mirror of https://github.com/F-Stack/f-stack.git
413 lines
12 KiB
C
413 lines
12 KiB
C
/*-
|
|
* Copyright (c) 2008-2010 Lawrence Stewart <lstewart@freebsd.org>
|
|
* Copyright (c) 2010 The FreeBSD Foundation
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed by Lawrence Stewart while studying at the Centre
|
|
* for Advanced Internet Architectures, Swinburne University of Technology, made
|
|
* possible in part by a grant from the Cisco University Research Program Fund
|
|
* at Community Foundation Silicon Valley.
|
|
*
|
|
* Portions of this software were developed at the Centre for Advanced
|
|
* Internet Architectures, Swinburne University of Technology, Melbourne,
|
|
* Australia by David Hayes under sponsorship from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* An implementation of the CUBIC congestion control algorithm for FreeBSD,
|
|
* based on the Internet Draft "draft-rhee-tcpm-cubic-02" by Rhee, Xu and Ha.
|
|
* Originally released as part of the NewTCP research project at Swinburne
|
|
* University of Technology's Centre for Advanced Internet Architectures,
|
|
* Melbourne, Australia, which was made possible in part by a grant from the
|
|
* Cisco University Research Program Fund at Community Foundation Silicon
|
|
* Valley. More details are available at:
|
|
* http://caia.swin.edu.au/urp/newtcp/
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <net/vnet.h>
|
|
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/tcp_seq.h>
|
|
#include <netinet/tcp_timer.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <netinet/cc/cc.h>
|
|
#include <netinet/cc/cc_cubic.h>
|
|
#include <netinet/cc/cc_module.h>
|
|
|
|
static void cubic_ack_received(struct cc_var *ccv, uint16_t type);
|
|
static void cubic_cb_destroy(struct cc_var *ccv);
|
|
static int cubic_cb_init(struct cc_var *ccv);
|
|
static void cubic_cong_signal(struct cc_var *ccv, uint32_t type);
|
|
static void cubic_conn_init(struct cc_var *ccv);
|
|
static int cubic_mod_init(void);
|
|
static void cubic_post_recovery(struct cc_var *ccv);
|
|
static void cubic_record_rtt(struct cc_var *ccv);
|
|
static void cubic_ssthresh_update(struct cc_var *ccv);
|
|
|
|
struct cubic {
|
|
/* Cubic K in fixed point form with CUBIC_SHIFT worth of precision. */
|
|
int64_t K;
|
|
/* Sum of RTT samples across an epoch in ticks. */
|
|
int64_t sum_rtt_ticks;
|
|
/* cwnd at the most recent congestion event. */
|
|
unsigned long max_cwnd;
|
|
/* cwnd at the previous congestion event. */
|
|
unsigned long prev_max_cwnd;
|
|
/* Number of congestion events. */
|
|
uint32_t num_cong_events;
|
|
/* Minimum observed rtt in ticks. */
|
|
int min_rtt_ticks;
|
|
/* Mean observed rtt between congestion epochs. */
|
|
int mean_rtt_ticks;
|
|
/* ACKs since last congestion event. */
|
|
int epoch_ack_count;
|
|
/* Time of last congestion event in ticks. */
|
|
int t_last_cong;
|
|
};
|
|
|
|
static MALLOC_DEFINE(M_CUBIC, "cubic data",
|
|
"Per connection data required for the CUBIC congestion control algorithm");
|
|
|
|
struct cc_algo cubic_cc_algo = {
|
|
.name = "cubic",
|
|
.ack_received = cubic_ack_received,
|
|
.cb_destroy = cubic_cb_destroy,
|
|
.cb_init = cubic_cb_init,
|
|
.cong_signal = cubic_cong_signal,
|
|
.conn_init = cubic_conn_init,
|
|
.mod_init = cubic_mod_init,
|
|
.post_recovery = cubic_post_recovery,
|
|
};
|
|
|
|
static void
|
|
cubic_ack_received(struct cc_var *ccv, uint16_t type)
|
|
{
|
|
struct cubic *cubic_data;
|
|
unsigned long w_tf, w_cubic_next;
|
|
int ticks_since_cong;
|
|
|
|
cubic_data = ccv->cc_data;
|
|
cubic_record_rtt(ccv);
|
|
|
|
/*
|
|
* Regular ACK and we're not in cong/fast recovery and we're cwnd
|
|
* limited and we're either not doing ABC or are slow starting or are
|
|
* doing ABC and we've sent a cwnd's worth of bytes.
|
|
*/
|
|
if (type == CC_ACK && !IN_RECOVERY(CCV(ccv, t_flags)) &&
|
|
(ccv->flags & CCF_CWND_LIMITED) && (!V_tcp_do_rfc3465 ||
|
|
CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh) ||
|
|
(V_tcp_do_rfc3465 && ccv->flags & CCF_ABC_SENTAWND))) {
|
|
/* Use the logic in NewReno ack_received() for slow start. */
|
|
if (CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh) ||
|
|
cubic_data->min_rtt_ticks == TCPTV_SRTTBASE)
|
|
newreno_cc_algo.ack_received(ccv, type);
|
|
else {
|
|
ticks_since_cong = ticks - cubic_data->t_last_cong;
|
|
|
|
/*
|
|
* The mean RTT is used to best reflect the equations in
|
|
* the I-D. Using min_rtt in the tf_cwnd calculation
|
|
* causes w_tf to grow much faster than it should if the
|
|
* RTT is dominated by network buffering rather than
|
|
* propagation delay.
|
|
*/
|
|
w_tf = tf_cwnd(ticks_since_cong,
|
|
cubic_data->mean_rtt_ticks, cubic_data->max_cwnd,
|
|
CCV(ccv, t_maxseg));
|
|
|
|
w_cubic_next = cubic_cwnd(ticks_since_cong +
|
|
cubic_data->mean_rtt_ticks, cubic_data->max_cwnd,
|
|
CCV(ccv, t_maxseg), cubic_data->K);
|
|
|
|
ccv->flags &= ~CCF_ABC_SENTAWND;
|
|
|
|
if (w_cubic_next < w_tf)
|
|
/*
|
|
* TCP-friendly region, follow tf
|
|
* cwnd growth.
|
|
*/
|
|
CCV(ccv, snd_cwnd) = w_tf;
|
|
|
|
else if (CCV(ccv, snd_cwnd) < w_cubic_next) {
|
|
/*
|
|
* Concave or convex region, follow CUBIC
|
|
* cwnd growth.
|
|
*/
|
|
if (V_tcp_do_rfc3465)
|
|
CCV(ccv, snd_cwnd) = w_cubic_next;
|
|
else
|
|
CCV(ccv, snd_cwnd) += ((w_cubic_next -
|
|
CCV(ccv, snd_cwnd)) *
|
|
CCV(ccv, t_maxseg)) /
|
|
CCV(ccv, snd_cwnd);
|
|
}
|
|
|
|
/*
|
|
* If we're not in slow start and we're probing for a
|
|
* new cwnd limit at the start of a connection
|
|
* (happens when hostcache has a relevant entry),
|
|
* keep updating our current estimate of the
|
|
* max_cwnd.
|
|
*/
|
|
if (cubic_data->num_cong_events == 0 &&
|
|
cubic_data->max_cwnd < CCV(ccv, snd_cwnd))
|
|
cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
cubic_cb_destroy(struct cc_var *ccv)
|
|
{
|
|
|
|
if (ccv->cc_data != NULL)
|
|
free(ccv->cc_data, M_CUBIC);
|
|
}
|
|
|
|
static int
|
|
cubic_cb_init(struct cc_var *ccv)
|
|
{
|
|
struct cubic *cubic_data;
|
|
|
|
cubic_data = malloc(sizeof(struct cubic), M_CUBIC, M_NOWAIT|M_ZERO);
|
|
|
|
if (cubic_data == NULL)
|
|
return (ENOMEM);
|
|
|
|
/* Init some key variables with sensible defaults. */
|
|
cubic_data->t_last_cong = ticks;
|
|
cubic_data->min_rtt_ticks = TCPTV_SRTTBASE;
|
|
cubic_data->mean_rtt_ticks = 1;
|
|
|
|
ccv->cc_data = cubic_data;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Perform any necessary tasks before we enter congestion recovery.
|
|
*/
|
|
static void
|
|
cubic_cong_signal(struct cc_var *ccv, uint32_t type)
|
|
{
|
|
struct cubic *cubic_data;
|
|
|
|
cubic_data = ccv->cc_data;
|
|
|
|
switch (type) {
|
|
case CC_NDUPACK:
|
|
if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
|
|
if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
|
|
cubic_ssthresh_update(ccv);
|
|
cubic_data->num_cong_events++;
|
|
cubic_data->prev_max_cwnd = cubic_data->max_cwnd;
|
|
cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
|
|
}
|
|
ENTER_RECOVERY(CCV(ccv, t_flags));
|
|
}
|
|
break;
|
|
|
|
case CC_ECN:
|
|
if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
|
|
cubic_ssthresh_update(ccv);
|
|
cubic_data->num_cong_events++;
|
|
cubic_data->prev_max_cwnd = cubic_data->max_cwnd;
|
|
cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
|
|
cubic_data->t_last_cong = ticks;
|
|
CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
|
|
ENTER_CONGRECOVERY(CCV(ccv, t_flags));
|
|
}
|
|
break;
|
|
|
|
case CC_RTO:
|
|
/*
|
|
* Grab the current time and record it so we know when the
|
|
* most recent congestion event was. Only record it when the
|
|
* timeout has fired more than once, as there is a reasonable
|
|
* chance the first one is a false alarm and may not indicate
|
|
* congestion.
|
|
*/
|
|
if (CCV(ccv, t_rxtshift) >= 2) {
|
|
cubic_data->num_cong_events++;
|
|
cubic_data->t_last_cong = ticks;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
cubic_conn_init(struct cc_var *ccv)
|
|
{
|
|
struct cubic *cubic_data;
|
|
|
|
cubic_data = ccv->cc_data;
|
|
|
|
/*
|
|
* Ensure we have a sane initial value for max_cwnd recorded. Without
|
|
* this here bad things happen when entries from the TCP hostcache
|
|
* get used.
|
|
*/
|
|
cubic_data->max_cwnd = CCV(ccv, snd_cwnd);
|
|
}
|
|
|
|
static int
|
|
cubic_mod_init(void)
|
|
{
|
|
|
|
cubic_cc_algo.after_idle = newreno_cc_algo.after_idle;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Perform any necessary tasks before we exit congestion recovery.
|
|
*/
|
|
static void
|
|
cubic_post_recovery(struct cc_var *ccv)
|
|
{
|
|
struct cubic *cubic_data;
|
|
int pipe;
|
|
|
|
cubic_data = ccv->cc_data;
|
|
pipe = 0;
|
|
|
|
/* Fast convergence heuristic. */
|
|
if (cubic_data->max_cwnd < cubic_data->prev_max_cwnd)
|
|
cubic_data->max_cwnd = (cubic_data->max_cwnd * CUBIC_FC_FACTOR)
|
|
>> CUBIC_SHIFT;
|
|
|
|
if (IN_FASTRECOVERY(CCV(ccv, t_flags))) {
|
|
/*
|
|
* If inflight data is less than ssthresh, set cwnd
|
|
* conservatively to avoid a burst of data, as suggested in
|
|
* the NewReno RFC. Otherwise, use the CUBIC method.
|
|
*
|
|
* XXXLAS: Find a way to do this without needing curack
|
|
*/
|
|
if (V_tcp_do_rfc6675_pipe)
|
|
pipe = tcp_compute_pipe(ccv->ccvc.tcp);
|
|
else
|
|
pipe = CCV(ccv, snd_max) - ccv->curack;
|
|
|
|
if (pipe < CCV(ccv, snd_ssthresh))
|
|
CCV(ccv, snd_cwnd) = pipe + CCV(ccv, t_maxseg);
|
|
else
|
|
/* Update cwnd based on beta and adjusted max_cwnd. */
|
|
CCV(ccv, snd_cwnd) = max(1, ((CUBIC_BETA *
|
|
cubic_data->max_cwnd) >> CUBIC_SHIFT));
|
|
}
|
|
cubic_data->t_last_cong = ticks;
|
|
|
|
/* Calculate the average RTT between congestion epochs. */
|
|
if (cubic_data->epoch_ack_count > 0 &&
|
|
cubic_data->sum_rtt_ticks >= cubic_data->epoch_ack_count) {
|
|
cubic_data->mean_rtt_ticks = (int)(cubic_data->sum_rtt_ticks /
|
|
cubic_data->epoch_ack_count);
|
|
}
|
|
|
|
cubic_data->epoch_ack_count = 0;
|
|
cubic_data->sum_rtt_ticks = 0;
|
|
cubic_data->K = cubic_k(cubic_data->max_cwnd / CCV(ccv, t_maxseg));
|
|
}
|
|
|
|
/*
|
|
* Record the min RTT and sum samples for the epoch average RTT calculation.
|
|
*/
|
|
static void
|
|
cubic_record_rtt(struct cc_var *ccv)
|
|
{
|
|
struct cubic *cubic_data;
|
|
int t_srtt_ticks;
|
|
|
|
/* Ignore srtt until a min number of samples have been taken. */
|
|
if (CCV(ccv, t_rttupdated) >= CUBIC_MIN_RTT_SAMPLES) {
|
|
cubic_data = ccv->cc_data;
|
|
t_srtt_ticks = CCV(ccv, t_srtt) / TCP_RTT_SCALE;
|
|
|
|
/*
|
|
* Record the current SRTT as our minrtt if it's the smallest
|
|
* we've seen or minrtt is currently equal to its initialised
|
|
* value.
|
|
*
|
|
* XXXLAS: Should there be some hysteresis for minrtt?
|
|
*/
|
|
if ((t_srtt_ticks < cubic_data->min_rtt_ticks ||
|
|
cubic_data->min_rtt_ticks == TCPTV_SRTTBASE)) {
|
|
cubic_data->min_rtt_ticks = max(1, t_srtt_ticks);
|
|
|
|
/*
|
|
* If the connection is within its first congestion
|
|
* epoch, ensure we prime mean_rtt_ticks with a
|
|
* reasonable value until the epoch average RTT is
|
|
* calculated in cubic_post_recovery().
|
|
*/
|
|
if (cubic_data->min_rtt_ticks >
|
|
cubic_data->mean_rtt_ticks)
|
|
cubic_data->mean_rtt_ticks =
|
|
cubic_data->min_rtt_ticks;
|
|
}
|
|
|
|
/* Sum samples for epoch average RTT calculation. */
|
|
cubic_data->sum_rtt_ticks += t_srtt_ticks;
|
|
cubic_data->epoch_ack_count++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the ssthresh in the event of congestion.
|
|
*/
|
|
static void
|
|
cubic_ssthresh_update(struct cc_var *ccv)
|
|
{
|
|
struct cubic *cubic_data;
|
|
|
|
cubic_data = ccv->cc_data;
|
|
|
|
/*
|
|
* On the first congestion event, set ssthresh to cwnd * 0.5, on
|
|
* subsequent congestion events, set it to cwnd * beta.
|
|
*/
|
|
if (cubic_data->num_cong_events == 0)
|
|
CCV(ccv, snd_ssthresh) = CCV(ccv, snd_cwnd) >> 1;
|
|
else
|
|
CCV(ccv, snd_ssthresh) = (CCV(ccv, snd_cwnd) * CUBIC_BETA)
|
|
>> CUBIC_SHIFT;
|
|
}
|
|
|
|
|
|
DECLARE_CC_MODULE(cubic, &cubic_cc_algo);
|