f-stack/dpdk/lib/librte_kni/rte_kni.c

762 lines
20 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef RTE_EXEC_ENV_LINUXAPP
#error "KNI is not supported"
#endif
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <rte_spinlock.h>
#include <rte_string_fns.h>
#include <rte_ethdev.h>
#include <rte_malloc.h>
#include <rte_log.h>
#include <rte_kni.h>
#include <rte_memzone.h>
#include <exec-env/rte_kni_common.h>
#include "rte_kni_fifo.h"
#define MAX_MBUF_BURST_NUM 32
/* Maximum number of ring entries */
#define KNI_FIFO_COUNT_MAX 1024
#define KNI_FIFO_SIZE (KNI_FIFO_COUNT_MAX * sizeof(void *) + \
sizeof(struct rte_kni_fifo))
#define KNI_REQUEST_MBUF_NUM_MAX 32
#define KNI_MEM_CHECK(cond) do { if (cond) goto kni_fail; } while (0)
/**
* KNI context
*/
struct rte_kni {
char name[RTE_KNI_NAMESIZE]; /**< KNI interface name */
uint16_t group_id; /**< Group ID of KNI devices */
uint32_t slot_id; /**< KNI pool slot ID */
struct rte_mempool *pktmbuf_pool; /**< pkt mbuf mempool */
unsigned mbuf_size; /**< mbuf size */
struct rte_kni_fifo *tx_q; /**< TX queue */
struct rte_kni_fifo *rx_q; /**< RX queue */
struct rte_kni_fifo *alloc_q; /**< Allocated mbufs queue */
struct rte_kni_fifo *free_q; /**< To be freed mbufs queue */
/* For request & response */
struct rte_kni_fifo *req_q; /**< Request queue */
struct rte_kni_fifo *resp_q; /**< Response queue */
void * sync_addr; /**< Req/Resp Mem address */
struct rte_kni_ops ops; /**< operations for request */
uint8_t in_use : 1; /**< kni in use */
};
enum kni_ops_status {
KNI_REQ_NO_REGISTER = 0,
KNI_REQ_REGISTERED,
};
/**
* KNI memzone pool slot
*/
struct rte_kni_memzone_slot {
uint32_t id;
uint8_t in_use : 1; /**< slot in use */
/* Memzones */
const struct rte_memzone *m_ctx; /**< KNI ctx */
const struct rte_memzone *m_tx_q; /**< TX queue */
const struct rte_memzone *m_rx_q; /**< RX queue */
const struct rte_memzone *m_alloc_q; /**< Allocated mbufs queue */
const struct rte_memzone *m_free_q; /**< To be freed mbufs queue */
const struct rte_memzone *m_req_q; /**< Request queue */
const struct rte_memzone *m_resp_q; /**< Response queue */
const struct rte_memzone *m_sync_addr;
/* Free linked list */
struct rte_kni_memzone_slot *next; /**< Next slot link.list */
};
/**
* KNI memzone pool
*/
struct rte_kni_memzone_pool {
uint8_t initialized : 1; /**< Global KNI pool init flag */
uint32_t max_ifaces; /**< Max. num of KNI ifaces */
struct rte_kni_memzone_slot *slots; /**< Pool slots */
rte_spinlock_t mutex; /**< alloc/release mutex */
/* Free memzone slots linked-list */
struct rte_kni_memzone_slot *free; /**< First empty slot */
struct rte_kni_memzone_slot *free_tail; /**< Last empty slot */
};
static void kni_free_mbufs(struct rte_kni *kni);
static void kni_allocate_mbufs(struct rte_kni *kni);
static volatile int kni_fd = -1;
static struct rte_kni_memzone_pool kni_memzone_pool = {
.initialized = 0,
};
static const struct rte_memzone *
kni_memzone_reserve(const char *name, size_t len, int socket_id,
unsigned flags)
{
const struct rte_memzone *mz = rte_memzone_lookup(name);
if (mz == NULL)
mz = rte_memzone_reserve(name, len, socket_id, flags);
return mz;
}
/* Pool mgmt */
static struct rte_kni_memzone_slot*
kni_memzone_pool_alloc(void)
{
struct rte_kni_memzone_slot *slot;
rte_spinlock_lock(&kni_memzone_pool.mutex);
if (!kni_memzone_pool.free) {
rte_spinlock_unlock(&kni_memzone_pool.mutex);
return NULL;
}
slot = kni_memzone_pool.free;
kni_memzone_pool.free = slot->next;
slot->in_use = 1;
if (!kni_memzone_pool.free)
kni_memzone_pool.free_tail = NULL;
rte_spinlock_unlock(&kni_memzone_pool.mutex);
return slot;
}
static void
kni_memzone_pool_release(struct rte_kni_memzone_slot *slot)
{
rte_spinlock_lock(&kni_memzone_pool.mutex);
if (kni_memzone_pool.free)
kni_memzone_pool.free_tail->next = slot;
else
kni_memzone_pool.free = slot;
kni_memzone_pool.free_tail = slot;
slot->next = NULL;
slot->in_use = 0;
rte_spinlock_unlock(&kni_memzone_pool.mutex);
}
/* Shall be called before any allocation happens */
void
rte_kni_init(unsigned int max_kni_ifaces)
{
uint32_t i;
struct rte_kni_memzone_slot *it;
const struct rte_memzone *mz;
#define OBJNAMSIZ 32
char obj_name[OBJNAMSIZ];
char mz_name[RTE_MEMZONE_NAMESIZE];
/* Immediately return if KNI is already initialized */
if (kni_memzone_pool.initialized) {
RTE_LOG(WARNING, KNI, "Double call to rte_kni_init()");
return;
}
if (max_kni_ifaces == 0) {
RTE_LOG(ERR, KNI, "Invalid number of max_kni_ifaces %d\n",
max_kni_ifaces);
RTE_LOG(ERR, KNI, "Unable to initialize KNI\n");
return;
}
/* Check FD and open */
if (kni_fd < 0) {
kni_fd = open("/dev/" KNI_DEVICE, O_RDWR);
if (kni_fd < 0) {
RTE_LOG(ERR, KNI,
"Can not open /dev/%s\n", KNI_DEVICE);
return;
}
}
/* Allocate slot objects */
kni_memzone_pool.slots = (struct rte_kni_memzone_slot *)
rte_malloc(NULL,
sizeof(struct rte_kni_memzone_slot) *
max_kni_ifaces,
0);
KNI_MEM_CHECK(kni_memzone_pool.slots == NULL);
/* Initialize general pool variables */
kni_memzone_pool.initialized = 1;
kni_memzone_pool.max_ifaces = max_kni_ifaces;
kni_memzone_pool.free = &kni_memzone_pool.slots[0];
rte_spinlock_init(&kni_memzone_pool.mutex);
/* Pre-allocate all memzones of all the slots; panic on error */
for (i = 0; i < max_kni_ifaces; i++) {
/* Recover current slot */
it = &kni_memzone_pool.slots[i];
it->id = i;
/* Allocate KNI context */
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "KNI_INFO_%d", i);
mz = kni_memzone_reserve(mz_name, sizeof(struct rte_kni),
SOCKET_ID_ANY, 0);
KNI_MEM_CHECK(mz == NULL);
it->m_ctx = mz;
/* TX RING */
snprintf(obj_name, OBJNAMSIZ, "kni_tx_%d", i);
mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE,
SOCKET_ID_ANY, 0);
KNI_MEM_CHECK(mz == NULL);
it->m_tx_q = mz;
/* RX RING */
snprintf(obj_name, OBJNAMSIZ, "kni_rx_%d", i);
mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE,
SOCKET_ID_ANY, 0);
KNI_MEM_CHECK(mz == NULL);
it->m_rx_q = mz;
/* ALLOC RING */
snprintf(obj_name, OBJNAMSIZ, "kni_alloc_%d", i);
mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE,
SOCKET_ID_ANY, 0);
KNI_MEM_CHECK(mz == NULL);
it->m_alloc_q = mz;
/* FREE RING */
snprintf(obj_name, OBJNAMSIZ, "kni_free_%d", i);
mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE,
SOCKET_ID_ANY, 0);
KNI_MEM_CHECK(mz == NULL);
it->m_free_q = mz;
/* Request RING */
snprintf(obj_name, OBJNAMSIZ, "kni_req_%d", i);
mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE,
SOCKET_ID_ANY, 0);
KNI_MEM_CHECK(mz == NULL);
it->m_req_q = mz;
/* Response RING */
snprintf(obj_name, OBJNAMSIZ, "kni_resp_%d", i);
mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE,
SOCKET_ID_ANY, 0);
KNI_MEM_CHECK(mz == NULL);
it->m_resp_q = mz;
/* Req/Resp sync mem area */
snprintf(obj_name, OBJNAMSIZ, "kni_sync_%d", i);
mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE,
SOCKET_ID_ANY, 0);
KNI_MEM_CHECK(mz == NULL);
it->m_sync_addr = mz;
if ((i+1) == max_kni_ifaces) {
it->next = NULL;
kni_memzone_pool.free_tail = it;
} else
it->next = &kni_memzone_pool.slots[i+1];
}
return;
kni_fail:
RTE_LOG(ERR, KNI, "Unable to allocate memory for max_kni_ifaces:%d."
"Increase the amount of hugepages memory\n", max_kni_ifaces);
}
struct rte_kni *
rte_kni_alloc(struct rte_mempool *pktmbuf_pool,
const struct rte_kni_conf *conf,
struct rte_kni_ops *ops)
{
int ret;
struct rte_kni_device_info dev_info;
struct rte_kni *ctx;
char intf_name[RTE_KNI_NAMESIZE];
const struct rte_memzone *mz;
struct rte_kni_memzone_slot *slot = NULL;
if (!pktmbuf_pool || !conf || !conf->name[0])
return NULL;
/* Check if KNI subsystem has been initialized */
if (kni_memzone_pool.initialized != 1) {
RTE_LOG(ERR, KNI, "KNI subsystem has not been initialized. Invoke rte_kni_init() first\n");
return NULL;
}
/* Get an available slot from the pool */
slot = kni_memzone_pool_alloc();
if (!slot) {
RTE_LOG(ERR, KNI, "Cannot allocate more KNI interfaces; increase the number of max_kni_ifaces(current %d) or release unused ones.\n",
kni_memzone_pool.max_ifaces);
return NULL;
}
/* Recover ctx */
ctx = slot->m_ctx->addr;
snprintf(intf_name, RTE_KNI_NAMESIZE, "%s", conf->name);
if (ctx->in_use) {
RTE_LOG(ERR, KNI, "KNI %s is in use\n", ctx->name);
return NULL;
}
memset(ctx, 0, sizeof(struct rte_kni));
if (ops)
memcpy(&ctx->ops, ops, sizeof(struct rte_kni_ops));
memset(&dev_info, 0, sizeof(dev_info));
dev_info.bus = conf->addr.bus;
dev_info.devid = conf->addr.devid;
dev_info.function = conf->addr.function;
dev_info.vendor_id = conf->id.vendor_id;
dev_info.device_id = conf->id.device_id;
dev_info.core_id = conf->core_id;
dev_info.force_bind = conf->force_bind;
dev_info.group_id = conf->group_id;
dev_info.mbuf_size = conf->mbuf_size;
snprintf(ctx->name, RTE_KNI_NAMESIZE, "%s", intf_name);
snprintf(dev_info.name, RTE_KNI_NAMESIZE, "%s", intf_name);
RTE_LOG(INFO, KNI, "pci: %02x:%02x:%02x \t %02x:%02x\n",
dev_info.bus, dev_info.devid, dev_info.function,
dev_info.vendor_id, dev_info.device_id);
/* TX RING */
mz = slot->m_tx_q;
ctx->tx_q = mz->addr;
kni_fifo_init(ctx->tx_q, KNI_FIFO_COUNT_MAX);
dev_info.tx_phys = mz->phys_addr;
/* RX RING */
mz = slot->m_rx_q;
ctx->rx_q = mz->addr;
kni_fifo_init(ctx->rx_q, KNI_FIFO_COUNT_MAX);
dev_info.rx_phys = mz->phys_addr;
/* ALLOC RING */
mz = slot->m_alloc_q;
ctx->alloc_q = mz->addr;
kni_fifo_init(ctx->alloc_q, KNI_FIFO_COUNT_MAX);
dev_info.alloc_phys = mz->phys_addr;
/* FREE RING */
mz = slot->m_free_q;
ctx->free_q = mz->addr;
kni_fifo_init(ctx->free_q, KNI_FIFO_COUNT_MAX);
dev_info.free_phys = mz->phys_addr;
/* Request RING */
mz = slot->m_req_q;
ctx->req_q = mz->addr;
kni_fifo_init(ctx->req_q, KNI_FIFO_COUNT_MAX);
dev_info.req_phys = mz->phys_addr;
/* Response RING */
mz = slot->m_resp_q;
ctx->resp_q = mz->addr;
kni_fifo_init(ctx->resp_q, KNI_FIFO_COUNT_MAX);
dev_info.resp_phys = mz->phys_addr;
/* Req/Resp sync mem area */
mz = slot->m_sync_addr;
ctx->sync_addr = mz->addr;
dev_info.sync_va = mz->addr;
dev_info.sync_phys = mz->phys_addr;
ctx->pktmbuf_pool = pktmbuf_pool;
ctx->group_id = conf->group_id;
ctx->slot_id = slot->id;
ctx->mbuf_size = conf->mbuf_size;
ret = ioctl(kni_fd, RTE_KNI_IOCTL_CREATE, &dev_info);
KNI_MEM_CHECK(ret < 0);
ctx->in_use = 1;
/* Allocate mbufs and then put them into alloc_q */
kni_allocate_mbufs(ctx);
return ctx;
kni_fail:
if (slot)
kni_memzone_pool_release(&kni_memzone_pool.slots[slot->id]);
return NULL;
}
static void
kni_free_fifo(struct rte_kni_fifo *fifo)
{
int ret;
struct rte_mbuf *pkt;
do {
ret = kni_fifo_get(fifo, (void **)&pkt, 1);
if (ret)
rte_pktmbuf_free(pkt);
} while (ret);
}
static void *
va2pa(struct rte_mbuf *m)
{
return (void *)((unsigned long)m -
((unsigned long)m->buf_addr -
(unsigned long)m->buf_iova));
}
static void
obj_free(struct rte_mempool *mp __rte_unused, void *opaque, void *obj,
unsigned obj_idx __rte_unused)
{
struct rte_mbuf *m = obj;
void *mbuf_phys = opaque;
if (va2pa(m) == mbuf_phys)
rte_pktmbuf_free(m);
}
static void
kni_free_fifo_phy(struct rte_mempool *mp, struct rte_kni_fifo *fifo)
{
void *mbuf_phys;
int ret;
do {
ret = kni_fifo_get(fifo, &mbuf_phys, 1);
if (ret)
rte_mempool_obj_iter(mp, obj_free, mbuf_phys);
} while (ret);
}
int
rte_kni_release(struct rte_kni *kni)
{
struct rte_kni_device_info dev_info;
uint32_t slot_id;
uint32_t retry = 5;
if (!kni || !kni->in_use)
return -1;
snprintf(dev_info.name, sizeof(dev_info.name), "%s", kni->name);
if (ioctl(kni_fd, RTE_KNI_IOCTL_RELEASE, &dev_info) < 0) {
RTE_LOG(ERR, KNI, "Fail to release kni device\n");
return -1;
}
/* mbufs in all fifo should be released, except request/response */
/* wait until all rxq packets processed by kernel */
while (kni_fifo_count(kni->rx_q) && retry--)
usleep(1000);
if (kni_fifo_count(kni->rx_q))
RTE_LOG(ERR, KNI, "Fail to free all Rx-q items\n");
kni_free_fifo_phy(kni->pktmbuf_pool, kni->alloc_q);
kni_free_fifo(kni->tx_q);
kni_free_fifo(kni->free_q);
slot_id = kni->slot_id;
/* Memset the KNI struct */
memset(kni, 0, sizeof(struct rte_kni));
/* Release memzone */
if (slot_id > kni_memzone_pool.max_ifaces) {
RTE_LOG(ERR, KNI, "KNI pool: corrupted slot ID: %d, max: %d\n",
slot_id, kni_memzone_pool.max_ifaces);
return -1;
}
kni_memzone_pool_release(&kni_memzone_pool.slots[slot_id]);
return 0;
}
int
rte_kni_handle_request(struct rte_kni *kni)
{
unsigned ret;
struct rte_kni_request *req;
if (kni == NULL)
return -1;
/* Get request mbuf */
ret = kni_fifo_get(kni->req_q, (void **)&req, 1);
if (ret != 1)
return 0; /* It is OK of can not getting the request mbuf */
if (req != kni->sync_addr) {
RTE_LOG(ERR, KNI, "Wrong req pointer %p\n", req);
return -1;
}
/* Analyze the request and call the relevant actions for it */
switch (req->req_id) {
case RTE_KNI_REQ_CHANGE_MTU: /* Change MTU */
if (kni->ops.change_mtu)
req->result = kni->ops.change_mtu(kni->ops.port_id,
req->new_mtu);
break;
case RTE_KNI_REQ_CFG_NETWORK_IF: /* Set network interface up/down */
if (kni->ops.config_network_if)
req->result = kni->ops.config_network_if(\
kni->ops.port_id, req->if_up);
break;
default:
RTE_LOG(ERR, KNI, "Unknown request id %u\n", req->req_id);
req->result = -EINVAL;
break;
}
/* Construct response mbuf and put it back to resp_q */
ret = kni_fifo_put(kni->resp_q, (void **)&req, 1);
if (ret != 1) {
RTE_LOG(ERR, KNI, "Fail to put the muf back to resp_q\n");
return -1; /* It is an error of can't putting the mbuf back */
}
return 0;
}
unsigned
rte_kni_tx_burst(struct rte_kni *kni, struct rte_mbuf **mbufs, unsigned num)
{
void *phy_mbufs[num];
unsigned int ret;
unsigned int i;
for (i = 0; i < num; i++)
phy_mbufs[i] = va2pa(mbufs[i]);
ret = kni_fifo_put(kni->rx_q, phy_mbufs, num);
/* Get mbufs from free_q and then free them */
kni_free_mbufs(kni);
return ret;
}
unsigned
rte_kni_rx_burst(struct rte_kni *kni, struct rte_mbuf **mbufs, unsigned num)
{
unsigned ret = kni_fifo_get(kni->tx_q, (void **)mbufs, num);
/* If buffers removed, allocate mbufs and then put them into alloc_q */
if (ret)
kni_allocate_mbufs(kni);
return ret;
}
static void
kni_free_mbufs(struct rte_kni *kni)
{
int i, ret;
struct rte_mbuf *pkts[MAX_MBUF_BURST_NUM];
ret = kni_fifo_get(kni->free_q, (void **)pkts, MAX_MBUF_BURST_NUM);
if (likely(ret > 0)) {
for (i = 0; i < ret; i++)
rte_pktmbuf_free(pkts[i]);
}
}
static void
kni_allocate_mbufs(struct rte_kni *kni)
{
int i, ret;
struct rte_mbuf *pkts[MAX_MBUF_BURST_NUM];
void *phys[MAX_MBUF_BURST_NUM];
int allocq_free;
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pool) !=
offsetof(struct rte_kni_mbuf, pool));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_addr) !=
offsetof(struct rte_kni_mbuf, buf_addr));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, next) !=
offsetof(struct rte_kni_mbuf, next));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_off) !=
offsetof(struct rte_kni_mbuf, data_off));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_kni_mbuf, data_len));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_kni_mbuf, pkt_len));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
offsetof(struct rte_kni_mbuf, ol_flags));
/* Check if pktmbuf pool has been configured */
if (kni->pktmbuf_pool == NULL) {
RTE_LOG(ERR, KNI, "No valid mempool for allocating mbufs\n");
return;
}
allocq_free = (kni->alloc_q->read - kni->alloc_q->write - 1) \
& (MAX_MBUF_BURST_NUM - 1);
for (i = 0; i < allocq_free; i++) {
pkts[i] = rte_pktmbuf_alloc(kni->pktmbuf_pool);
if (unlikely(pkts[i] == NULL)) {
/* Out of memory */
RTE_LOG(ERR, KNI, "Out of memory\n");
break;
}
phys[i] = va2pa(pkts[i]);
}
/* No pkt mbuf allocated */
if (i <= 0)
return;
ret = kni_fifo_put(kni->alloc_q, phys, i);
/* Check if any mbufs not put into alloc_q, and then free them */
if (ret >= 0 && ret < i && ret < MAX_MBUF_BURST_NUM) {
int j;
for (j = ret; j < i; j++)
rte_pktmbuf_free(pkts[j]);
}
}
struct rte_kni *
rte_kni_get(const char *name)
{
uint32_t i;
struct rte_kni_memzone_slot *it;
struct rte_kni *kni;
/* Note: could be improved perf-wise if necessary */
for (i = 0; i < kni_memzone_pool.max_ifaces; i++) {
it = &kni_memzone_pool.slots[i];
if (it->in_use == 0)
continue;
kni = it->m_ctx->addr;
if (strncmp(kni->name, name, RTE_KNI_NAMESIZE) == 0)
return kni;
}
return NULL;
}
const char *
rte_kni_get_name(const struct rte_kni *kni)
{
return kni->name;
}
static enum kni_ops_status
kni_check_request_register(struct rte_kni_ops *ops)
{
/* check if KNI request ops has been registered*/
if( NULL == ops )
return KNI_REQ_NO_REGISTER;
if((NULL == ops->change_mtu) && (NULL == ops->config_network_if))
return KNI_REQ_NO_REGISTER;
return KNI_REQ_REGISTERED;
}
int
rte_kni_register_handlers(struct rte_kni *kni,struct rte_kni_ops *ops)
{
enum kni_ops_status req_status;
if (NULL == ops) {
RTE_LOG(ERR, KNI, "Invalid KNI request operation.\n");
return -1;
}
if (NULL == kni) {
RTE_LOG(ERR, KNI, "Invalid kni info.\n");
return -1;
}
req_status = kni_check_request_register(&kni->ops);
if ( KNI_REQ_REGISTERED == req_status) {
RTE_LOG(ERR, KNI, "The KNI request operation has already registered.\n");
return -1;
}
memcpy(&kni->ops, ops, sizeof(struct rte_kni_ops));
return 0;
}
int
rte_kni_unregister_handlers(struct rte_kni *kni)
{
if (NULL == kni) {
RTE_LOG(ERR, KNI, "Invalid kni info.\n");
return -1;
}
kni->ops.change_mtu = NULL;
kni->ops.config_network_if = NULL;
return 0;
}
void
rte_kni_close(void)
{
if (kni_fd < 0)
return;
close(kni_fd);
kni_fd = -1;
}