.ip.ip4 = IPv4(172, 16, 2, 6),
.dst.ip.ip4 = IPv4(172, 16, 1, 6),
.cipher_algo = RTE_CRYPTO_CIPHER_NULL,
.auth_algo = RTE_CRYPTO_AUTH_NULL,
.digest_len = 0,
.iv_len = 0,
.block_size = 4,
.flags = IP4_TUNNEL
},
{
.spi = 125,
.src.ip.ip6.ip6_b = { 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,
0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x55, 0x55 },
.dst.ip.ip6.ip6_b = { 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x55, 0x55 },
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = IP6_TUNNEL
},
{
.spi = 126,
.src.ip.ip6.ip6_b = { 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,
0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x66, 0x66 },
.dst.ip.ip6.ip6_b = { 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x66, 0x66 },
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = IP6_TUNNEL
},
};
static uint8_t cipher_key[256] = "sixteenbytes key";
/* AES CBC xform */
const struct rte_crypto_sym_xform aescbc_enc_xf = {
NULL,
RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = { RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_CIPHER_AES_CBC,
.key = { cipher_key, 16 } }
}
};
const struct rte_crypto_sym_xform aescbc_dec_xf = {
NULL,
RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = { RTE_CRYPTO_CIPHER_OP_DECRYPT, RTE_CRYPTO_CIPHER_AES_CBC,
.key = { cipher_key, 16 } }
}
};
static uint8_t auth_key[256] = "twentybytes hash key";
/* SHA1 HMAC xform */
const struct rte_crypto_sym_xform sha1hmac_gen_xf = {
NULL,
RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = { RTE_CRYPTO_AUTH_OP_GENERATE, RTE_CRYPTO_AUTH_SHA1_HMAC,
.key = { auth_key, 20 }, 12, 0 }
}
};
const struct rte_crypto_sym_xform sha1hmac_verify_xf = {
NULL,
RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = { RTE_CRYPTO_AUTH_OP_VERIFY, RTE_CRYPTO_AUTH_SHA1_HMAC,
.key = { auth_key, 20 }, 12, 0 }
}
};
/* AES CBC xform */
const struct rte_crypto_sym_xform null_cipher_xf = {
NULL,
RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = { .algo = RTE_CRYPTO_CIPHER_NULL }
}
};
const struct rte_crypto_sym_xform null_auth_xf = {
NULL,
RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = { .algo = RTE_CRYPTO_AUTH_NULL }
}
};
struct sa_ctx {
struct ipsec_sa sa[IPSEC_SA_MAX_ENTRIES];
struct {
struct rte_crypto_sym_xform a;
struct rte_crypto_sym_xform b;
} xf[IPSEC_SA_MAX_ENTRIES];
};
static struct sa_ctx *
sa_create(const char *name, int32_t socket_id)
{
char s[PATH_MAX];
struct sa_ctx *sa_ctx;
uint32_t mz_size;
const struct rte_memzone *mz;
snprintf(s, sizeof(s), "%s_%u", name, socket_id);
/* Create SA array table */
printf("Creating SA context with %u maximum entries\n",
IPSEC_SA_MAX_ENTRIES);
mz_size = sizeof(struct sa_ctx);
mz = rte_memzone_reserve(s, mz_size, socket_id,
RTE_MEMZONE_1GB | RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("Failed to allocate SA DB memory\n");
rte_errno = -ENOMEM;
return NULL;
}
sa_ctx = (struct sa_ctx *)mz->addr;
return sa_ctx;
}
static int
sa_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
uint32_t nb_entries, uint32_t inbound)
{
struct ipsec_sa *sa;
uint32_t i, idx;
for (i = 0; i < nb_entries; i++) {
idx = SPI2IDX(entries[i].spi);
sa = &sa_ctx->sa[idx];
if (sa->spi != 0) {
printf("Index %u already in use by SPI %u\n",
idx, sa->spi);
return -EINVAL;
}
*sa = entries[i];
sa->seq = 0;
switch (sa->flags) {
case IP4_TUNNEL:
sa->src.ip.ip4 = rte_cpu_to_be_32(sa->src.ip.ip4);
sa->dst.ip.ip4 = rte_cpu_to_be_32(sa->dst.ip.ip4);
}
if (inbound) {
if (sa->cipher_algo == RTE_CRYPTO_CIPHER_NULL) {
sa_ctx->xf[idx].a = null_auth_xf;
sa_ctx->xf[idx].b = null_cipher_xf;
} else {
sa_ctx->xf[idx].a = sha1hmac_verify_xf;
sa_ctx->xf[idx].b = aescbc_dec_xf;
}
} else { /* outbound */
if (sa->cipher_algo == RTE_CRYPTO_CIPHER_NULL) {
sa_ctx->xf[idx].a = null_cipher_xf;
sa_ctx->xf[idx].b = null_auth_xf;
} else {
sa_ctx->xf[idx].a = aescbc_enc_xf;
sa_ctx->xf[idx].b = sha1hmac_gen_xf;
}
}
sa_ctx->xf[idx].a.next = &sa_ctx->xf[idx].b;
sa_ctx->xf[idx].b.next = NULL;
sa->xforms = &sa_ctx->xf[idx].a;
}
return 0;
}
static inline int
sa_out_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
uint32_t nb_entries)
{
return sa_add_rules(sa_ctx, entries, nb_entries, 0);
}
static inline int
sa_in_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
uint32_t nb_entries)
{
return sa_add_rules(sa_ctx, entries, nb_entries, 1);
}
void
sa_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t ep)
{
const struct ipsec_sa *sa_out_entries, *sa_in_entries;
uint32_t nb_out_entries, nb_in_entries;
const char *name;
if (ctx == NULL)
rte_exit(EXIT_FAILURE, "NULL context.\n");
if (ctx->sa_in != NULL)
rte_exit(EXIT_FAILURE, "Inbound SA DB for socket %u already "
"initialized\n", socket_id);
if (ctx->sa_out != NULL)
rte_exit(EXIT_FAILURE, "Outbound SA DB for socket %u already "
"initialized\n", socket_id);
if (ep == 0) {
sa_out_entries = sa_out;
nb_out_entries = RTE_DIM(sa_out);
sa_in_entries = sa_in;
nb_in_entries = RTE_DIM(sa_in);
} else if (ep == 1) {
sa_out_entries = sa_in;
nb_out_entries = RTE_DIM(sa_in);
sa_in_entries = sa_out;
nb_in_entries = RTE_DIM(sa_out);
} else
rte_exit(EXIT_FAILURE, "Invalid EP value %u. "
"Only 0 or 1 supported.\n", ep);
name = "sa_in";
ctx->sa_in = sa_create(name, socket_id);
if (ctx->sa_in == NULL)
rte_exit(EXIT_FAILURE, "Error [%d] creating SA context %s "
"in socket %d\n", rte_errno, name, socket_id);
name = "sa_out";
ctx->sa_out = sa_create(name, socket_id);
if (ctx->sa_out == NULL)
rte_exit(EXIT_FAILURE, "Error [%d] creating SA context %s "
"in socket %d\n", rte_errno, name, socket_id);
sa_in_add_rules(ctx->sa_in, sa_in_entries, nb_in_entries);
sa_out_add_rules(ctx->sa_out, sa_out_entries, nb_out_entries);
}
int
inbound_sa_check(struct sa_ctx *sa_ctx, struct rte_mbuf *m, uint32_t sa_idx)
{
struct ipsec_mbuf_metadata *priv;
priv = RTE_PTR_ADD(m, sizeof(struct rte_mbuf));
return (sa_ctx->sa[sa_idx].spi == priv->sa->spi);
}
static inline void
single_inbound_lookup(struct ipsec_sa *sadb, struct rte_mbuf *pkt,
struct ipsec_sa **sa_ret)
{
struct esp_hdr *esp;
struct ip *ip;
uint32_t *src4_addr;
uint8_t *src6_addr;
struct ipsec_sa *sa;
*sa_ret = NULL;
ip = rte_pktmbuf_mtod(pkt, struct ip *);
if (ip->ip_v == IPVERSION)
esp = (struct esp_hdr *)(ip + 1);
else
esp = (struct esp_hdr *)(((struct ip6_hdr *)ip) + 1);
if (esp->spi == INVALID_SPI)
return;
sa = &sadb[SPI2IDX(rte_be_to_cpu_32(esp->spi))];
if (rte_be_to_cpu_32(esp->spi) != sa->spi)
return;
switch (sa->flags) {
case IP4_TUNNEL:
src4_addr = RTE_PTR_ADD(ip, offsetof(struct ip, ip_src));
if ((ip->ip_v == IPVERSION) &&
(sa->src.ip.ip4 == *src4_addr) &&
(sa->dst.ip.ip4 == *(src4_addr + 1)))
*sa_ret = sa;
break;
case IP6_TUNNEL:
src6_addr = RTE_PTR_ADD(ip, offsetof(struct ip6_hdr, ip6_src));
if ((ip->ip_v == IP6_VERSION) &&
!memcmp(&sa->src.ip.ip6.ip6, src6_addr, 16) &&
!memcmp(&sa->dst.ip.ip6.ip6, src6_addr + 16, 16))
*sa_ret = sa;
break;
case TRANSPORT:
*sa_ret = sa;
}
}
void
inbound_sa_lookup(struct sa_ctx *sa_ctx, struct rte_mbuf *pkts[],
struct ipsec_sa *sa[], uint16_t nb_pkts)
{
uint32_t i;
for (i = 0; i < nb_pkts; i++)
single_inbound_lookup(sa_ctx->sa, pkts[i], &sa[i]);
}
void
outbound_sa_lookup(struct sa_ctx *sa_ctx, uint32_t sa_idx[],
struct ipsec_sa *sa[], uint16_t nb_pkts)
{
uint32_t i;
for (i = 0; i < nb_pkts; i++)
sa[i] = &sa_ctx->sa[sa_idx[i]];
}