f-stack/dpdk/drivers/net/bnx2x/bnx2x.c

11792 lines
310 KiB
C

/*-
* Copyright (c) 2007-2013 Broadcom Corporation.
*
* Eric Davis <edavis@broadcom.com>
* David Christensen <davidch@broadcom.com>
* Gary Zambrano <zambrano@broadcom.com>
*
* Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
* Copyright (c) 2015 QLogic Corporation.
* All rights reserved.
* www.qlogic.com
*
* See LICENSE.bnx2x_pmd for copyright and licensing details.
*/
#define BNX2X_DRIVER_VERSION "1.78.18"
#include "bnx2x.h"
#include "bnx2x_vfpf.h"
#include "ecore_sp.h"
#include "ecore_init.h"
#include "ecore_init_ops.h"
#include "rte_version.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <zlib.h>
#define BNX2X_PMD_VER_PREFIX "BNX2X PMD"
#define BNX2X_PMD_VERSION_MAJOR 1
#define BNX2X_PMD_VERSION_MINOR 0
#define BNX2X_PMD_VERSION_REVISION 5
#define BNX2X_PMD_VERSION_PATCH 1
static inline const char *
bnx2x_pmd_version(void)
{
static char version[32];
snprintf(version, sizeof(version), "%s %s_%d.%d.%d.%d",
BNX2X_PMD_VER_PREFIX,
BNX2X_DRIVER_VERSION,
BNX2X_PMD_VERSION_MAJOR,
BNX2X_PMD_VERSION_MINOR,
BNX2X_PMD_VERSION_REVISION,
BNX2X_PMD_VERSION_PATCH);
return version;
}
static z_stream zlib_stream;
#define EVL_VLID_MASK 0x0FFF
#define BNX2X_DEF_SB_ATT_IDX 0x0001
#define BNX2X_DEF_SB_IDX 0x0002
/*
* FLR Support - bnx2x_pf_flr_clnup() is called during nic_load in the per
* function HW initialization.
*/
#define FLR_WAIT_USEC 10000 /* 10 msecs */
#define FLR_WAIT_INTERVAL 50 /* usecs */
#define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
struct pbf_pN_buf_regs {
int pN;
uint32_t init_crd;
uint32_t crd;
uint32_t crd_freed;
};
struct pbf_pN_cmd_regs {
int pN;
uint32_t lines_occup;
uint32_t lines_freed;
};
/* resources needed for unloading a previously loaded device */
#define BNX2X_PREV_WAIT_NEEDED 1
rte_spinlock_t bnx2x_prev_mtx;
struct bnx2x_prev_list_node {
LIST_ENTRY(bnx2x_prev_list_node) node;
uint8_t bus;
uint8_t slot;
uint8_t path;
uint8_t aer;
uint8_t undi;
};
static LIST_HEAD(, bnx2x_prev_list_node) bnx2x_prev_list
= LIST_HEAD_INITIALIZER(bnx2x_prev_list);
static int load_count[2][3] = { { 0 } };
/* per-path: 0-common, 1-port0, 2-port1 */
static void bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg,
uint8_t cmng_type);
static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc);
static void storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng,
uint8_t port);
static void bnx2x_set_reset_global(struct bnx2x_softc *sc);
static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc);
static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine);
static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc);
static uint8_t bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global,
uint8_t print);
static void bnx2x_int_disable(struct bnx2x_softc *sc);
static int bnx2x_release_leader_lock(struct bnx2x_softc *sc);
static void bnx2x_pf_disable(struct bnx2x_softc *sc);
static void bnx2x_update_rx_prod(struct bnx2x_softc *sc,
struct bnx2x_fastpath *fp,
uint16_t rx_bd_prod, uint16_t rx_cq_prod);
static void bnx2x_link_report(struct bnx2x_softc *sc);
void bnx2x_link_status_update(struct bnx2x_softc *sc);
static int bnx2x_alloc_mem(struct bnx2x_softc *sc);
static void bnx2x_free_mem(struct bnx2x_softc *sc);
static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc);
static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc);
static __rte_noinline
int bnx2x_nic_load(struct bnx2x_softc *sc);
static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc);
static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp, int scan_fp);
static void bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id,
uint8_t storm, uint16_t index, uint8_t op,
uint8_t update);
int bnx2x_test_bit(int nr, volatile unsigned long *addr)
{
int res;
mb();
res = ((*addr) & (1UL << nr)) != 0;
mb();
return res;
}
void bnx2x_set_bit(unsigned int nr, volatile unsigned long *addr)
{
__sync_fetch_and_or(addr, (1UL << nr));
}
void bnx2x_clear_bit(int nr, volatile unsigned long *addr)
{
__sync_fetch_and_and(addr, ~(1UL << nr));
}
int bnx2x_test_and_clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = (1UL << nr);
return __sync_fetch_and_and(addr, ~mask) & mask;
}
int bnx2x_cmpxchg(volatile int *addr, int old, int new)
{
return __sync_val_compare_and_swap(addr, old, new);
}
int
bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size, struct bnx2x_dma *dma,
const char *msg, uint32_t align)
{
char mz_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *z;
dma->sc = sc;
if (IS_PF(sc))
snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, SC_ABS_FUNC(sc), msg,
rte_get_timer_cycles());
else
snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, sc->pcie_device, msg,
rte_get_timer_cycles());
/* Caller must take care that strlen(mz_name) < RTE_MEMZONE_NAMESIZE */
z = rte_memzone_reserve_aligned(mz_name, (uint64_t) (size),
SOCKET_ID_ANY,
0, align);
if (z == NULL) {
PMD_DRV_LOG(ERR, "DMA alloc failed for %s", msg);
return -ENOMEM;
}
dma->paddr = (uint64_t) z->iova;
dma->vaddr = z->addr;
PMD_DRV_LOG(DEBUG, "%s: virt=%p phys=%" PRIx64, msg, dma->vaddr, dma->paddr);
return 0;
}
static int bnx2x_acquire_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
{
uint32_t lock_status;
uint32_t resource_bit = (1 << resource);
int func = SC_FUNC(sc);
uint32_t hw_lock_control_reg;
int cnt;
PMD_INIT_FUNC_TRACE();
/* validate the resource is within range */
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
PMD_DRV_LOG(NOTICE,
"resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
resource);
return -1;
}
if (func <= 5) {
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
} else {
hw_lock_control_reg =
(MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
}
/* validate the resource is not already taken */
lock_status = REG_RD(sc, hw_lock_control_reg);
if (lock_status & resource_bit) {
PMD_DRV_LOG(NOTICE,
"resource in use (status 0x%x bit 0x%x)",
lock_status, resource_bit);
return -1;
}
/* try every 5ms for 5 seconds */
for (cnt = 0; cnt < 1000; cnt++) {
REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
lock_status = REG_RD(sc, hw_lock_control_reg);
if (lock_status & resource_bit) {
return 0;
}
DELAY(5000);
}
PMD_DRV_LOG(NOTICE, "Resource lock timeout!");
return -1;
}
static int bnx2x_release_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
{
uint32_t lock_status;
uint32_t resource_bit = (1 << resource);
int func = SC_FUNC(sc);
uint32_t hw_lock_control_reg;
PMD_INIT_FUNC_TRACE();
/* validate the resource is within range */
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
PMD_DRV_LOG(NOTICE,
"resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
resource);
return -1;
}
if (func <= 5) {
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
} else {
hw_lock_control_reg =
(MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
}
/* validate the resource is currently taken */
lock_status = REG_RD(sc, hw_lock_control_reg);
if (!(lock_status & resource_bit)) {
PMD_DRV_LOG(NOTICE,
"resource not in use (status 0x%x bit 0x%x)",
lock_status, resource_bit);
return -1;
}
REG_WR(sc, hw_lock_control_reg, resource_bit);
return 0;
}
/* copy command into DMAE command memory and set DMAE command Go */
void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx)
{
uint32_t cmd_offset;
uint32_t i;
cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *) dmae) + i));
}
REG_WR(sc, dmae_reg_go_c[idx], 1);
}
uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type)
{
return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
DMAE_COMMAND_C_TYPE_ENABLE);
}
uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode)
{
return opcode & ~DMAE_COMMAND_SRC_RESET;
}
uint32_t
bnx2x_dmae_opcode(struct bnx2x_softc * sc, uint8_t src_type, uint8_t dst_type,
uint8_t with_comp, uint8_t comp_type)
{
uint32_t opcode = 0;
opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
(dst_type << DMAE_COMMAND_DST_SHIFT));
opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
(SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
#ifdef __BIG_ENDIAN
opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
#else
opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
#endif
if (with_comp) {
opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
}
return opcode;
}
static void
bnx2x_prep_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae,
uint8_t src_type, uint8_t dst_type)
{
memset(dmae, 0, sizeof(struct dmae_command));
/* set the opcode */
dmae->opcode = bnx2x_dmae_opcode(sc, src_type, dst_type,
TRUE, DMAE_COMP_PCI);
/* fill in the completion parameters */
dmae->comp_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_comp));
dmae->comp_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_comp));
dmae->comp_val = DMAE_COMP_VAL;
}
/* issue a DMAE command over the init channel and wait for completion */
static int
bnx2x_issue_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae)
{
uint32_t *wb_comp = BNX2X_SP(sc, wb_comp);
int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
/* reset completion */
*wb_comp = 0;
/* post the command on the channel used for initializations */
bnx2x_post_dmae(sc, dmae, INIT_DMAE_C(sc));
/* wait for completion */
DELAY(500);
while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
if (!timeout ||
(sc->recovery_state != BNX2X_RECOVERY_DONE &&
sc->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
PMD_DRV_LOG(INFO, "DMAE timeout!");
return DMAE_TIMEOUT;
}
timeout--;
DELAY(50);
}
if (*wb_comp & DMAE_PCI_ERR_FLAG) {
PMD_DRV_LOG(INFO, "DMAE PCI error!");
return DMAE_PCI_ERROR;
}
return 0;
}
void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32)
{
struct dmae_command dmae;
uint32_t *data;
uint32_t i;
int rc;
if (!sc->dmae_ready) {
data = BNX2X_SP(sc, wb_data[0]);
for (i = 0; i < len32; i++) {
data[i] = REG_RD(sc, (src_addr + (i * 4)));
}
return;
}
/* set opcode and fixed command fields */
bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
/* fill in addresses and len */
dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
dmae.src_addr_hi = 0;
dmae.dst_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_data));
dmae.dst_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_data));
dmae.len = len32;
/* issue the command and wait for completion */
if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
rte_panic("DMAE failed (%d)", rc);
};
}
void
bnx2x_write_dmae(struct bnx2x_softc *sc, rte_iova_t dma_addr, uint32_t dst_addr,
uint32_t len32)
{
struct dmae_command dmae;
int rc;
if (!sc->dmae_ready) {
ecore_init_str_wr(sc, dst_addr, BNX2X_SP(sc, wb_data[0]), len32);
return;
}
/* set opcode and fixed command fields */
bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
/* fill in addresses and len */
dmae.src_addr_lo = U64_LO(dma_addr);
dmae.src_addr_hi = U64_HI(dma_addr);
dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
dmae.dst_addr_hi = 0;
dmae.len = len32;
/* issue the command and wait for completion */
if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
rte_panic("DMAE failed (%d)", rc);
}
}
static void
bnx2x_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
uint32_t addr, uint32_t len)
{
uint32_t dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
uint32_t offset = 0;
while (len > dmae_wr_max) {
bnx2x_write_dmae(sc, (phys_addr + offset), /* src DMA address */
(addr + offset), /* dst GRC address */
dmae_wr_max);
offset += (dmae_wr_max * 4);
len -= dmae_wr_max;
}
bnx2x_write_dmae(sc, (phys_addr + offset), /* src DMA address */
(addr + offset), /* dst GRC address */
len);
}
void
bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt,
uint32_t cid)
{
/* ustorm cxt validation */
cxt->ustorm_ag_context.cdu_usage =
CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
CDU_REGION_NUMBER_UCM_AG,
ETH_CONNECTION_TYPE);
/* xcontext validation */
cxt->xstorm_ag_context.cdu_reserved =
CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
CDU_REGION_NUMBER_XCM_AG,
ETH_CONNECTION_TYPE);
}
static void
bnx2x_storm_memset_hc_timeout(struct bnx2x_softc *sc, uint8_t fw_sb_id,
uint8_t sb_index, uint8_t ticks)
{
uint32_t addr =
(BAR_CSTRORM_INTMEM +
CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
REG_WR8(sc, addr, ticks);
}
static void
bnx2x_storm_memset_hc_disable(struct bnx2x_softc *sc, uint16_t fw_sb_id,
uint8_t sb_index, uint8_t disable)
{
uint32_t enable_flag =
(disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
uint32_t addr =
(BAR_CSTRORM_INTMEM +
CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
uint8_t flags;
/* clear and set */
flags = REG_RD8(sc, addr);
flags &= ~HC_INDEX_DATA_HC_ENABLED;
flags |= enable_flag;
REG_WR8(sc, addr, flags);
}
void
bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id,
uint8_t sb_index, uint8_t disable, uint16_t usec)
{
uint8_t ticks = (usec / 4);
bnx2x_storm_memset_hc_timeout(sc, fw_sb_id, sb_index, ticks);
disable = (disable) ? 1 : ((usec) ? 0 : 1);
bnx2x_storm_memset_hc_disable(sc, fw_sb_id, sb_index, disable);
}
uint32_t elink_cb_reg_read(struct bnx2x_softc *sc, uint32_t reg_addr)
{
return REG_RD(sc, reg_addr);
}
void elink_cb_reg_write(struct bnx2x_softc *sc, uint32_t reg_addr, uint32_t val)
{
REG_WR(sc, reg_addr, val);
}
void
elink_cb_event_log(__rte_unused struct bnx2x_softc *sc,
__rte_unused const elink_log_id_t elink_log_id, ...)
{
PMD_DRV_LOG(DEBUG, "ELINK EVENT LOG (%d)", elink_log_id);
}
static int bnx2x_set_spio(struct bnx2x_softc *sc, int spio, uint32_t mode)
{
uint32_t spio_reg;
/* Only 2 SPIOs are configurable */
if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
PMD_DRV_LOG(NOTICE, "Invalid SPIO 0x%x", spio);
return -1;
}
bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
/* read SPIO and mask except the float bits */
spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
switch (mode) {
case MISC_SPIO_OUTPUT_LOW:
/* clear FLOAT and set CLR */
spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
spio_reg |= (spio << MISC_SPIO_CLR_POS);
break;
case MISC_SPIO_OUTPUT_HIGH:
/* clear FLOAT and set SET */
spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
spio_reg |= (spio << MISC_SPIO_SET_POS);
break;
case MISC_SPIO_INPUT_HI_Z:
/* set FLOAT */
spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
break;
default:
break;
}
REG_WR(sc, MISC_REG_SPIO, spio_reg);
bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
return 0;
}
static int bnx2x_gpio_read(struct bnx2x_softc *sc, int gpio_num, uint8_t port)
{
/* The GPIO should be swapped if swap register is set and active */
int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
int gpio_shift = gpio_num;
if (gpio_port)
gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
uint32_t gpio_mask = (1 << gpio_shift);
uint32_t gpio_reg;
if (gpio_num > MISC_REGISTERS_GPIO_3) {
PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
return -1;
}
/* read GPIO value */
gpio_reg = REG_RD(sc, MISC_REG_GPIO);
/* get the requested pin value */
return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
}
static int
bnx2x_gpio_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode, uint8_t port)
{
/* The GPIO should be swapped if swap register is set and active */
int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
int gpio_shift = gpio_num;
if (gpio_port)
gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
uint32_t gpio_mask = (1 << gpio_shift);
uint32_t gpio_reg;
if (gpio_num > MISC_REGISTERS_GPIO_3) {
PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
return -1;
}
bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
/* read GPIO and mask except the float bits */
gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
switch (mode) {
case MISC_REGISTERS_GPIO_OUTPUT_LOW:
/* clear FLOAT and set CLR */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
break;
case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
/* clear FLOAT and set SET */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
break;
case MISC_REGISTERS_GPIO_INPUT_HI_Z:
/* set FLOAT */
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
break;
default:
break;
}
REG_WR(sc, MISC_REG_GPIO, gpio_reg);
bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
return 0;
}
static int
bnx2x_gpio_mult_write(struct bnx2x_softc *sc, uint8_t pins, uint32_t mode)
{
uint32_t gpio_reg;
/* any port swapping should be handled by caller */
bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
/* read GPIO and mask except the float bits */
gpio_reg = REG_RD(sc, MISC_REG_GPIO);
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
switch (mode) {
case MISC_REGISTERS_GPIO_OUTPUT_LOW:
/* set CLR */
gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
break;
case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
/* set SET */
gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
break;
case MISC_REGISTERS_GPIO_INPUT_HI_Z:
/* set FLOAT */
gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
break;
default:
PMD_DRV_LOG(NOTICE, "Invalid GPIO mode assignment %d", mode);
bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
return -1;
}
REG_WR(sc, MISC_REG_GPIO, gpio_reg);
bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
return 0;
}
static int
bnx2x_gpio_int_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode,
uint8_t port)
{
/* The GPIO should be swapped if swap register is set and active */
int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
int gpio_shift = gpio_num;
if (gpio_port)
gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
uint32_t gpio_mask = (1 << gpio_shift);
uint32_t gpio_reg;
if (gpio_num > MISC_REGISTERS_GPIO_3) {
PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
return -1;
}
bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
/* read GPIO int */
gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
switch (mode) {
case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
/* clear SET and set CLR */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
break;
case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
/* clear CLR and set SET */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
break;
default:
break;
}
REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
return 0;
}
uint32_t
elink_cb_gpio_read(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t port)
{
return bnx2x_gpio_read(sc, gpio_num, port);
}
uint8_t elink_cb_gpio_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode, /* 0=low 1=high */
uint8_t port)
{
return bnx2x_gpio_write(sc, gpio_num, mode, port);
}
uint8_t
elink_cb_gpio_mult_write(struct bnx2x_softc * sc, uint8_t pins,
uint8_t mode /* 0=low 1=high */ )
{
return bnx2x_gpio_mult_write(sc, pins, mode);
}
uint8_t elink_cb_gpio_int_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode, /* 0=low 1=high */
uint8_t port)
{
return bnx2x_gpio_int_write(sc, gpio_num, mode, port);
}
void elink_cb_notify_link_changed(struct bnx2x_softc *sc)
{
REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
(SC_FUNC(sc) * sizeof(uint32_t))), 1);
}
/* send the MCP a request, block until there is a reply */
uint32_t
elink_cb_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
{
int mb_idx = SC_FW_MB_IDX(sc);
uint32_t seq;
uint32_t rc = 0;
uint32_t cnt = 1;
uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
seq = ++sc->fw_seq;
SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
PMD_DRV_LOG(DEBUG,
"wrote command 0x%08x to FW MB param 0x%08x",
(command | seq), param);
/* Let the FW do it's magic. GIve it up to 5 seconds... */
do {
DELAY(delay * 1000);
rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
/* is this a reply to our command? */
if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
rc &= FW_MSG_CODE_MASK;
} else {
/* Ruh-roh! */
PMD_DRV_LOG(NOTICE, "FW failed to respond!");
rc = 0;
}
return rc;
}
static uint32_t
bnx2x_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
{
return elink_cb_fw_command(sc, command, param);
}
static void
__storm_memset_dma_mapping(struct bnx2x_softc *sc, uint32_t addr,
rte_iova_t mapping)
{
REG_WR(sc, addr, U64_LO(mapping));
REG_WR(sc, (addr + 4), U64_HI(mapping));
}
static void
storm_memset_spq_addr(struct bnx2x_softc *sc, rte_iova_t mapping,
uint16_t abs_fid)
{
uint32_t addr = (XSEM_REG_FAST_MEMORY +
XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
__storm_memset_dma_mapping(sc, addr, mapping);
}
static void
storm_memset_vf_to_pf(struct bnx2x_softc *sc, uint16_t abs_fid, uint16_t pf_id)
{
REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)),
pf_id);
REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)),
pf_id);
REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)),
pf_id);
REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)),
pf_id);
}
static void
storm_memset_func_en(struct bnx2x_softc *sc, uint16_t abs_fid, uint8_t enable)
{
REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)),
enable);
REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)),
enable);
REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)),
enable);
REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)),
enable);
}
static void
storm_memset_eq_data(struct bnx2x_softc *sc, struct event_ring_data *eq_data,
uint16_t pfid)
{
uint32_t addr;
size_t size;
addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
size = sizeof(struct event_ring_data);
ecore_storm_memset_struct(sc, addr, size, (uint32_t *) eq_data);
}
static void
storm_memset_eq_prod(struct bnx2x_softc *sc, uint16_t eq_prod, uint16_t pfid)
{
uint32_t addr = (BAR_CSTRORM_INTMEM +
CSTORM_EVENT_RING_PROD_OFFSET(pfid));
REG_WR16(sc, addr, eq_prod);
}
/*
* Post a slowpath command.
*
* A slowpath command is used to propagate a configuration change through
* the controller in a controlled manner, allowing each STORM processor and
* other H/W blocks to phase in the change. The commands sent on the
* slowpath are referred to as ramrods. Depending on the ramrod used the
* completion of the ramrod will occur in different ways. Here's a
* breakdown of ramrods and how they complete:
*
* RAMROD_CMD_ID_ETH_PORT_SETUP
* Used to setup the leading connection on a port. Completes on the
* Receive Completion Queue (RCQ) of that port (typically fp[0]).
*
* RAMROD_CMD_ID_ETH_CLIENT_SETUP
* Used to setup an additional connection on a port. Completes on the
* RCQ of the multi-queue/RSS connection being initialized.
*
* RAMROD_CMD_ID_ETH_STAT_QUERY
* Used to force the storm processors to update the statistics database
* in host memory. This ramrod is send on the leading connection CID and
* completes as an index increment of the CSTORM on the default status
* block.
*
* RAMROD_CMD_ID_ETH_UPDATE
* Used to update the state of the leading connection, usually to udpate
* the RSS indirection table. Completes on the RCQ of the leading
* connection. (Not currently used under FreeBSD until OS support becomes
* available.)
*
* RAMROD_CMD_ID_ETH_HALT
* Used when tearing down a connection prior to driver unload. Completes
* on the RCQ of the multi-queue/RSS connection being torn down. Don't
* use this on the leading connection.
*
* RAMROD_CMD_ID_ETH_SET_MAC
* Sets the Unicast/Broadcast/Multicast used by the port. Completes on
* the RCQ of the leading connection.
*
* RAMROD_CMD_ID_ETH_CFC_DEL
* Used when tearing down a conneciton prior to driver unload. Completes
* on the RCQ of the leading connection (since the current connection
* has been completely removed from controller memory).
*
* RAMROD_CMD_ID_ETH_PORT_DEL
* Used to tear down the leading connection prior to driver unload,
* typically fp[0]. Completes as an index increment of the CSTORM on the
* default status block.
*
* RAMROD_CMD_ID_ETH_FORWARD_SETUP
* Used for connection offload. Completes on the RCQ of the multi-queue
* RSS connection that is being offloaded. (Not currently used under
* FreeBSD.)
*
* There can only be one command pending per function.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
/* must be called under the spq lock */
static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x_softc *sc)
{
struct eth_spe *next_spe = sc->spq_prod_bd;
if (sc->spq_prod_bd == sc->spq_last_bd) {
/* wrap back to the first eth_spq */
sc->spq_prod_bd = sc->spq;
sc->spq_prod_idx = 0;
} else {
sc->spq_prod_bd++;
sc->spq_prod_idx++;
}
return next_spe;
}
/* must be called under the spq lock */
static void bnx2x_sp_prod_update(struct bnx2x_softc *sc)
{
int func = SC_FUNC(sc);
/*
* Make sure that BD data is updated before writing the producer.
* BD data is written to the memory, the producer is read from the
* memory, thus we need a full memory barrier to ensure the ordering.
*/
mb();
REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
sc->spq_prod_idx);
mb();
}
/**
* bnx2x_is_contextless_ramrod - check if the current command ends on EQ
*
* @cmd: command to check
* @cmd_type: command type
*/
static int bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
{
if ((cmd_type == NONE_CONNECTION_TYPE) ||
(cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
(cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
(cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
(cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
(cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
(cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
return TRUE;
} else {
return FALSE;
}
}
/**
* bnx2x_sp_post - place a single command on an SP ring
*
* @sc: driver handle
* @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
* @cid: SW CID the command is related to
* @data_hi: command private data address (high 32 bits)
* @data_lo: command private data address (low 32 bits)
* @cmd_type: command type (e.g. NONE, ETH)
*
* SP data is handled as if it's always an address pair, thus data fields are
* not swapped to little endian in upper functions. Instead this function swaps
* data as if it's two uint32 fields.
*/
int
bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid, uint32_t data_hi,
uint32_t data_lo, int cmd_type)
{
struct eth_spe *spe;
uint16_t type;
int common;
common = bnx2x_is_contextless_ramrod(command, cmd_type);
if (common) {
if (!atomic_load_acq_long(&sc->eq_spq_left)) {
PMD_DRV_LOG(INFO, "EQ ring is full!");
return -1;
}
} else {
if (!atomic_load_acq_long(&sc->cq_spq_left)) {
PMD_DRV_LOG(INFO, "SPQ ring is full!");
return -1;
}
}
spe = bnx2x_sp_get_next(sc);
/* CID needs port number to be encoded int it */
spe->hdr.conn_and_cmd_data =
htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
/* TBD: Check if it works for VFs */
type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
SPE_HDR_FUNCTION_ID);
spe->hdr.type = htole16(type);
spe->data.update_data_addr.hi = htole32(data_hi);
spe->data.update_data_addr.lo = htole32(data_lo);
/*
* It's ok if the actual decrement is issued towards the memory
* somewhere between the lock and unlock. Thus no more explict
* memory barrier is needed.
*/
if (common) {
atomic_subtract_acq_long(&sc->eq_spq_left, 1);
} else {
atomic_subtract_acq_long(&sc->cq_spq_left, 1);
}
PMD_DRV_LOG(DEBUG,
"SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x"
"data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)",
sc->spq_prod_idx,
(uint32_t) U64_HI(sc->spq_dma.paddr),
(uint32_t) (U64_LO(sc->spq_dma.paddr) +
(uint8_t *) sc->spq_prod_bd -
(uint8_t *) sc->spq), command, common,
HW_CID(sc, cid), data_hi, data_lo, type,
atomic_load_acq_long(&sc->cq_spq_left),
atomic_load_acq_long(&sc->eq_spq_left));
bnx2x_sp_prod_update(sc);
return 0;
}
static void bnx2x_drv_pulse(struct bnx2x_softc *sc)
{
SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
sc->fw_drv_pulse_wr_seq);
}
static int bnx2x_tx_queue_has_work(const struct bnx2x_fastpath *fp)
{
uint16_t hw_cons;
struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
if (unlikely(!txq)) {
PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
return 0;
}
mb(); /* status block fields can change */
hw_cons = le16toh(*fp->tx_cons_sb);
return hw_cons != txq->tx_pkt_head;
}
static uint8_t bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
{
/* expand this for multi-cos if ever supported */
return bnx2x_tx_queue_has_work(fp);
}
static int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
{
uint16_t rx_cq_cons_sb;
struct bnx2x_rx_queue *rxq;
rxq = fp->sc->rx_queues[fp->index];
if (unlikely(!rxq)) {
PMD_RX_LOG(ERR, "ERROR: RX queue is NULL");
return 0;
}
mb(); /* status block fields can change */
rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
if (unlikely((rx_cq_cons_sb & MAX_RCQ_ENTRIES(rxq)) ==
MAX_RCQ_ENTRIES(rxq)))
rx_cq_cons_sb++;
return rxq->rx_cq_head != rx_cq_cons_sb;
}
static void
bnx2x_sp_event(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
union eth_rx_cqe *rr_cqe)
{
#ifdef RTE_LIBRTE_BNX2X_DEBUG
int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
#endif
int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
struct ecore_queue_sp_obj *q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
PMD_DRV_LOG(DEBUG,
"fp=%d cid=%d got ramrod #%d state is %x type is %d",
fp->index, cid, command, sc->state,
rr_cqe->ramrod_cqe.ramrod_type);
switch (command) {
case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
PMD_DRV_LOG(DEBUG, "got UPDATE ramrod. CID %d", cid);
drv_cmd = ECORE_Q_CMD_UPDATE;
break;
case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
PMD_DRV_LOG(DEBUG, "got MULTI[%d] setup ramrod", cid);
drv_cmd = ECORE_Q_CMD_SETUP;
break;
case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
PMD_DRV_LOG(DEBUG, "got MULTI[%d] tx-only setup ramrod", cid);
drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
break;
case (RAMROD_CMD_ID_ETH_HALT):
PMD_DRV_LOG(DEBUG, "got MULTI[%d] halt ramrod", cid);
drv_cmd = ECORE_Q_CMD_HALT;
break;
case (RAMROD_CMD_ID_ETH_TERMINATE):
PMD_DRV_LOG(DEBUG, "got MULTI[%d] teminate ramrod", cid);
drv_cmd = ECORE_Q_CMD_TERMINATE;
break;
case (RAMROD_CMD_ID_ETH_EMPTY):
PMD_DRV_LOG(DEBUG, "got MULTI[%d] empty ramrod", cid);
drv_cmd = ECORE_Q_CMD_EMPTY;
break;
default:
PMD_DRV_LOG(DEBUG,
"ERROR: unexpected MC reply (%d)"
"on fp[%d]", command, fp->index);
return;
}
if ((drv_cmd != ECORE_Q_CMD_MAX) &&
q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
/*
* q_obj->complete_cmd() failure means that this was
* an unexpected completion.
*
* In this case we don't want to increase the sc->spq_left
* because apparently we haven't sent this command the first
* place.
*/
// rte_panic("Unexpected SP completion");
return;
}
atomic_add_acq_long(&sc->cq_spq_left, 1);
PMD_DRV_LOG(DEBUG, "sc->cq_spq_left 0x%lx",
atomic_load_acq_long(&sc->cq_spq_left));
}
static uint8_t bnx2x_rxeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
{
struct bnx2x_rx_queue *rxq;
uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
rxq = sc->rx_queues[fp->index];
if (!rxq) {
PMD_RX_LOG(ERR, "RX queue %d is NULL", fp->index);
return 0;
}
/* CQ "next element" is of the size of the regular element */
hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
if (unlikely((hw_cq_cons & USABLE_RCQ_ENTRIES_PER_PAGE) ==
USABLE_RCQ_ENTRIES_PER_PAGE)) {
hw_cq_cons++;
}
bd_cons = rxq->rx_bd_head;
bd_prod = rxq->rx_bd_tail;
bd_prod_fw = bd_prod;
sw_cq_cons = rxq->rx_cq_head;
sw_cq_prod = rxq->rx_cq_tail;
/*
* Memory barrier necessary as speculative reads of the rx
* buffer can be ahead of the index in the status block
*/
rmb();
while (sw_cq_cons != hw_cq_cons) {
union eth_rx_cqe *cqe;
struct eth_fast_path_rx_cqe *cqe_fp;
uint8_t cqe_fp_flags;
enum eth_rx_cqe_type cqe_fp_type;
comp_ring_cons = RCQ_ENTRY(sw_cq_cons, rxq);
bd_prod = RX_BD(bd_prod, rxq);
bd_cons = RX_BD(bd_cons, rxq);
cqe = &rxq->cq_ring[comp_ring_cons];
cqe_fp = &cqe->fast_path_cqe;
cqe_fp_flags = cqe_fp->type_error_flags;
cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
/* is this a slowpath msg? */
if (CQE_TYPE_SLOW(cqe_fp_type)) {
bnx2x_sp_event(sc, fp, cqe);
goto next_cqe;
}
/* is this an error packet? */
if (unlikely(cqe_fp_flags &
ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
PMD_RX_LOG(DEBUG, "flags 0x%x rx packet %u",
cqe_fp_flags, sw_cq_cons);
goto next_rx;
}
PMD_RX_LOG(DEBUG, "Dropping fastpath called from attn poller!");
next_rx:
bd_cons = NEXT_RX_BD(bd_cons);
bd_prod = NEXT_RX_BD(bd_prod);
bd_prod_fw = NEXT_RX_BD(bd_prod_fw);
next_cqe:
sw_cq_prod = NEXT_RCQ_IDX(sw_cq_prod);
sw_cq_cons = NEXT_RCQ_IDX(sw_cq_cons);
} /* while work to do */
rxq->rx_bd_head = bd_cons;
rxq->rx_bd_tail = bd_prod_fw;
rxq->rx_cq_head = sw_cq_cons;
rxq->rx_cq_tail = sw_cq_prod;
/* Update producers */
bnx2x_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod);
return sw_cq_cons != hw_cq_cons;
}
static uint16_t
bnx2x_free_tx_pkt(__rte_unused struct bnx2x_fastpath *fp, struct bnx2x_tx_queue *txq,
uint16_t pkt_idx, uint16_t bd_idx)
{
struct eth_tx_start_bd *tx_start_bd =
&txq->tx_ring[TX_BD(bd_idx, txq)].start_bd;
uint16_t nbd = rte_le_to_cpu_16(tx_start_bd->nbd);
struct rte_mbuf *tx_mbuf = txq->sw_ring[TX_BD(pkt_idx, txq)];
if (likely(tx_mbuf != NULL)) {
rte_pktmbuf_free_seg(tx_mbuf);
} else {
PMD_RX_LOG(ERR, "fp[%02d] lost mbuf %lu",
fp->index, (unsigned long)TX_BD(pkt_idx, txq));
}
txq->sw_ring[TX_BD(pkt_idx, txq)] = NULL;
txq->nb_tx_avail += nbd;
while (nbd--)
bd_idx = NEXT_TX_BD(bd_idx);
return bd_idx;
}
/* processes transmit completions */
uint8_t bnx2x_txeof(__rte_unused struct bnx2x_softc * sc, struct bnx2x_fastpath * fp)
{
uint16_t bd_cons, hw_cons, sw_cons;
__rte_unused uint16_t tx_bd_avail;
struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
if (unlikely(!txq)) {
PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
return 0;
}
bd_cons = txq->tx_bd_head;
hw_cons = rte_le_to_cpu_16(*fp->tx_cons_sb);
sw_cons = txq->tx_pkt_head;
while (sw_cons != hw_cons) {
bd_cons = bnx2x_free_tx_pkt(fp, txq, sw_cons, bd_cons);
sw_cons++;
}
txq->tx_pkt_head = sw_cons;
txq->tx_bd_head = bd_cons;
tx_bd_avail = txq->nb_tx_avail;
PMD_TX_LOG(DEBUG, "fp[%02d] avail=%u cons_sb=%u, "
"pkt_head=%u pkt_tail=%u bd_head=%u bd_tail=%u",
fp->index, tx_bd_avail, hw_cons,
txq->tx_pkt_head, txq->tx_pkt_tail,
txq->tx_bd_head, txq->tx_bd_tail);
return TRUE;
}
static void bnx2x_drain_tx_queues(struct bnx2x_softc *sc)
{
struct bnx2x_fastpath *fp;
int i, count;
/* wait until all TX fastpath tasks have completed */
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
count = 1000;
while (bnx2x_has_tx_work(fp)) {
bnx2x_txeof(sc, fp);
if (count == 0) {
PMD_TX_LOG(ERR,
"Timeout waiting for fp[%d] "
"transmits to complete!", i);
rte_panic("tx drain failure");
return;
}
count--;
DELAY(1000);
rmb();
}
}
return;
}
static int
bnx2x_del_all_macs(struct bnx2x_softc *sc, struct ecore_vlan_mac_obj *mac_obj,
int mac_type, uint8_t wait_for_comp)
{
unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
int rc;
/* wait for completion of requested */
if (wait_for_comp) {
bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
}
/* Set the mac type of addresses we want to clear */
bnx2x_set_bit(mac_type, &vlan_mac_flags);
rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
if (rc < 0)
PMD_DRV_LOG(ERR, "Failed to delete MACs (%d)", rc);
return rc;
}
static int
bnx2x_fill_accept_flags(struct bnx2x_softc *sc, uint32_t rx_mode,
unsigned long *rx_accept_flags,
unsigned long *tx_accept_flags)
{
/* Clear the flags first */
*rx_accept_flags = 0;
*tx_accept_flags = 0;
switch (rx_mode) {
case BNX2X_RX_MODE_NONE:
/*
* 'drop all' supersedes any accept flags that may have been
* passed to the function.
*/
break;
case BNX2X_RX_MODE_NORMAL:
bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
/* internal switching mode */
bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
break;
case BNX2X_RX_MODE_ALLMULTI:
bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
/* internal switching mode */
bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
break;
case BNX2X_RX_MODE_ALLMULTI_PROMISC:
case BNX2X_RX_MODE_PROMISC:
/*
* According to deffinition of SI mode, iface in promisc mode
* should receive matched and unmatched (in resolution of port)
* unicast packets.
*/
bnx2x_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
/* internal switching mode */
bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
if (IS_MF_SI(sc)) {
bnx2x_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
} else {
bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
}
break;
default:
PMD_RX_LOG(ERR, "Unknown rx_mode (%d)", rx_mode);
return -1;
}
/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
if (rx_mode != BNX2X_RX_MODE_NONE) {
bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
}
return 0;
}
static int
bnx2x_set_q_rx_mode(struct bnx2x_softc *sc, uint8_t cl_id,
unsigned long rx_mode_flags,
unsigned long rx_accept_flags,
unsigned long tx_accept_flags, unsigned long ramrod_flags)
{
struct ecore_rx_mode_ramrod_params ramrod_param;
int rc;
memset(&ramrod_param, 0, sizeof(ramrod_param));
/* Prepare ramrod parameters */
ramrod_param.cid = 0;
ramrod_param.cl_id = cl_id;
ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
ramrod_param.func_id = SC_FUNC(sc);
ramrod_param.pstate = &sc->sp_state;
ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
ramrod_param.rdata = BNX2X_SP(sc, rx_mode_rdata);
ramrod_param.rdata_mapping =
(rte_iova_t)BNX2X_SP_MAPPING(sc, rx_mode_rdata),
bnx2x_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
ramrod_param.ramrod_flags = ramrod_flags;
ramrod_param.rx_mode_flags = rx_mode_flags;
ramrod_param.rx_accept_flags = rx_accept_flags;
ramrod_param.tx_accept_flags = tx_accept_flags;
rc = ecore_config_rx_mode(sc, &ramrod_param);
if (rc < 0) {
PMD_RX_LOG(ERR, "Set rx_mode %d failed", sc->rx_mode);
return rc;
}
return 0;
}
int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc)
{
unsigned long rx_mode_flags = 0, ramrod_flags = 0;
unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
int rc;
rc = bnx2x_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
&tx_accept_flags);
if (rc) {
return rc;
}
bnx2x_set_bit(RAMROD_RX, &ramrod_flags);
bnx2x_set_bit(RAMROD_TX, &ramrod_flags);
bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
return bnx2x_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
rx_accept_flags, tx_accept_flags,
ramrod_flags);
}
/* returns the "mcp load_code" according to global load_count array */
static int bnx2x_nic_load_no_mcp(struct bnx2x_softc *sc)
{
int path = SC_PATH(sc);
int port = SC_PORT(sc);
PMD_DRV_LOG(INFO, "NO MCP - load counts[%d] %d, %d, %d",
path, load_count[path][0], load_count[path][1],
load_count[path][2]);
load_count[path][0]++;
load_count[path][1 + port]++;
PMD_DRV_LOG(INFO, "NO MCP - new load counts[%d] %d, %d, %d",
path, load_count[path][0], load_count[path][1],
load_count[path][2]);
if (load_count[path][0] == 1)
return FW_MSG_CODE_DRV_LOAD_COMMON;
else if (load_count[path][1 + port] == 1)
return FW_MSG_CODE_DRV_LOAD_PORT;
else
return FW_MSG_CODE_DRV_LOAD_FUNCTION;
}
/* returns the "mcp load_code" according to global load_count array */
static int bnx2x_nic_unload_no_mcp(struct bnx2x_softc *sc)
{
int port = SC_PORT(sc);
int path = SC_PATH(sc);
PMD_DRV_LOG(INFO, "NO MCP - load counts[%d] %d, %d, %d",
path, load_count[path][0], load_count[path][1],
load_count[path][2]);
load_count[path][0]--;
load_count[path][1 + port]--;
PMD_DRV_LOG(INFO, "NO MCP - new load counts[%d] %d, %d, %d",
path, load_count[path][0], load_count[path][1],
load_count[path][2]);
if (load_count[path][0] == 0) {
return FW_MSG_CODE_DRV_UNLOAD_COMMON;
} else if (load_count[path][1 + port] == 0) {
return FW_MSG_CODE_DRV_UNLOAD_PORT;
} else {
return FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
}
}
/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
static uint32_t bnx2x_send_unload_req(struct bnx2x_softc *sc, int unload_mode)
{
uint32_t reset_code = 0;
/* Select the UNLOAD request mode */
if (unload_mode == UNLOAD_NORMAL) {
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
} else {
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
}
/* Send the request to the MCP */
if (!BNX2X_NOMCP(sc)) {
reset_code = bnx2x_fw_command(sc, reset_code, 0);
} else {
reset_code = bnx2x_nic_unload_no_mcp(sc);
}
return reset_code;
}
/* send UNLOAD_DONE command to the MCP */
static void bnx2x_send_unload_done(struct bnx2x_softc *sc, uint8_t keep_link)
{
uint32_t reset_param =
keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
/* Report UNLOAD_DONE to MCP */
if (!BNX2X_NOMCP(sc)) {
bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
}
}
static int bnx2x_func_wait_started(struct bnx2x_softc *sc)
{
int tout = 50;
if (!sc->port.pmf) {
return 0;
}
/*
* (assumption: No Attention from MCP at this stage)
* PMF probably in the middle of TX disable/enable transaction
* 1. Sync IRS for default SB
* 2. Sync SP queue - this guarantees us that attention handling started
* 3. Wait, that TX disable/enable transaction completes
*
* 1+2 guarantee that if DCBX attention was scheduled it already changed
* pending bit of transaction from STARTED-->TX_STOPPED, if we already
* received completion for the transaction the state is TX_STOPPED.
* State will return to STARTED after completion of TX_STOPPED-->STARTED
* transaction.
*/
while (ecore_func_get_state(sc, &sc->func_obj) !=
ECORE_F_STATE_STARTED && tout--) {
DELAY(20000);
}
if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
/*
* Failed to complete the transaction in a "good way"
* Force both transactions with CLR bit.
*/
struct ecore_func_state_params func_params = { NULL };
PMD_DRV_LOG(NOTICE, "Unexpected function state! "
"Forcing STARTED-->TX_STOPPED-->STARTED");
func_params.f_obj = &sc->func_obj;
bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
/* STARTED-->TX_STOPPED */
func_params.cmd = ECORE_F_CMD_TX_STOP;
ecore_func_state_change(sc, &func_params);
/* TX_STOPPED-->STARTED */
func_params.cmd = ECORE_F_CMD_TX_START;
return ecore_func_state_change(sc, &func_params);
}
return 0;
}
static int bnx2x_stop_queue(struct bnx2x_softc *sc, int index)
{
struct bnx2x_fastpath *fp = &sc->fp[index];
struct ecore_queue_state_params q_params = { NULL };
int rc;
PMD_DRV_LOG(DEBUG, "stopping queue %d cid %d", index, fp->index);
q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
/* We want to wait for completion in this context */
bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
/* Stop the primary connection: */
/* ...halt the connection */
q_params.cmd = ECORE_Q_CMD_HALT;
rc = ecore_queue_state_change(sc, &q_params);
if (rc) {
return rc;
}
/* ...terminate the connection */
q_params.cmd = ECORE_Q_CMD_TERMINATE;
memset(&q_params.params.terminate, 0,
sizeof(q_params.params.terminate));
q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
rc = ecore_queue_state_change(sc, &q_params);
if (rc) {
return rc;
}
/* ...delete cfc entry */
q_params.cmd = ECORE_Q_CMD_CFC_DEL;
memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
return ecore_queue_state_change(sc, &q_params);
}
/* wait for the outstanding SP commands */
static uint8_t bnx2x_wait_sp_comp(struct bnx2x_softc *sc, unsigned long mask)
{
unsigned long tmp;
int tout = 5000; /* wait for 5 secs tops */
while (tout--) {
mb();
if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
return TRUE;
}
DELAY(1000);
}
mb();
tmp = atomic_load_acq_long(&sc->sp_state);
if (tmp & mask) {
PMD_DRV_LOG(INFO, "Filtering completion timed out: "
"sp_state 0x%lx, mask 0x%lx", tmp, mask);
return FALSE;
}
return FALSE;
}
static int bnx2x_func_stop(struct bnx2x_softc *sc)
{
struct ecore_func_state_params func_params = { NULL };
int rc;
/* prepare parameters for function state transitions */
bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
func_params.f_obj = &sc->func_obj;
func_params.cmd = ECORE_F_CMD_STOP;
/*
* Try to stop the function the 'good way'. If it fails (in case
* of a parity error during bnx2x_chip_cleanup()) and we are
* not in a debug mode, perform a state transaction in order to
* enable further HW_RESET transaction.
*/
rc = ecore_func_state_change(sc, &func_params);
if (rc) {
PMD_DRV_LOG(NOTICE, "FUNC_STOP ramrod failed. "
"Running a dry transaction");
bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
return ecore_func_state_change(sc, &func_params);
}
return 0;
}
static int bnx2x_reset_hw(struct bnx2x_softc *sc, uint32_t load_code)
{
struct ecore_func_state_params func_params = { NULL };
/* Prepare parameters for function state transitions */
bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
func_params.f_obj = &sc->func_obj;
func_params.cmd = ECORE_F_CMD_HW_RESET;
func_params.params.hw_init.load_phase = load_code;
return ecore_func_state_change(sc, &func_params);
}
static void bnx2x_int_disable_sync(struct bnx2x_softc *sc, int disable_hw)
{
if (disable_hw) {
/* prevent the HW from sending interrupts */
bnx2x_int_disable(sc);
}
}
static void
bnx2x_chip_cleanup(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
{
int port = SC_PORT(sc);
struct ecore_mcast_ramrod_params rparam = { NULL };
uint32_t reset_code;
int i, rc = 0;
bnx2x_drain_tx_queues(sc);
/* give HW time to discard old tx messages */
DELAY(1000);
/* Clean all ETH MACs */
rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC,
FALSE);
if (rc < 0) {
PMD_DRV_LOG(NOTICE, "Failed to delete all ETH MACs (%d)", rc);
}
/* Clean up UC list */
rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC,
TRUE);
if (rc < 0) {
PMD_DRV_LOG(NOTICE, "Failed to delete UC MACs list (%d)", rc);
}
/* Disable LLH */
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
/* Set "drop all" to stop Rx */
/*
* We need to take the if_maddr_lock() here in order to prevent
* a race between the completion code and this code.
*/
if (bnx2x_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
bnx2x_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
} else {
bnx2x_set_storm_rx_mode(sc);
}
/* Clean up multicast configuration */
rparam.mcast_obj = &sc->mcast_obj;
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
if (rc < 0) {
PMD_DRV_LOG(NOTICE,
"Failed to send DEL MCAST command (%d)", rc);
}
/*
* Send the UNLOAD_REQUEST to the MCP. This will return if
* this function should perform FUNCTION, PORT, or COMMON HW
* reset.
*/
reset_code = bnx2x_send_unload_req(sc, unload_mode);
/*
* (assumption: No Attention from MCP at this stage)
* PMF probably in the middle of TX disable/enable transaction
*/
rc = bnx2x_func_wait_started(sc);
if (rc) {
PMD_DRV_LOG(NOTICE, "bnx2x_func_wait_started failed");
}
/*
* Close multi and leading connections
* Completions for ramrods are collected in a synchronous way
*/
for (i = 0; i < sc->num_queues; i++) {
if (bnx2x_stop_queue(sc, i)) {
goto unload_error;
}
}
/*
* If SP settings didn't get completed so far - something
* very wrong has happen.
*/
if (!bnx2x_wait_sp_comp(sc, ~0x0UL)) {
PMD_DRV_LOG(NOTICE, "Common slow path ramrods got stuck!");
}
unload_error:
rc = bnx2x_func_stop(sc);
if (rc) {
PMD_DRV_LOG(NOTICE, "Function stop failed!");
}
/* disable HW interrupts */
bnx2x_int_disable_sync(sc, TRUE);
/* Reset the chip */
rc = bnx2x_reset_hw(sc, reset_code);
if (rc) {
PMD_DRV_LOG(NOTICE, "Hardware reset failed");
}
/* Report UNLOAD_DONE to MCP */
bnx2x_send_unload_done(sc, keep_link);
}
static void bnx2x_disable_close_the_gate(struct bnx2x_softc *sc)
{
uint32_t val;
PMD_DRV_LOG(DEBUG, "Disabling 'close the gates'");
val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
}
/*
* Cleans the object that have internal lists without sending
* ramrods. Should be run when interrutps are disabled.
*/
static void bnx2x_squeeze_objects(struct bnx2x_softc *sc)
{
unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
struct ecore_mcast_ramrod_params rparam = { NULL };
struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
int rc;
/* Cleanup MACs' object first... */
/* Wait for completion of requested */
bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
/* Perform a dry cleanup */
bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
/* Clean ETH primary MAC */
bnx2x_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
&ramrod_flags);
if (rc != 0) {
PMD_DRV_LOG(NOTICE, "Failed to clean ETH MACs (%d)", rc);
}
/* Cleanup UC list */
vlan_mac_flags = 0;
bnx2x_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
if (rc != 0) {
PMD_DRV_LOG(NOTICE, "Failed to clean UC list MACs (%d)", rc);
}
/* Now clean mcast object... */
rparam.mcast_obj = &sc->mcast_obj;
bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
/* Add a DEL command... */
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
if (rc < 0) {
PMD_DRV_LOG(NOTICE,
"Failed to send DEL MCAST command (%d)", rc);
}
/* now wait until all pending commands are cleared */
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
while (rc != 0) {
if (rc < 0) {
PMD_DRV_LOG(NOTICE,
"Failed to clean MCAST object (%d)", rc);
return;
}
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
}
}
/* stop the controller */
__rte_noinline
int
bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
{
uint8_t global = FALSE;
uint32_t val;
PMD_DRV_LOG(DEBUG, "Starting NIC unload...");
/* mark driver as unloaded in shmem2 */
if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
}
if (IS_PF(sc) && sc->recovery_state != BNX2X_RECOVERY_DONE &&
(sc->state == BNX2X_STATE_CLOSED || sc->state == BNX2X_STATE_ERROR)) {
/*
* We can get here if the driver has been unloaded
* during parity error recovery and is either waiting for a
* leader to complete or for other functions to unload and
* then ifconfig down has been issued. In this case we want to
* unload and let other functions to complete a recovery
* process.
*/
sc->recovery_state = BNX2X_RECOVERY_DONE;
sc->is_leader = 0;
bnx2x_release_leader_lock(sc);
mb();
PMD_DRV_LOG(NOTICE, "Can't unload in closed or error state");
return -1;
}
/*
* Nothing to do during unload if previous bnx2x_nic_load()
* did not completed successfully - all resourses are released.
*/
if ((sc->state == BNX2X_STATE_CLOSED) || (sc->state == BNX2X_STATE_ERROR)) {
return 0;
}
sc->state = BNX2X_STATE_CLOSING_WAITING_HALT;
mb();
sc->rx_mode = BNX2X_RX_MODE_NONE;
bnx2x_set_rx_mode(sc);
mb();
if (IS_PF(sc)) {
/* set ALWAYS_ALIVE bit in shmem */
sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
bnx2x_drv_pulse(sc);
bnx2x_stats_handle(sc, STATS_EVENT_STOP);
bnx2x_save_statistics(sc);
}
/* wait till consumers catch up with producers in all queues */
bnx2x_drain_tx_queues(sc);
/* if VF indicate to PF this function is going down (PF will delete sp
* elements and clear initializations
*/
if (IS_VF(sc)) {
bnx2x_vf_unload(sc);
} else if (unload_mode != UNLOAD_RECOVERY) {
/* if this is a normal/close unload need to clean up chip */
bnx2x_chip_cleanup(sc, unload_mode, keep_link);
} else {
/* Send the UNLOAD_REQUEST to the MCP */
bnx2x_send_unload_req(sc, unload_mode);
/*
* Prevent transactions to host from the functions on the
* engine that doesn't reset global blocks in case of global
* attention once gloabl blocks are reset and gates are opened
* (the engine which leader will perform the recovery
* last).
*/
if (!CHIP_IS_E1x(sc)) {
bnx2x_pf_disable(sc);
}
/* disable HW interrupts */
bnx2x_int_disable_sync(sc, TRUE);
/* Report UNLOAD_DONE to MCP */
bnx2x_send_unload_done(sc, FALSE);
}
/*
* At this stage no more interrupts will arrive so we may safely clean
* the queue'able objects here in case they failed to get cleaned so far.
*/
if (IS_PF(sc)) {
bnx2x_squeeze_objects(sc);
}
/* There should be no more pending SP commands at this stage */
sc->sp_state = 0;
sc->port.pmf = 0;
if (IS_PF(sc)) {
bnx2x_free_mem(sc);
}
bnx2x_free_fw_stats_mem(sc);
sc->state = BNX2X_STATE_CLOSED;
/*
* Check if there are pending parity attentions. If there are - set
* RECOVERY_IN_PROGRESS.
*/
if (IS_PF(sc) && bnx2x_chk_parity_attn(sc, &global, FALSE)) {
bnx2x_set_reset_in_progress(sc);
/* Set RESET_IS_GLOBAL if needed */
if (global) {
bnx2x_set_reset_global(sc);
}
}
/*
* The last driver must disable a "close the gate" if there is no
* parity attention or "process kill" pending.
*/
if (IS_PF(sc) && !bnx2x_clear_pf_load(sc) &&
bnx2x_reset_is_done(sc, SC_PATH(sc))) {
bnx2x_disable_close_the_gate(sc);
}
PMD_DRV_LOG(DEBUG, "Ended NIC unload");
return 0;
}
/*
* Encapsulte an mbuf cluster into the tx bd chain and makes the memory
* visible to the controller.
*
* If an mbuf is submitted to this routine and cannot be given to the
* controller (e.g. it has too many fragments) then the function may free
* the mbuf and return to the caller.
*
* Returns:
* int: Number of TX BDs used for the mbuf
*
* Note the side effect that an mbuf may be freed if it causes a problem.
*/
int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf *m0)
{
struct eth_tx_start_bd *tx_start_bd;
uint16_t bd_prod, pkt_prod;
struct bnx2x_softc *sc;
uint32_t nbds = 0;
sc = txq->sc;
bd_prod = txq->tx_bd_tail;
pkt_prod = txq->tx_pkt_tail;
txq->sw_ring[TX_BD(pkt_prod, txq)] = m0;
tx_start_bd = &txq->tx_ring[TX_BD(bd_prod, txq)].start_bd;
tx_start_bd->addr =
rte_cpu_to_le_64(rte_mbuf_data_iova(m0));
tx_start_bd->nbytes = rte_cpu_to_le_16(m0->data_len);
tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
tx_start_bd->general_data =
(1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
tx_start_bd->nbd = rte_cpu_to_le_16(2);
if (m0->ol_flags & PKT_TX_VLAN_PKT) {
tx_start_bd->vlan_or_ethertype =
rte_cpu_to_le_16(m0->vlan_tci);
tx_start_bd->bd_flags.as_bitfield |=
(X_ETH_OUTBAND_VLAN <<
ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
} else {
if (IS_PF(sc))
tx_start_bd->vlan_or_ethertype =
rte_cpu_to_le_16(pkt_prod);
else {
struct ether_hdr *eh =
rte_pktmbuf_mtod(m0, struct ether_hdr *);
tx_start_bd->vlan_or_ethertype =
rte_cpu_to_le_16(rte_be_to_cpu_16(eh->ether_type));
}
}
bd_prod = NEXT_TX_BD(bd_prod);
if (IS_VF(sc)) {
struct eth_tx_parse_bd_e2 *tx_parse_bd;
const struct ether_hdr *eh =
rte_pktmbuf_mtod(m0, struct ether_hdr *);
uint8_t mac_type = UNICAST_ADDRESS;
tx_parse_bd =
&txq->tx_ring[TX_BD(bd_prod, txq)].parse_bd_e2;
if (is_multicast_ether_addr(&eh->d_addr)) {
if (is_broadcast_ether_addr(&eh->d_addr))
mac_type = BROADCAST_ADDRESS;
else
mac_type = MULTICAST_ADDRESS;
}
tx_parse_bd->parsing_data =
(mac_type << ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE_SHIFT);
rte_memcpy(&tx_parse_bd->data.mac_addr.dst_hi,
&eh->d_addr.addr_bytes[0], 2);
rte_memcpy(&tx_parse_bd->data.mac_addr.dst_mid,
&eh->d_addr.addr_bytes[2], 2);
rte_memcpy(&tx_parse_bd->data.mac_addr.dst_lo,
&eh->d_addr.addr_bytes[4], 2);
rte_memcpy(&tx_parse_bd->data.mac_addr.src_hi,
&eh->s_addr.addr_bytes[0], 2);
rte_memcpy(&tx_parse_bd->data.mac_addr.src_mid,
&eh->s_addr.addr_bytes[2], 2);
rte_memcpy(&tx_parse_bd->data.mac_addr.src_lo,
&eh->s_addr.addr_bytes[4], 2);
tx_parse_bd->data.mac_addr.dst_hi =
rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_hi);
tx_parse_bd->data.mac_addr.dst_mid =
rte_cpu_to_be_16(tx_parse_bd->data.
mac_addr.dst_mid);
tx_parse_bd->data.mac_addr.dst_lo =
rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_lo);
tx_parse_bd->data.mac_addr.src_hi =
rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_hi);
tx_parse_bd->data.mac_addr.src_mid =
rte_cpu_to_be_16(tx_parse_bd->data.
mac_addr.src_mid);
tx_parse_bd->data.mac_addr.src_lo =
rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_lo);
PMD_TX_LOG(DEBUG,
"PBD dst %x %x %x src %x %x %x p_data %x",
tx_parse_bd->data.mac_addr.dst_hi,
tx_parse_bd->data.mac_addr.dst_mid,
tx_parse_bd->data.mac_addr.dst_lo,
tx_parse_bd->data.mac_addr.src_hi,
tx_parse_bd->data.mac_addr.src_mid,
tx_parse_bd->data.mac_addr.src_lo,
tx_parse_bd->parsing_data);
}
PMD_TX_LOG(DEBUG,
"start bd: nbytes %d flags %x vlan %x",
tx_start_bd->nbytes,
tx_start_bd->bd_flags.as_bitfield,
tx_start_bd->vlan_or_ethertype);
bd_prod = NEXT_TX_BD(bd_prod);
pkt_prod++;
if (TX_IDX(bd_prod) < 2)
nbds++;
txq->nb_tx_avail -= 2;
txq->tx_bd_tail = bd_prod;
txq->tx_pkt_tail = pkt_prod;
return nbds + 2;
}
static uint16_t bnx2x_cid_ilt_lines(struct bnx2x_softc *sc)
{
return L2_ILT_LINES(sc);
}
static void bnx2x_ilt_set_info(struct bnx2x_softc *sc)
{
struct ilt_client_info *ilt_client;
struct ecore_ilt *ilt = sc->ilt;
uint16_t line = 0;
PMD_INIT_FUNC_TRACE();
ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
/* CDU */
ilt_client = &ilt->clients[ILT_CLIENT_CDU];
ilt_client->client_num = ILT_CLIENT_CDU;
ilt_client->page_size = CDU_ILT_PAGE_SZ;
ilt_client->flags = ILT_CLIENT_SKIP_MEM;
ilt_client->start = line;
line += bnx2x_cid_ilt_lines(sc);
if (CNIC_SUPPORT(sc)) {
line += CNIC_ILT_LINES;
}
ilt_client->end = (line - 1);
/* QM */
if (QM_INIT(sc->qm_cid_count)) {
ilt_client = &ilt->clients[ILT_CLIENT_QM];
ilt_client->client_num = ILT_CLIENT_QM;
ilt_client->page_size = QM_ILT_PAGE_SZ;
ilt_client->flags = 0;
ilt_client->start = line;
/* 4 bytes for each cid */
line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
QM_ILT_PAGE_SZ);
ilt_client->end = (line - 1);
}
if (CNIC_SUPPORT(sc)) {
/* SRC */
ilt_client = &ilt->clients[ILT_CLIENT_SRC];
ilt_client->client_num = ILT_CLIENT_SRC;
ilt_client->page_size = SRC_ILT_PAGE_SZ;
ilt_client->flags = 0;
ilt_client->start = line;
line += SRC_ILT_LINES;
ilt_client->end = (line - 1);
/* TM */
ilt_client = &ilt->clients[ILT_CLIENT_TM];
ilt_client->client_num = ILT_CLIENT_TM;
ilt_client->page_size = TM_ILT_PAGE_SZ;
ilt_client->flags = 0;
ilt_client->start = line;
line += TM_ILT_LINES;
ilt_client->end = (line - 1);
}
assert((line <= ILT_MAX_LINES));
}
static void bnx2x_set_fp_rx_buf_size(struct bnx2x_softc *sc)
{
int i;
for (i = 0; i < sc->num_queues; i++) {
/* get the Rx buffer size for RX frames */
sc->fp[i].rx_buf_size =
(IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
}
}
int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc)
{
sc->ilt = rte_malloc("", sizeof(struct ecore_ilt), RTE_CACHE_LINE_SIZE);
return sc->ilt == NULL;
}
static int bnx2x_alloc_ilt_lines_mem(struct bnx2x_softc *sc)
{
sc->ilt->lines = rte_calloc("",
sizeof(struct ilt_line), ILT_MAX_LINES,
RTE_CACHE_LINE_SIZE);
return sc->ilt->lines == NULL;
}
void bnx2x_free_ilt_mem(struct bnx2x_softc *sc)
{
rte_free(sc->ilt);
sc->ilt = NULL;
}
static void bnx2x_free_ilt_lines_mem(struct bnx2x_softc *sc)
{
if (sc->ilt->lines != NULL) {
rte_free(sc->ilt->lines);
sc->ilt->lines = NULL;
}
}
static void bnx2x_free_mem(struct bnx2x_softc *sc)
{
uint32_t i;
for (i = 0; i < L2_ILT_LINES(sc); i++) {
sc->context[i].vcxt = NULL;
sc->context[i].size = 0;
}
ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
bnx2x_free_ilt_lines_mem(sc);
}
static int bnx2x_alloc_mem(struct bnx2x_softc *sc)
{
int context_size;
int allocated;
int i;
char cdu_name[RTE_MEMZONE_NAMESIZE];
/*
* Allocate memory for CDU context:
* This memory is allocated separately and not in the generic ILT
* functions because CDU differs in few aspects:
* 1. There can be multiple entities allocating memory for context -
* regular L2, CNIC, and SRIOV drivers. Each separately controls
* its own ILT lines.
* 2. Since CDU page-size is not a single 4KB page (which is the case
* for the other ILT clients), to be efficient we want to support
* allocation of sub-page-size in the last entry.
* 3. Context pointers are used by the driver to pass to FW / update
* the context (for the other ILT clients the pointers are used just to
* free the memory during unload).
*/
context_size = (sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(sc));
for (i = 0, allocated = 0; allocated < context_size; i++) {
sc->context[i].size = min(CDU_ILT_PAGE_SZ,
(context_size - allocated));
snprintf(cdu_name, sizeof(cdu_name), "cdu_%d", i);
if (bnx2x_dma_alloc(sc, sc->context[i].size,
&sc->context[i].vcxt_dma,
cdu_name, BNX2X_PAGE_SIZE) != 0) {
bnx2x_free_mem(sc);
return -1;
}
sc->context[i].vcxt =
(union cdu_context *)sc->context[i].vcxt_dma.vaddr;
allocated += sc->context[i].size;
}
bnx2x_alloc_ilt_lines_mem(sc);
if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
PMD_DRV_LOG(NOTICE, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed");
bnx2x_free_mem(sc);
return -1;
}
return 0;
}
static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc)
{
sc->fw_stats_num = 0;
sc->fw_stats_req_size = 0;
sc->fw_stats_req = NULL;
sc->fw_stats_req_mapping = 0;
sc->fw_stats_data_size = 0;
sc->fw_stats_data = NULL;
sc->fw_stats_data_mapping = 0;
}
static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc)
{
uint8_t num_queue_stats;
int num_groups, vf_headroom = 0;
/* number of queues for statistics is number of eth queues */
num_queue_stats = BNX2X_NUM_ETH_QUEUES(sc);
/*
* Total number of FW statistics requests =
* 1 for port stats + 1 for PF stats + num of queues
*/
sc->fw_stats_num = (2 + num_queue_stats);
/*
* Request is built from stats_query_header and an array of
* stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
* rules. The real number or requests is configured in the
* stats_query_header.
*/
num_groups = (sc->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT;
if ((sc->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT)
num_groups++;
sc->fw_stats_req_size =
(sizeof(struct stats_query_header) +
(num_groups * sizeof(struct stats_query_cmd_group)));
/*
* Data for statistics requests + stats_counter.
* stats_counter holds per-STORM counters that are incremented when
* STORM has finished with the current request. Memory for FCoE
* offloaded statistics are counted anyway, even if they will not be sent.
* VF stats are not accounted for here as the data of VF stats is stored
* in memory allocated by the VF, not here.
*/
sc->fw_stats_data_size =
(sizeof(struct stats_counter) +
sizeof(struct per_port_stats) + sizeof(struct per_pf_stats) +
/* sizeof(struct fcoe_statistics_params) + */
(sizeof(struct per_queue_stats) * num_queue_stats));
if (bnx2x_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
&sc->fw_stats_dma, "fw_stats",
RTE_CACHE_LINE_SIZE) != 0) {
bnx2x_free_fw_stats_mem(sc);
return -1;
}
/* set up the shortcuts */
sc->fw_stats_req = (struct bnx2x_fw_stats_req *)sc->fw_stats_dma.vaddr;
sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
sc->fw_stats_data =
(struct bnx2x_fw_stats_data *)((uint8_t *) sc->fw_stats_dma.vaddr +
sc->fw_stats_req_size);
sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
sc->fw_stats_req_size);
return 0;
}
/*
* Bits map:
* 0-7 - Engine0 load counter.
* 8-15 - Engine1 load counter.
* 16 - Engine0 RESET_IN_PROGRESS bit.
* 17 - Engine1 RESET_IN_PROGRESS bit.
* 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active
* function on the engine
* 19 - Engine1 ONE_IS_LOADED.
* 20 - Chip reset flow bit. When set none-leader must wait for both engines
* leader to complete (check for both RESET_IN_PROGRESS bits and not
* for just the one belonging to its engine).
*/
#define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
#define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
#define BNX2X_PATH0_LOAD_CNT_SHIFT 0
#define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
#define BNX2X_PATH1_LOAD_CNT_SHIFT 8
#define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
#define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
#define BNX2X_GLOBAL_RESET_BIT 0x00040000
/* set the GLOBAL_RESET bit, should be run under rtnl lock */
static void bnx2x_set_reset_global(struct bnx2x_softc *sc)
{
uint32_t val;
bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
static void bnx2x_clear_reset_global(struct bnx2x_softc *sc)
{
uint32_t val;
bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
static uint8_t bnx2x_reset_is_global(struct bnx2x_softc *sc)
{
return REG_RD(sc, BNX2X_RECOVERY_GLOB_REG) & BNX2X_GLOBAL_RESET_BIT;
}
/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
static void bnx2x_set_reset_done(struct bnx2x_softc *sc)
{
uint32_t val;
uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
BNX2X_PATH0_RST_IN_PROG_BIT;
bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
/* Clear the bit */
val &= ~bit;
REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc)
{
uint32_t val;
uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
BNX2X_PATH0_RST_IN_PROG_BIT;
bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
/* Set the bit */
val |= bit;
REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine)
{
uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
uint32_t bit = engine ? BNX2X_PATH1_RST_IN_PROG_BIT :
BNX2X_PATH0_RST_IN_PROG_BIT;
/* return false if bit is set */
return (val & bit) ? FALSE : TRUE;
}
/* get the load status for an engine, should be run under rtnl lock */
static uint8_t bnx2x_get_load_status(struct bnx2x_softc *sc, int engine)
{
uint32_t mask = engine ? BNX2X_PATH1_LOAD_CNT_MASK :
BNX2X_PATH0_LOAD_CNT_MASK;
uint32_t shift = engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
BNX2X_PATH0_LOAD_CNT_SHIFT;
uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
val = ((val & mask) >> shift);
return val != 0;
}
/* set pf load mark */
static void bnx2x_set_pf_load(struct bnx2x_softc *sc)
{
uint32_t val;
uint32_t val1;
uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
BNX2X_PATH0_LOAD_CNT_MASK;
uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
BNX2X_PATH0_LOAD_CNT_SHIFT;
bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
PMD_INIT_FUNC_TRACE();
val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
/* get the current counter value */
val1 = ((val & mask) >> shift);
/* set bit of this PF */
val1 |= (1 << SC_ABS_FUNC(sc));
/* clear the old value */
val &= ~mask;
/* set the new one */
val |= ((val1 << shift) & mask);
REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
}
/* clear pf load mark */
static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc)
{
uint32_t val1, val;
uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
BNX2X_PATH0_LOAD_CNT_MASK;
uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
BNX2X_PATH0_LOAD_CNT_SHIFT;
bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
/* get the current counter value */
val1 = (val & mask) >> shift;
/* clear bit of that PF */
val1 &= ~(1 << SC_ABS_FUNC(sc));
/* clear the old value */
val &= ~mask;
/* set the new one */
val |= ((val1 << shift) & mask);
REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
return val1 != 0;
}
/* send load requrest to mcp and analyze response */
static int bnx2x_nic_load_request(struct bnx2x_softc *sc, uint32_t * load_code)
{
PMD_INIT_FUNC_TRACE();
/* init fw_seq */
sc->fw_seq =
(SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
DRV_MSG_SEQ_NUMBER_MASK);
PMD_DRV_LOG(DEBUG, "initial fw_seq 0x%04x", sc->fw_seq);
#ifdef BNX2X_PULSE
/* get the current FW pulse sequence */
sc->fw_drv_pulse_wr_seq =
(SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
DRV_PULSE_SEQ_MASK);
#else
/* set ALWAYS_ALIVE bit in shmem */
sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
bnx2x_drv_pulse(sc);
#endif
/* load request */
(*load_code) = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
/* if the MCP fails to respond we must abort */
if (!(*load_code)) {
PMD_DRV_LOG(NOTICE, "MCP response failure!");
return -1;
}
/* if MCP refused then must abort */
if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
PMD_DRV_LOG(NOTICE, "MCP refused load request");
return -1;
}
return 0;
}
/*
* Check whether another PF has already loaded FW to chip. In virtualized
* environments a pf from anoth VM may have already initialized the device
* including loading FW.
*/
static int bnx2x_nic_load_analyze_req(struct bnx2x_softc *sc, uint32_t load_code)
{
uint32_t my_fw, loaded_fw;
/* is another pf loaded on this engine? */
if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
(load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
/* build my FW version dword */
my_fw = (BNX2X_5710_FW_MAJOR_VERSION +
(BNX2X_5710_FW_MINOR_VERSION << 8) +
(BNX2X_5710_FW_REVISION_VERSION << 16) +
(BNX2X_5710_FW_ENGINEERING_VERSION << 24));
/* read loaded FW from chip */
loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
PMD_DRV_LOG(DEBUG, "loaded FW 0x%08x / my FW 0x%08x",
loaded_fw, my_fw);
/* abort nic load if version mismatch */
if (my_fw != loaded_fw) {
PMD_DRV_LOG(NOTICE,
"FW 0x%08x already loaded (mine is 0x%08x)",
loaded_fw, my_fw);
return -1;
}
}
return 0;
}
/* mark PMF if applicable */
static void bnx2x_nic_load_pmf(struct bnx2x_softc *sc, uint32_t load_code)
{
uint32_t ncsi_oem_data_addr;
PMD_INIT_FUNC_TRACE();
if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
(load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
(load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
/*
* Barrier here for ordering between the writing to sc->port.pmf here
* and reading it from the periodic task.
*/
sc->port.pmf = 1;
mb();
} else {
sc->port.pmf = 0;
}
PMD_DRV_LOG(DEBUG, "pmf %d", sc->port.pmf);
if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
if (ncsi_oem_data_addr) {
REG_WR(sc,
(ncsi_oem_data_addr +
offsetof(struct glob_ncsi_oem_data,
driver_version)), 0);
}
}
}
}
static void bnx2x_read_mf_cfg(struct bnx2x_softc *sc)
{
int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
int abs_func;
int vn;
if (BNX2X_NOMCP(sc)) {
return; /* what should be the default bvalue in this case */
}
/*
* The formula for computing the absolute function number is...
* For 2 port configuration (4 functions per port):
* abs_func = 2 * vn + SC_PORT + SC_PATH
* For 4 port configuration (2 functions per port):
* abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
*/
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
if (abs_func >= E1H_FUNC_MAX) {
break;
}
sc->devinfo.mf_info.mf_config[vn] =
MFCFG_RD(sc, func_mf_config[abs_func].config);
}
if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
FUNC_MF_CFG_FUNC_DISABLED) {
PMD_DRV_LOG(DEBUG, "mf_cfg function disabled");
sc->flags |= BNX2X_MF_FUNC_DIS;
} else {
PMD_DRV_LOG(DEBUG, "mf_cfg function enabled");
sc->flags &= ~BNX2X_MF_FUNC_DIS;
}
}
/* acquire split MCP access lock register */
static int bnx2x_acquire_alr(struct bnx2x_softc *sc)
{
uint32_t j, val;
for (j = 0; j < 1000; j++) {
val = (1UL << 31);
REG_WR(sc, GRCBASE_MCP + 0x9c, val);
val = REG_RD(sc, GRCBASE_MCP + 0x9c);
if (val & (1L << 31))
break;
DELAY(5000);
}
if (!(val & (1L << 31))) {
PMD_DRV_LOG(NOTICE, "Cannot acquire MCP access lock register");
return -1;
}
return 0;
}
/* release split MCP access lock register */
static void bnx2x_release_alr(struct bnx2x_softc *sc)
{
REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
}
static void bnx2x_fan_failure(struct bnx2x_softc *sc)
{
int port = SC_PORT(sc);
uint32_t ext_phy_config;
/* mark the failure */
ext_phy_config =
SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
ext_phy_config);
/* log the failure */
PMD_DRV_LOG(INFO,
"Fan Failure has caused the driver to shutdown "
"the card to prevent permanent damage. "
"Please contact OEM Support for assistance");
rte_panic("Schedule task to handle fan failure");
}
/* this function is called upon a link interrupt */
static void bnx2x_link_attn(struct bnx2x_softc *sc)
{
uint32_t pause_enabled = 0;
struct host_port_stats *pstats;
int cmng_fns;
/* Make sure that we are synced with the current statistics */
bnx2x_stats_handle(sc, STATS_EVENT_STOP);
elink_link_update(&sc->link_params, &sc->link_vars);
if (sc->link_vars.link_up) {
/* dropless flow control */
if (sc->dropless_fc) {
pause_enabled = 0;
if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
pause_enabled = 1;
}
REG_WR(sc,
(BAR_USTRORM_INTMEM +
USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
pause_enabled);
}
if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
pstats = BNX2X_SP(sc, port_stats);
/* reset old mac stats */
memset(&(pstats->mac_stx[0]), 0,
sizeof(struct mac_stx));
}
if (sc->state == BNX2X_STATE_OPEN) {
bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
}
}
if (sc->link_vars.link_up && sc->link_vars.line_speed) {
cmng_fns = bnx2x_get_cmng_fns_mode(sc);
if (cmng_fns != CMNG_FNS_NONE) {
bnx2x_cmng_fns_init(sc, FALSE, cmng_fns);
storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
}
}
bnx2x_link_report(sc);
if (IS_MF(sc)) {
bnx2x_link_sync_notify(sc);
}
}
static void bnx2x_attn_int_asserted(struct bnx2x_softc *sc, uint32_t asserted)
{
int port = SC_PORT(sc);
uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0;
uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
NIG_REG_MASK_INTERRUPT_PORT0;
uint32_t aeu_mask;
uint32_t nig_mask = 0;
uint32_t reg_addr;
uint32_t igu_acked;
uint32_t cnt;
if (sc->attn_state & asserted) {
PMD_DRV_LOG(ERR, "IGU ERROR attn=0x%08x", asserted);
}
bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
aeu_mask = REG_RD(sc, aeu_addr);
aeu_mask &= ~(asserted & 0x3ff);
REG_WR(sc, aeu_addr, aeu_mask);
bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
sc->attn_state |= asserted;
if (asserted & ATTN_HARD_WIRED_MASK) {
if (asserted & ATTN_NIG_FOR_FUNC) {
/* save nig interrupt mask */
nig_mask = REG_RD(sc, nig_int_mask_addr);
/* If nig_mask is not set, no need to call the update function */
if (nig_mask) {
REG_WR(sc, nig_int_mask_addr, 0);
bnx2x_link_attn(sc);
}
/* handle unicore attn? */
}
if (asserted & ATTN_SW_TIMER_4_FUNC) {
PMD_DRV_LOG(DEBUG, "ATTN_SW_TIMER_4_FUNC!");
}
if (asserted & GPIO_2_FUNC) {
PMD_DRV_LOG(DEBUG, "GPIO_2_FUNC!");
}
if (asserted & GPIO_3_FUNC) {
PMD_DRV_LOG(DEBUG, "GPIO_3_FUNC!");
}
if (asserted & GPIO_4_FUNC) {
PMD_DRV_LOG(DEBUG, "GPIO_4_FUNC!");
}
if (port == 0) {
if (asserted & ATTN_GENERAL_ATTN_1) {
PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_1!");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_2) {
PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_2!");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_3) {
PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_3!");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
}
} else {
if (asserted & ATTN_GENERAL_ATTN_4) {
PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_4!");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_5) {
PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_5!");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_6) {
PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_6!");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
}
}
}
/* hardwired */
if (sc->devinfo.int_block == INT_BLOCK_HC) {
reg_addr =
(HC_REG_COMMAND_REG + port * 32 +
COMMAND_REG_ATTN_BITS_SET);
} else {
reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER * 8);
}
PMD_DRV_LOG(DEBUG, "about to mask 0x%08x at %s addr 0x%08x",
asserted,
(sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
reg_addr);
REG_WR(sc, reg_addr, asserted);
/* now set back the mask */
if (asserted & ATTN_NIG_FOR_FUNC) {
/*
* Verify that IGU ack through BAR was written before restoring
* NIG mask. This loop should exit after 2-3 iterations max.
*/
if (sc->devinfo.int_block != INT_BLOCK_HC) {
cnt = 0;
do {
igu_acked =
REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0)
&& (++cnt < MAX_IGU_ATTN_ACK_TO));
if (!igu_acked) {
PMD_DRV_LOG(ERR,
"Failed to verify IGU ack on time");
}
mb();
}
REG_WR(sc, nig_int_mask_addr, nig_mask);
}
}
static void
bnx2x_print_next_block(__rte_unused struct bnx2x_softc *sc, __rte_unused int idx,
__rte_unused const char *blk)
{
PMD_DRV_LOG(INFO, "%s%s", idx ? ", " : "", blk);
}
static int
bnx2x_check_blocks_with_parity0(struct bnx2x_softc *sc, uint32_t sig, int par_num,
uint8_t print)
{
uint32_t cur_bit = 0;
int i = 0;
for (i = 0; sig; i++) {
cur_bit = ((uint32_t) 0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"BRB");
break;
case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"PARSER");
break;
case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"TSDM");
break;
case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"SEARCHER");
break;
case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"TCM");
break;
case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"TSEMI");
break;
case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"XPB");
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return par_num;
}
static int
bnx2x_check_blocks_with_parity1(struct bnx2x_softc *sc, uint32_t sig, int par_num,
uint8_t * global, uint8_t print)
{
int i = 0;
uint32_t cur_bit = 0;
for (i = 0; sig; i++) {
cur_bit = ((uint32_t) 0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"PBF");
break;
case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"QM");
break;
case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"TM");
break;
case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"XSDM");
break;
case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"XCM");
break;
case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"XSEMI");
break;
case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"DOORBELLQ");
break;
case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"NIG");
break;
case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"VAUX PCI CORE");
*global = TRUE;
break;
case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"DEBUG");
break;
case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"USDM");
break;
case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"UCM");
break;
case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"USEMI");
break;
case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"UPB");
break;
case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"CSDM");
break;
case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"CCM");
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return par_num;
}
static int
bnx2x_check_blocks_with_parity2(struct bnx2x_softc *sc, uint32_t sig, int par_num,
uint8_t print)
{
uint32_t cur_bit = 0;
int i = 0;
for (i = 0; sig; i++) {
cur_bit = ((uint32_t) 0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"CSEMI");
break;
case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"PXP");
break;
case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"PXPPCICLOCKCLIENT");
break;
case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"CFC");
break;
case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"CDU");
break;
case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"DMAE");
break;
case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"IGU");
break;
case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"MISC");
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return par_num;
}
static int
bnx2x_check_blocks_with_parity3(struct bnx2x_softc *sc, uint32_t sig, int par_num,
uint8_t * global, uint8_t print)
{
uint32_t cur_bit = 0;
int i = 0;
for (i = 0; sig; i++) {
cur_bit = ((uint32_t) 0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
if (print)
bnx2x_print_next_block(sc, par_num++,
"MCP ROM");
*global = TRUE;
break;
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
if (print)
bnx2x_print_next_block(sc, par_num++,
"MCP UMP RX");
*global = TRUE;
break;
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
if (print)
bnx2x_print_next_block(sc, par_num++,
"MCP UMP TX");
*global = TRUE;
break;
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
if (print)
bnx2x_print_next_block(sc, par_num++,
"MCP SCPAD");
*global = TRUE;
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return par_num;
}
static int
bnx2x_check_blocks_with_parity4(struct bnx2x_softc *sc, uint32_t sig, int par_num,
uint8_t print)
{
uint32_t cur_bit = 0;
int i = 0;
for (i = 0; sig; i++) {
cur_bit = ((uint32_t) 0x1 << i);
if (sig & cur_bit) {
switch (cur_bit) {
case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"PGLUE_B");
break;
case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
if (print)
bnx2x_print_next_block(sc, par_num++,
"ATC");
break;
}
/* Clear the bit */
sig &= ~cur_bit;
}
}
return par_num;
}
static uint8_t
bnx2x_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print,
uint32_t * sig)
{
int par_num = 0;
if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
(sig[1] & HW_PRTY_ASSERT_SET_1) ||
(sig[2] & HW_PRTY_ASSERT_SET_2) ||
(sig[3] & HW_PRTY_ASSERT_SET_3) ||
(sig[4] & HW_PRTY_ASSERT_SET_4)) {
PMD_DRV_LOG(ERR,
"Parity error: HW block parity attention:"
"[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x",
(uint32_t) (sig[0] & HW_PRTY_ASSERT_SET_0),
(uint32_t) (sig[1] & HW_PRTY_ASSERT_SET_1),
(uint32_t) (sig[2] & HW_PRTY_ASSERT_SET_2),
(uint32_t) (sig[3] & HW_PRTY_ASSERT_SET_3),
(uint32_t) (sig[4] & HW_PRTY_ASSERT_SET_4));
if (print)
PMD_DRV_LOG(INFO, "Parity errors detected in blocks: ");
par_num =
bnx2x_check_blocks_with_parity0(sc, sig[0] &
HW_PRTY_ASSERT_SET_0,
par_num, print);
par_num =
bnx2x_check_blocks_with_parity1(sc, sig[1] &
HW_PRTY_ASSERT_SET_1,
par_num, global, print);
par_num =
bnx2x_check_blocks_with_parity2(sc, sig[2] &
HW_PRTY_ASSERT_SET_2,
par_num, print);
par_num =
bnx2x_check_blocks_with_parity3(sc, sig[3] &
HW_PRTY_ASSERT_SET_3,
par_num, global, print);
par_num =
bnx2x_check_blocks_with_parity4(sc, sig[4] &
HW_PRTY_ASSERT_SET_4,
par_num, print);
if (print)
PMD_DRV_LOG(INFO, "");
return TRUE;
}
return FALSE;
}
static uint8_t
bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print)
{
struct attn_route attn = { {0} };
int port = SC_PORT(sc);
attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
if (!CHIP_IS_E1x(sc))
attn.sig[4] =
REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
return bnx2x_parity_attn(sc, global, print, attn.sig);
}
static void bnx2x_attn_int_deasserted4(struct bnx2x_softc *sc, uint32_t attn)
{
uint32_t val;
if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
PMD_DRV_LOG(INFO, "ERROR: PGLUE hw attention 0x%08x", val);
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
PMD_DRV_LOG(INFO,
"ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
PMD_DRV_LOG(INFO,
"ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
PMD_DRV_LOG(INFO,
"ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
PMD_DRV_LOG(INFO,
"ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN");
if (val &
PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
PMD_DRV_LOG(INFO,
"ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN");
if (val &
PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
PMD_DRV_LOG(INFO,
"ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
PMD_DRV_LOG(INFO,
"ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
PMD_DRV_LOG(INFO,
"ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN");
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
PMD_DRV_LOG(INFO,
"ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW");
}
if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
PMD_DRV_LOG(INFO, "ERROR: ATC hw attention 0x%08x", val);
if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
PMD_DRV_LOG(INFO,
"ERROR: ATC_ATC_INT_STS_REG_ADDRESS_ERROR");
if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
PMD_DRV_LOG(INFO,
"ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND");
if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
PMD_DRV_LOG(INFO,
"ERROR: ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS");
if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
PMD_DRV_LOG(INFO,
"ERROR: ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT");
if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
PMD_DRV_LOG(INFO,
"ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR");
if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
PMD_DRV_LOG(INFO,
"ERROR: ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU");
}
if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
PMD_DRV_LOG(INFO,
"ERROR: FATAL parity attention set4 0x%08x",
(uint32_t) (attn &
(AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
|
AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
}
}
static void bnx2x_e1h_disable(struct bnx2x_softc *sc)
{
int port = SC_PORT(sc);
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
}
static void bnx2x_e1h_enable(struct bnx2x_softc *sc)
{
int port = SC_PORT(sc);
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
}
/*
* called due to MCP event (on pmf):
* reread new bandwidth configuration
* configure FW
* notify others function about the change
*/
static void bnx2x_config_mf_bw(struct bnx2x_softc *sc)
{
if (sc->link_vars.link_up) {
bnx2x_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
bnx2x_link_sync_notify(sc);
}
storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
}
static void bnx2x_set_mf_bw(struct bnx2x_softc *sc)
{
bnx2x_config_mf_bw(sc);
bnx2x_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
}
static void bnx2x_handle_eee_event(struct bnx2x_softc *sc)
{
bnx2x_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
}
#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
static void bnx2x_drv_info_ether_stat(struct bnx2x_softc *sc)
{
struct eth_stats_info *ether_stat = &sc->sp->drv_info_to_mcp.ether_stat;
strncpy(ether_stat->version, BNX2X_DRIVER_VERSION,
ETH_STAT_INFO_VERSION_LEN);
sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
ether_stat->mac_local + MAC_PAD,
MAC_PAD, ETH_ALEN);
ether_stat->mtu_size = sc->mtu;
ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
ether_stat->txq_size = sc->tx_ring_size;
ether_stat->rxq_size = sc->rx_ring_size;
}
static void bnx2x_handle_drv_info_req(struct bnx2x_softc *sc)
{
enum drv_info_opcode op_code;
uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
/* if drv_info version supported by MFW doesn't match - send NACK */
if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
return;
}
op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
DRV_INFO_CONTROL_OP_CODE_SHIFT);
memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
switch (op_code) {
case ETH_STATS_OPCODE:
bnx2x_drv_info_ether_stat(sc);
break;
case FCOE_STATS_OPCODE:
case ISCSI_STATS_OPCODE:
default:
/* if op code isn't supported - send NACK */
bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
return;
}
/*
* If we got drv_info attn from MFW then these fields are defined in
* shmem2 for sure
*/
SHMEM2_WR(sc, drv_info_host_addr_lo,
U64_LO(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
SHMEM2_WR(sc, drv_info_host_addr_hi,
U64_HI(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
}
static void bnx2x_dcc_event(struct bnx2x_softc *sc, uint32_t dcc_event)
{
if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
/*
* This is the only place besides the function initialization
* where the sc->flags can change so it is done without any
* locks
*/
if (sc->devinfo.
mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
PMD_DRV_LOG(DEBUG, "mf_cfg function disabled");
sc->flags |= BNX2X_MF_FUNC_DIS;
bnx2x_e1h_disable(sc);
} else {
PMD_DRV_LOG(DEBUG, "mf_cfg function enabled");
sc->flags &= ~BNX2X_MF_FUNC_DIS;
bnx2x_e1h_enable(sc);
}
dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
}
if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
bnx2x_config_mf_bw(sc);
dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
}
/* Report results to MCP */
if (dcc_event)
bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
else
bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
}
static void bnx2x_pmf_update(struct bnx2x_softc *sc)
{
int port = SC_PORT(sc);
uint32_t val;
sc->port.pmf = 1;
/*
* We need the mb() to ensure the ordering between the writing to
* sc->port.pmf here and reading it from the bnx2x_periodic_task().
*/
mb();
/* enable nig attention */
val = (0xff0f | (1 << (SC_VN(sc) + 4)));
if (sc->devinfo.int_block == INT_BLOCK_HC) {
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, val);
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, val);
} else if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
}
bnx2x_stats_handle(sc, STATS_EVENT_PMF);
}
static int bnx2x_mc_assert(struct bnx2x_softc *sc)
{
char last_idx;
int i, rc = 0;
__rte_unused uint32_t row0, row1, row2, row3;
/* XSTORM */
last_idx =
REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx)
PMD_DRV_LOG(ERR, "XSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
/* print the asserts */
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
row0 =
REG_RD(sc,
BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
row1 =
REG_RD(sc,
BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
4);
row2 =
REG_RD(sc,
BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
8);
row3 =
REG_RD(sc,
BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
PMD_DRV_LOG(ERR,
"XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
i, row3, row2, row1, row0);
rc++;
} else {
break;
}
}
/* TSTORM */
last_idx =
REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx) {
PMD_DRV_LOG(ERR, "TSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
}
/* print the asserts */
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
row0 =
REG_RD(sc,
BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
row1 =
REG_RD(sc,
BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
4);
row2 =
REG_RD(sc,
BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
8);
row3 =
REG_RD(sc,
BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
PMD_DRV_LOG(ERR,
"TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
i, row3, row2, row1, row0);
rc++;
} else {
break;
}
}
/* CSTORM */
last_idx =
REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx) {
PMD_DRV_LOG(ERR, "CSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
}
/* print the asserts */
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
row0 =
REG_RD(sc,
BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
row1 =
REG_RD(sc,
BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
4);
row2 =
REG_RD(sc,
BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
8);
row3 =
REG_RD(sc,
BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
PMD_DRV_LOG(ERR,
"CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
i, row3, row2, row1, row0);
rc++;
} else {
break;
}
}
/* USTORM */
last_idx =
REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx) {
PMD_DRV_LOG(ERR, "USTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
}
/* print the asserts */
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
row0 =
REG_RD(sc,
BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
row1 =
REG_RD(sc,
BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
4);
row2 =
REG_RD(sc,
BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
8);
row3 =
REG_RD(sc,
BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
PMD_DRV_LOG(ERR,
"USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
i, row3, row2, row1, row0);
rc++;
} else {
break;
}
}
return rc;
}
static void bnx2x_attn_int_deasserted3(struct bnx2x_softc *sc, uint32_t attn)
{
int func = SC_FUNC(sc);
uint32_t val;
if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
if (attn & BNX2X_PMF_LINK_ASSERT(sc)) {
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
bnx2x_read_mf_cfg(sc);
sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
MFCFG_RD(sc,
func_mf_config[SC_ABS_FUNC(sc)].config);
val =
SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
if (val & DRV_STATUS_DCC_EVENT_MASK)
bnx2x_dcc_event(sc,
(val &
DRV_STATUS_DCC_EVENT_MASK));
if (val & DRV_STATUS_SET_MF_BW)
bnx2x_set_mf_bw(sc);
if (val & DRV_STATUS_DRV_INFO_REQ)
bnx2x_handle_drv_info_req(sc);
if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
bnx2x_pmf_update(sc);
if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
bnx2x_handle_eee_event(sc);
if (sc->link_vars.periodic_flags &
ELINK_PERIODIC_FLAGS_LINK_EVENT) {
/* sync with link */
sc->link_vars.periodic_flags &=
~ELINK_PERIODIC_FLAGS_LINK_EVENT;
if (IS_MF(sc)) {
bnx2x_link_sync_notify(sc);
}
bnx2x_link_report(sc);
}
/*
* Always call it here: bnx2x_link_report() will
* prevent the link indication duplication.
*/
bnx2x_link_status_update(sc);
} else if (attn & BNX2X_MC_ASSERT_BITS) {
PMD_DRV_LOG(ERR, "MC assert!");
bnx2x_mc_assert(sc);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
rte_panic("MC assert!");
} else if (attn & BNX2X_MCP_ASSERT) {
PMD_DRV_LOG(ERR, "MCP assert!");
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
} else {
PMD_DRV_LOG(ERR,
"Unknown HW assert! (attn 0x%08x)", attn);
}
}
if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
PMD_DRV_LOG(ERR, "LATCHED attention 0x%08x (masked)", attn);
if (attn & BNX2X_GRC_TIMEOUT) {
val = REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
PMD_DRV_LOG(ERR, "GRC time-out 0x%08x", val);
}
if (attn & BNX2X_GRC_RSV) {
val = REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
PMD_DRV_LOG(ERR, "GRC reserved 0x%08x", val);
}
REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
}
}
static void bnx2x_attn_int_deasserted2(struct bnx2x_softc *sc, uint32_t attn)
{
int port = SC_PORT(sc);
int reg_offset;
uint32_t val0, mask0, val1, mask1;
uint32_t val;
if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
PMD_DRV_LOG(ERR, "CFC hw attention 0x%08x", val);
/* CFC error attention */
if (val & 0x2) {
PMD_DRV_LOG(ERR, "FATAL error from CFC");
}
}
if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
PMD_DRV_LOG(ERR, "PXP hw attention-0 0x%08x", val);
/* RQ_USDMDP_FIFO_OVERFLOW */
if (val & 0x18000) {
PMD_DRV_LOG(ERR, "FATAL error from PXP");
}
if (!CHIP_IS_E1x(sc)) {
val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
PMD_DRV_LOG(ERR, "PXP hw attention-1 0x%08x", val);
}
}
#define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
if (attn & AEU_PXP2_HW_INT_BIT) {
/* CQ47854 workaround do not panic on
* PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
*/
if (!CHIP_IS_E1x(sc)) {
mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
/*
* If the only PXP2_EOP_ERROR_BIT is set in
* STS0 and STS1 - clear it
*
* probably we lose additional attentions between
* STS0 and STS_CLR0, in this case user will not
* be notified about them
*/
if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
!(val1 & mask1))
val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
/* print the register, since no one can restore it */
PMD_DRV_LOG(ERR,
"PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x", val0);
/*
* if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
* then notify
*/
if (val0 & PXP2_EOP_ERROR_BIT) {
PMD_DRV_LOG(ERR, "PXP2_WR_PGLUE_EOP_ERROR");
/*
* if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
* set then clear attention from PXP2 block without panic
*/
if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
((val1 & mask1) == 0))
attn &= ~AEU_PXP2_HW_INT_BIT;
}
}
}
if (attn & HW_INTERRUT_ASSERT_SET_2) {
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
val = REG_RD(sc, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
REG_WR(sc, reg_offset, val);
PMD_DRV_LOG(ERR,
"FATAL HW block attention set2 0x%x",
(uint32_t) (attn & HW_INTERRUT_ASSERT_SET_2));
rte_panic("HW block attention set2");
}
}
static void bnx2x_attn_int_deasserted1(struct bnx2x_softc *sc, uint32_t attn)
{
int port = SC_PORT(sc);
int reg_offset;
uint32_t val;
if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
PMD_DRV_LOG(ERR, "DB hw attention 0x%08x", val);
/* DORQ discard attention */
if (val & 0x2) {
PMD_DRV_LOG(ERR, "FATAL error from DORQ");
}
}
if (attn & HW_INTERRUT_ASSERT_SET_1) {
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
val = REG_RD(sc, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
REG_WR(sc, reg_offset, val);
PMD_DRV_LOG(ERR,
"FATAL HW block attention set1 0x%08x",
(uint32_t) (attn & HW_INTERRUT_ASSERT_SET_1));
rte_panic("HW block attention set1");
}
}
static void bnx2x_attn_int_deasserted0(struct bnx2x_softc *sc, uint32_t attn)
{
int port = SC_PORT(sc);
int reg_offset;
uint32_t val;
reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
val = REG_RD(sc, reg_offset);
val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
REG_WR(sc, reg_offset, val);
PMD_DRV_LOG(WARNING, "SPIO5 hw attention");
/* Fan failure attention */
elink_hw_reset_phy(&sc->link_params);
bnx2x_fan_failure(sc);
}
if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
elink_handle_module_detect_int(&sc->link_params);
}
if (attn & HW_INTERRUT_ASSERT_SET_0) {
val = REG_RD(sc, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
REG_WR(sc, reg_offset, val);
rte_panic("FATAL HW block attention set0 0x%lx",
(attn & HW_INTERRUT_ASSERT_SET_0));
}
}
static void bnx2x_attn_int_deasserted(struct bnx2x_softc *sc, uint32_t deasserted)
{
struct attn_route attn;
struct attn_route *group_mask;
int port = SC_PORT(sc);
int index;
uint32_t reg_addr;
uint32_t val;
uint32_t aeu_mask;
uint8_t global = FALSE;
/*
* Need to take HW lock because MCP or other port might also
* try to handle this event.
*/
bnx2x_acquire_alr(sc);
if (bnx2x_chk_parity_attn(sc, &global, TRUE)) {
sc->recovery_state = BNX2X_RECOVERY_INIT;
/* disable HW interrupts */
bnx2x_int_disable(sc);
bnx2x_release_alr(sc);
return;
}
attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
if (!CHIP_IS_E1x(sc)) {
attn.sig[4] =
REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
} else {
attn.sig[4] = 0;
}
for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
if (deasserted & (1 << index)) {
group_mask = &sc->attn_group[index];
bnx2x_attn_int_deasserted4(sc,
attn.
sig[4] & group_mask->sig[4]);
bnx2x_attn_int_deasserted3(sc,
attn.
sig[3] & group_mask->sig[3]);
bnx2x_attn_int_deasserted1(sc,
attn.
sig[1] & group_mask->sig[1]);
bnx2x_attn_int_deasserted2(sc,
attn.
sig[2] & group_mask->sig[2]);
bnx2x_attn_int_deasserted0(sc,
attn.
sig[0] & group_mask->sig[0]);
}
}
bnx2x_release_alr(sc);
if (sc->devinfo.int_block == INT_BLOCK_HC) {
reg_addr = (HC_REG_COMMAND_REG + port * 32 +
COMMAND_REG_ATTN_BITS_CLR);
} else {
reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER * 8);
}
val = ~deasserted;
PMD_DRV_LOG(DEBUG,
"about to mask 0x%08x at %s addr 0x%08x", val,
(sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
reg_addr);
REG_WR(sc, reg_addr, val);
if (~sc->attn_state & deasserted) {
PMD_DRV_LOG(ERR, "IGU error");
}
reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0;
bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
aeu_mask = REG_RD(sc, reg_addr);
aeu_mask |= (deasserted & 0x3ff);
REG_WR(sc, reg_addr, aeu_mask);
bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
sc->attn_state &= ~deasserted;
}
static void bnx2x_attn_int(struct bnx2x_softc *sc)
{
/* read local copy of bits */
uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
uint32_t attn_ack =
le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
uint32_t attn_state = sc->attn_state;
/* look for changed bits */
uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
PMD_DRV_LOG(DEBUG,
"attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x",
attn_bits, attn_ack, asserted, deasserted);
if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
PMD_DRV_LOG(ERR, "BAD attention state");
}
/* handle bits that were raised */
if (asserted) {
bnx2x_attn_int_asserted(sc, asserted);
}
if (deasserted) {
bnx2x_attn_int_deasserted(sc, deasserted);
}
}
static uint16_t bnx2x_update_dsb_idx(struct bnx2x_softc *sc)
{
struct host_sp_status_block *def_sb = sc->def_sb;
uint16_t rc = 0;
mb(); /* status block is written to by the chip */
if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
rc |= BNX2X_DEF_SB_ATT_IDX;
}
if (sc->def_idx != def_sb->sp_sb.running_index) {
sc->def_idx = def_sb->sp_sb.running_index;
rc |= BNX2X_DEF_SB_IDX;
}
mb();
return rc;
}
static struct ecore_queue_sp_obj *bnx2x_cid_to_q_obj(struct bnx2x_softc *sc,
uint32_t cid)
{
return &sc->sp_objs[CID_TO_FP(cid, sc)].q_obj;
}
static void bnx2x_handle_mcast_eqe(struct bnx2x_softc *sc)
{
struct ecore_mcast_ramrod_params rparam;
int rc;
memset(&rparam, 0, sizeof(rparam));
rparam.mcast_obj = &sc->mcast_obj;
/* clear pending state for the last command */
sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
/* if there are pending mcast commands - send them */
if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
if (rc < 0) {
PMD_DRV_LOG(INFO,
"Failed to send pending mcast commands (%d)",
rc);
}
}
}
static void
bnx2x_handle_classification_eqe(struct bnx2x_softc *sc, union event_ring_elem *elem)
{
unsigned long ramrod_flags = 0;
int rc = 0;
uint32_t cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
struct ecore_vlan_mac_obj *vlan_mac_obj;
/* always push next commands out, don't wait here */
bnx2x_set_bit(RAMROD_CONT, &ramrod_flags);
switch (le32toh(elem->message.data.eth_event.echo) >> BNX2X_SWCID_SHIFT) {
case ECORE_FILTER_MAC_PENDING:
PMD_DRV_LOG(DEBUG, "Got SETUP_MAC completions");
vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
break;
case ECORE_FILTER_MCAST_PENDING:
PMD_DRV_LOG(DEBUG, "Got SETUP_MCAST completions");
bnx2x_handle_mcast_eqe(sc);
return;
default:
PMD_DRV_LOG(NOTICE, "Unsupported classification command: %d",
elem->message.data.eth_event.echo);
return;
}
rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
if (rc < 0) {
PMD_DRV_LOG(NOTICE, "Failed to schedule new commands (%d)", rc);
} else if (rc > 0) {
PMD_DRV_LOG(DEBUG, "Scheduled next pending commands...");
}
}
static void bnx2x_handle_rx_mode_eqe(struct bnx2x_softc *sc)
{
bnx2x_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
/* send rx_mode command again if was requested */
if (bnx2x_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state)) {
bnx2x_set_storm_rx_mode(sc);
}
}
static void bnx2x_update_eq_prod(struct bnx2x_softc *sc, uint16_t prod)
{
storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
wmb(); /* keep prod updates ordered */
}
static void bnx2x_eq_int(struct bnx2x_softc *sc)
{
uint16_t hw_cons, sw_cons, sw_prod;
union event_ring_elem *elem;
uint8_t echo;
uint32_t cid;
uint8_t opcode;
int spqe_cnt = 0;
struct ecore_queue_sp_obj *q_obj;
struct ecore_func_sp_obj *f_obj = &sc->func_obj;
struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
hw_cons = le16toh(*sc->eq_cons_sb);
/*
* The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
* when we get to the next-page we need to adjust so the loop
* condition below will be met. The next element is the size of a
* regular element and hence incrementing by 1
*/
if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
hw_cons++;
}
/*
* This function may never run in parallel with itself for a
* specific sc and no need for a read memory barrier here.
*/
sw_cons = sc->eq_cons;
sw_prod = sc->eq_prod;
for (;
sw_cons != hw_cons;
sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
elem = &sc->eq[EQ_DESC(sw_cons)];
/* elem CID originates from FW, actually LE */
cid = SW_CID(elem->message.data.cfc_del_event.cid);
opcode = elem->message.opcode;
/* handle eq element */
switch (opcode) {
case EVENT_RING_OPCODE_STAT_QUERY:
PMD_DEBUG_PERIODIC_LOG(DEBUG, "got statistics completion event %d",
sc->stats_comp++);
/* nothing to do with stats comp */
goto next_spqe;
case EVENT_RING_OPCODE_CFC_DEL:
/* handle according to cid range */
/* we may want to verify here that the sc state is HALTING */
PMD_DRV_LOG(DEBUG, "got delete ramrod for MULTI[%d]",
cid);
q_obj = bnx2x_cid_to_q_obj(sc, cid);
if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
break;
}
goto next_spqe;
case EVENT_RING_OPCODE_STOP_TRAFFIC:
PMD_DRV_LOG(DEBUG, "got STOP TRAFFIC");
if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
break;
}
goto next_spqe;
case EVENT_RING_OPCODE_START_TRAFFIC:
PMD_DRV_LOG(DEBUG, "got START TRAFFIC");
if (f_obj->complete_cmd
(sc, f_obj, ECORE_F_CMD_TX_START)) {
break;
}
goto next_spqe;
case EVENT_RING_OPCODE_FUNCTION_UPDATE:
echo = elem->message.data.function_update_event.echo;
if (echo == SWITCH_UPDATE) {
PMD_DRV_LOG(DEBUG,
"got FUNC_SWITCH_UPDATE ramrod");
if (f_obj->complete_cmd(sc, f_obj,
ECORE_F_CMD_SWITCH_UPDATE))
{
break;
}
} else {
PMD_DRV_LOG(DEBUG,
"AFEX: ramrod completed FUNCTION_UPDATE");
f_obj->complete_cmd(sc, f_obj,
ECORE_F_CMD_AFEX_UPDATE);
}
goto next_spqe;
case EVENT_RING_OPCODE_FORWARD_SETUP:
q_obj = &bnx2x_fwd_sp_obj(sc, q_obj);
if (q_obj->complete_cmd(sc, q_obj,
ECORE_Q_CMD_SETUP_TX_ONLY)) {
break;
}
goto next_spqe;
case EVENT_RING_OPCODE_FUNCTION_START:
PMD_DRV_LOG(DEBUG, "got FUNC_START ramrod");
if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
break;
}
goto next_spqe;
case EVENT_RING_OPCODE_FUNCTION_STOP:
PMD_DRV_LOG(DEBUG, "got FUNC_STOP ramrod");
if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
break;
}
goto next_spqe;
}
switch (opcode | sc->state) {
case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPEN):
case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPENING_WAITING_PORT):
cid =
elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
PMD_DRV_LOG(DEBUG, "got RSS_UPDATE ramrod. CID %d",
cid);
rss_raw->clear_pending(rss_raw);
break;
case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_CLOSING_WAITING_HALT):
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_OPEN):
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_DIAG):
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
PMD_DRV_LOG(DEBUG,
"got (un)set mac ramrod");
bnx2x_handle_classification_eqe(sc, elem);
break;
case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_OPEN):
case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_DIAG):
case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
PMD_DRV_LOG(DEBUG,
"got mcast ramrod");
bnx2x_handle_mcast_eqe(sc);
break;
case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_OPEN):
case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_DIAG):
case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
PMD_DRV_LOG(DEBUG,
"got rx_mode ramrod");
bnx2x_handle_rx_mode_eqe(sc);
break;
default:
/* unknown event log error and continue */
PMD_DRV_LOG(INFO, "Unknown EQ event %d, sc->state 0x%x",
elem->message.opcode, sc->state);
}
next_spqe:
spqe_cnt++;
} /* for */
mb();
atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
sc->eq_cons = sw_cons;
sc->eq_prod = sw_prod;
/* make sure that above mem writes were issued towards the memory */
wmb();
/* update producer */
bnx2x_update_eq_prod(sc, sc->eq_prod);
}
static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc)
{
uint16_t status;
int rc = 0;
/* what work needs to be performed? */
status = bnx2x_update_dsb_idx(sc);
/* HW attentions */
if (status & BNX2X_DEF_SB_ATT_IDX) {
PMD_DRV_LOG(DEBUG, "---> ATTN INTR <---");
bnx2x_attn_int(sc);
status &= ~BNX2X_DEF_SB_ATT_IDX;
rc = 1;
}
/* SP events: STAT_QUERY and others */
if (status & BNX2X_DEF_SB_IDX) {
/* handle EQ completions */
PMD_DEBUG_PERIODIC_LOG(DEBUG, "---> EQ INTR <---");
bnx2x_eq_int(sc);
bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
le16toh(sc->def_idx), IGU_INT_NOP, 1);
status &= ~BNX2X_DEF_SB_IDX;
}
/* if status is non zero then something went wrong */
if (unlikely(status)) {
PMD_DRV_LOG(INFO,
"Got an unknown SP interrupt! (0x%04x)", status);
}
/* ack status block only if something was actually handled */
bnx2x_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
return rc;
}
static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp, int scan_fp)
{
struct bnx2x_softc *sc = fp->sc;
uint8_t more_rx = FALSE;
PMD_DRV_LOG(DEBUG, "---> FP TASK QUEUE (%d) <--", fp->index);
/* update the fastpath index */
bnx2x_update_fp_sb_idx(fp);
if (scan_fp) {
if (bnx2x_has_rx_work(fp)) {
more_rx = bnx2x_rxeof(sc, fp);
}
if (more_rx) {
/* still more work to do */
bnx2x_handle_fp_tq(fp, scan_fp);
return;
}
}
bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
}
/*
* Legacy interrupt entry point.
*
* Verifies that the controller generated the interrupt and
* then calls a separate routine to handle the various
* interrupt causes: link, RX, and TX.
*/
int bnx2x_intr_legacy(struct bnx2x_softc *sc, int scan_fp)
{
struct bnx2x_fastpath *fp;
uint32_t status, mask;
int i, rc = 0;
/*
* 0 for ustorm, 1 for cstorm
* the bits returned from ack_int() are 0-15
* bit 0 = attention status block
* bit 1 = fast path status block
* a mask of 0x2 or more = tx/rx event
* a mask of 1 = slow path event
*/
status = bnx2x_ack_int(sc);
/* the interrupt is not for us */
if (unlikely(status == 0)) {
return 0;
}
PMD_DEBUG_PERIODIC_LOG(DEBUG, "Interrupt status 0x%04x", status);
//bnx2x_dump_status_block(sc);
FOR_EACH_ETH_QUEUE(sc, i) {
fp = &sc->fp[i];
mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
if (status & mask) {
bnx2x_handle_fp_tq(fp, scan_fp);
status &= ~mask;
}
}
if (unlikely(status & 0x1)) {
rc = bnx2x_handle_sp_tq(sc);
status &= ~0x1;
}
if (unlikely(status)) {
PMD_DRV_LOG(WARNING,
"Unexpected fastpath status (0x%08x)!", status);
}
return rc;
}
static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc);
static int bnx2x_init_hw_common(struct bnx2x_softc *sc);
static int bnx2x_init_hw_port(struct bnx2x_softc *sc);
static int bnx2x_init_hw_func(struct bnx2x_softc *sc);
static void bnx2x_reset_common(struct bnx2x_softc *sc);
static void bnx2x_reset_port(struct bnx2x_softc *sc);
static void bnx2x_reset_func(struct bnx2x_softc *sc);
static int bnx2x_init_firmware(struct bnx2x_softc *sc);
static void bnx2x_release_firmware(struct bnx2x_softc *sc);
static struct
ecore_func_sp_drv_ops bnx2x_func_sp_drv = {
.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
.init_hw_cmn = bnx2x_init_hw_common,
.init_hw_port = bnx2x_init_hw_port,
.init_hw_func = bnx2x_init_hw_func,
.reset_hw_cmn = bnx2x_reset_common,
.reset_hw_port = bnx2x_reset_port,
.reset_hw_func = bnx2x_reset_func,
.init_fw = bnx2x_init_firmware,
.release_fw = bnx2x_release_firmware,
};
static void bnx2x_init_func_obj(struct bnx2x_softc *sc)
{
sc->dmae_ready = 0;
PMD_INIT_FUNC_TRACE();
ecore_init_func_obj(sc,
&sc->func_obj,
BNX2X_SP(sc, func_rdata),
(rte_iova_t)BNX2X_SP_MAPPING(sc, func_rdata),
BNX2X_SP(sc, func_afex_rdata),
(rte_iova_t)BNX2X_SP_MAPPING(sc, func_afex_rdata),
&bnx2x_func_sp_drv);
}
static int bnx2x_init_hw(struct bnx2x_softc *sc, uint32_t load_code)
{
struct ecore_func_state_params func_params = { NULL };
int rc;
PMD_INIT_FUNC_TRACE();
/* prepare the parameters for function state transitions */
bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
func_params.f_obj = &sc->func_obj;
func_params.cmd = ECORE_F_CMD_HW_INIT;
func_params.params.hw_init.load_phase = load_code;
/*
* Via a plethora of function pointers, we will eventually reach
* bnx2x_init_hw_common(), bnx2x_init_hw_port(), or bnx2x_init_hw_func().
*/
rc = ecore_func_state_change(sc, &func_params);
return rc;
}
static void
bnx2x_fill(struct bnx2x_softc *sc, uint32_t addr, int fill, uint32_t len)
{
uint32_t i;
if (!(len % 4) && !(addr % 4)) {
for (i = 0; i < len; i += 4) {
REG_WR(sc, (addr + i), fill);
}
} else {
for (i = 0; i < len; i++) {
REG_WR8(sc, (addr + i), fill);
}
}
}
/* writes FP SP data to FW - data_size in dwords */
static void
bnx2x_wr_fp_sb_data(struct bnx2x_softc *sc, int fw_sb_id, uint32_t * sb_data_p,
uint32_t data_size)
{
uint32_t index;
for (index = 0; index < data_size; index++) {
REG_WR(sc,
(BAR_CSTRORM_INTMEM +
CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
(sizeof(uint32_t) * index)), *(sb_data_p + index));
}
}
static void bnx2x_zero_fp_sb(struct bnx2x_softc *sc, int fw_sb_id)
{
struct hc_status_block_data_e2 sb_data_e2;
struct hc_status_block_data_e1x sb_data_e1x;
uint32_t *sb_data_p;
uint32_t data_size = 0;
if (!CHIP_IS_E1x(sc)) {
memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
sb_data_e2.common.state = SB_DISABLED;
sb_data_e2.common.p_func.vf_valid = FALSE;
sb_data_p = (uint32_t *) & sb_data_e2;
data_size = (sizeof(struct hc_status_block_data_e2) /
sizeof(uint32_t));
} else {
memset(&sb_data_e1x, 0,
sizeof(struct hc_status_block_data_e1x));
sb_data_e1x.common.state = SB_DISABLED;
sb_data_e1x.common.p_func.vf_valid = FALSE;
sb_data_p = (uint32_t *) & sb_data_e1x;
data_size = (sizeof(struct hc_status_block_data_e1x) /
sizeof(uint32_t));
}
bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
bnx2x_fill(sc,
(BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 0,
CSTORM_STATUS_BLOCK_SIZE);
bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
0, CSTORM_SYNC_BLOCK_SIZE);
}
static void
bnx2x_wr_sp_sb_data(struct bnx2x_softc *sc,
struct hc_sp_status_block_data *sp_sb_data)
{
uint32_t i;
for (i = 0;
i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
i++) {
REG_WR(sc,
(BAR_CSTRORM_INTMEM +
CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
(i * sizeof(uint32_t))),
*((uint32_t *) sp_sb_data + i));
}
}
static void bnx2x_zero_sp_sb(struct bnx2x_softc *sc)
{
struct hc_sp_status_block_data sp_sb_data;
memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
sp_sb_data.state = SB_DISABLED;
sp_sb_data.p_func.vf_valid = FALSE;
bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
bnx2x_fill(sc,
(BAR_CSTRORM_INTMEM +
CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
0, CSTORM_SP_STATUS_BLOCK_SIZE);
bnx2x_fill(sc,
(BAR_CSTRORM_INTMEM +
CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
0, CSTORM_SP_SYNC_BLOCK_SIZE);
}
static void
bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id,
int igu_seg_id)
{
hc_sm->igu_sb_id = igu_sb_id;
hc_sm->igu_seg_id = igu_seg_id;
hc_sm->timer_value = 0xFF;
hc_sm->time_to_expire = 0xFFFFFFFF;
}
static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
{
/* zero out state machine indices */
/* rx indices */
index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
/* tx indices */
index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
/* map indices */
/* rx indices */
index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
(SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
/* tx indices */
index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
(SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
(SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
(SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
(SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
}
static void
bnx2x_init_sb(struct bnx2x_softc *sc, rte_iova_t busaddr, int vfid,
uint8_t vf_valid, int fw_sb_id, int igu_sb_id)
{
struct hc_status_block_data_e2 sb_data_e2;
struct hc_status_block_data_e1x sb_data_e1x;
struct hc_status_block_sm *hc_sm_p;
uint32_t *sb_data_p;
int igu_seg_id;
int data_size;
if (CHIP_INT_MODE_IS_BC(sc)) {
igu_seg_id = HC_SEG_ACCESS_NORM;
} else {
igu_seg_id = IGU_SEG_ACCESS_NORM;
}
bnx2x_zero_fp_sb(sc, fw_sb_id);
if (!CHIP_IS_E1x(sc)) {
memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
sb_data_e2.common.state = SB_ENABLED;
sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
sb_data_e2.common.p_func.vf_id = vfid;
sb_data_e2.common.p_func.vf_valid = vf_valid;
sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
sb_data_e2.common.same_igu_sb_1b = TRUE;
sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
hc_sm_p = sb_data_e2.common.state_machine;
sb_data_p = (uint32_t *) & sb_data_e2;
data_size = (sizeof(struct hc_status_block_data_e2) /
sizeof(uint32_t));
bnx2x_map_sb_state_machines(sb_data_e2.index_data);
} else {
memset(&sb_data_e1x, 0,
sizeof(struct hc_status_block_data_e1x));
sb_data_e1x.common.state = SB_ENABLED;
sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
sb_data_e1x.common.p_func.vf_id = 0xff;
sb_data_e1x.common.p_func.vf_valid = FALSE;
sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
sb_data_e1x.common.same_igu_sb_1b = TRUE;
sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
hc_sm_p = sb_data_e1x.common.state_machine;
sb_data_p = (uint32_t *) & sb_data_e1x;
data_size = (sizeof(struct hc_status_block_data_e1x) /
sizeof(uint32_t));
bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
}
bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
/* write indices to HW - PCI guarantees endianity of regpairs */
bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
}
static uint8_t bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
{
if (CHIP_IS_E1x(fp->sc)) {
return fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H;
} else {
return fp->cl_id;
}
}
static uint32_t
bnx2x_rx_ustorm_prods_offset(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
{
uint32_t offset = BAR_USTRORM_INTMEM;
if (IS_VF(sc)) {
return PXP_VF_ADDR_USDM_QUEUES_START +
(sc->acquire_resp.resc.hw_qid[fp->index] *
sizeof(struct ustorm_queue_zone_data));
} else if (!CHIP_IS_E1x(sc)) {
offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
} else {
offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
}
return offset;
}
static void bnx2x_init_eth_fp(struct bnx2x_softc *sc, int idx)
{
struct bnx2x_fastpath *fp = &sc->fp[idx];
uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
unsigned long q_type = 0;
int cos;
fp->sc = sc;
fp->index = idx;
fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
if (CHIP_IS_E1x(sc))
fp->cl_id = SC_L_ID(sc) + idx;
else
/* want client ID same as IGU SB ID for non-E1 */
fp->cl_id = fp->igu_sb_id;
fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
/* setup sb indices */
if (!CHIP_IS_E1x(sc)) {
fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
} else {
fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
fp->sb_running_index =
fp->status_block.e1x_sb->sb.running_index;
}
/* init shortcut */
fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(sc, fp);
fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
for (cos = 0; cos < sc->max_cos; cos++) {
cids[cos] = idx;
}
fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
/* nothing more for a VF to do */
if (IS_VF(sc)) {
return;
}
bnx2x_init_sb(sc, fp->sb_dma.paddr, BNX2X_VF_ID_INVALID, FALSE,
fp->fw_sb_id, fp->igu_sb_id);
bnx2x_update_fp_sb_idx(fp);
/* Configure Queue State object */
bnx2x_set_bit(ECORE_Q_TYPE_HAS_RX, &q_type);
bnx2x_set_bit(ECORE_Q_TYPE_HAS_TX, &q_type);
ecore_init_queue_obj(sc,
&sc->sp_objs[idx].q_obj,
fp->cl_id,
cids,
sc->max_cos,
SC_FUNC(sc),
BNX2X_SP(sc, q_rdata),
(rte_iova_t)BNX2X_SP_MAPPING(sc, q_rdata),
q_type);
/* configure classification DBs */
ecore_init_mac_obj(sc,
&sc->sp_objs[idx].mac_obj,
fp->cl_id,
idx,
SC_FUNC(sc),
BNX2X_SP(sc, mac_rdata),
(rte_iova_t)BNX2X_SP_MAPPING(sc, mac_rdata),
ECORE_FILTER_MAC_PENDING, &sc->sp_state,
ECORE_OBJ_TYPE_RX_TX, &sc->macs_pool);
}
static void
bnx2x_update_rx_prod(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
uint16_t rx_bd_prod, uint16_t rx_cq_prod)
{
union ustorm_eth_rx_producers rx_prods;
uint32_t i;
/* update producers */
rx_prods.prod.bd_prod = rx_bd_prod;
rx_prods.prod.cqe_prod = rx_cq_prod;
rx_prods.prod.reserved = 0;
/*
* Make sure that the BD and SGE data is updated before updating the
* producers since FW might read the BD/SGE right after the producer
* is updated.
* This is only applicable for weak-ordered memory model archs such
* as IA-64. The following barrier is also mandatory since FW will
* assumes BDs must have buffers.
*/
wmb();
for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
REG_WR(sc,
(fp->ustorm_rx_prods_offset + (i * 4)),
rx_prods.raw_data[i]);
}
wmb(); /* keep prod updates ordered */
}
static void bnx2x_init_rx_rings(struct bnx2x_softc *sc)
{
struct bnx2x_fastpath *fp;
int i;
struct bnx2x_rx_queue *rxq;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
rxq = sc->rx_queues[fp->index];
if (!rxq) {
PMD_RX_LOG(ERR, "RX queue is NULL");
return;
}
rxq->rx_bd_head = 0;
rxq->rx_bd_tail = rxq->nb_rx_desc;
rxq->rx_cq_head = 0;
rxq->rx_cq_tail = TOTAL_RCQ_ENTRIES(rxq);
*fp->rx_cq_cons_sb = 0;
/*
* Activate the BD ring...
* Warning, this will generate an interrupt (to the TSTORM)
* so this can only be done after the chip is initialized
*/
bnx2x_update_rx_prod(sc, fp, rxq->rx_bd_tail, rxq->rx_cq_tail);
if (i != 0) {
continue;
}
}
}
static void bnx2x_init_tx_ring_one(struct bnx2x_fastpath *fp)
{
struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
fp->tx_db.data.header.header = 1 << DOORBELL_HDR_DB_TYPE_SHIFT;
fp->tx_db.data.zero_fill1 = 0;
fp->tx_db.data.prod = 0;
if (!txq) {
PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
return;
}
txq->tx_pkt_tail = 0;
txq->tx_pkt_head = 0;
txq->tx_bd_tail = 0;
txq->tx_bd_head = 0;
}
static void bnx2x_init_tx_rings(struct bnx2x_softc *sc)
{
int i;
for (i = 0; i < sc->num_queues; i++) {
bnx2x_init_tx_ring_one(&sc->fp[i]);
}
}
static void bnx2x_init_def_sb(struct bnx2x_softc *sc)
{
struct host_sp_status_block *def_sb = sc->def_sb;
rte_iova_t mapping = sc->def_sb_dma.paddr;
int igu_sp_sb_index;
int igu_seg_id;
int port = SC_PORT(sc);
int func = SC_FUNC(sc);
int reg_offset, reg_offset_en5;
uint64_t section;
int index, sindex;
struct hc_sp_status_block_data sp_sb_data;
memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
if (CHIP_INT_MODE_IS_BC(sc)) {
igu_sp_sb_index = DEF_SB_IGU_ID;
igu_seg_id = HC_SEG_ACCESS_DEF;
} else {
igu_sp_sb_index = sc->igu_dsb_id;
igu_seg_id = IGU_SEG_ACCESS_DEF;
}
/* attentions */
section = ((uint64_t) mapping +
offsetof(struct host_sp_status_block, atten_status_block));
def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
sc->attn_state = 0;
reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
reg_offset_en5 = (port) ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
/* take care of sig[0]..sig[4] */
for (sindex = 0; sindex < 4; sindex++) {
sc->attn_group[index].sig[sindex] =
REG_RD(sc,
(reg_offset + (sindex * 0x4) +
(0x10 * index)));
}
if (!CHIP_IS_E1x(sc)) {
/*
* enable5 is separate from the rest of the registers,
* and the address skip is 4 and not 16 between the
* different groups
*/
sc->attn_group[index].sig[4] =
REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
} else {
sc->attn_group[index].sig[4] = 0;
}
}
if (sc->devinfo.int_block == INT_BLOCK_HC) {
reg_offset =
port ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L;
REG_WR(sc, reg_offset, U64_LO(section));
REG_WR(sc, (reg_offset + 4), U64_HI(section));
} else if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
}
section = ((uint64_t) mapping +
offsetof(struct host_sp_status_block, sp_sb));
bnx2x_zero_sp_sb(sc);
/* PCI guarantees endianity of regpair */
sp_sb_data.state = SB_ENABLED;
sp_sb_data.host_sb_addr.lo = U64_LO(section);
sp_sb_data.host_sb_addr.hi = U64_HI(section);
sp_sb_data.igu_sb_id = igu_sp_sb_index;
sp_sb_data.igu_seg_id = igu_seg_id;
sp_sb_data.p_func.pf_id = func;
sp_sb_data.p_func.vnic_id = SC_VN(sc);
sp_sb_data.p_func.vf_id = 0xff;
bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
}
static void bnx2x_init_sp_ring(struct bnx2x_softc *sc)
{
atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
sc->spq_prod_idx = 0;
sc->dsb_sp_prod =
&sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
sc->spq_prod_bd = sc->spq;
sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
}
static void bnx2x_init_eq_ring(struct bnx2x_softc *sc)
{
union event_ring_elem *elem;
int i;
for (i = 1; i <= NUM_EQ_PAGES; i++) {
elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
BNX2X_PAGE_SIZE *
(i % NUM_EQ_PAGES)));
elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
BNX2X_PAGE_SIZE *
(i % NUM_EQ_PAGES)));
}
sc->eq_cons = 0;
sc->eq_prod = NUM_EQ_DESC;
sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
atomic_store_rel_long(&sc->eq_spq_left,
(min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
NUM_EQ_DESC) - 1));
}
static void bnx2x_init_internal_common(struct bnx2x_softc *sc)
{
int i;
if (IS_MF_SI(sc)) {
/*
* In switch independent mode, the TSTORM needs to accept
* packets that failed classification, since approximate match
* mac addresses aren't written to NIG LLH.
*/
REG_WR8(sc,
(BAR_TSTRORM_INTMEM +
TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 2);
} else
REG_WR8(sc,
(BAR_TSTRORM_INTMEM +
TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 0);
/*
* Zero this manually as its initialization is currently missing
* in the initTool.
*/
for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
REG_WR(sc,
(BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
0);
}
if (!CHIP_IS_E1x(sc)) {
REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE :
HC_IGU_NBC_MODE);
}
}
static void bnx2x_init_internal(struct bnx2x_softc *sc, uint32_t load_code)
{
switch (load_code) {
case FW_MSG_CODE_DRV_LOAD_COMMON:
case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
bnx2x_init_internal_common(sc);
/* no break */
case FW_MSG_CODE_DRV_LOAD_PORT:
/* nothing to do */
/* no break */
case FW_MSG_CODE_DRV_LOAD_FUNCTION:
/* internal memory per function is initialized inside bnx2x_pf_init */
break;
default:
PMD_DRV_LOG(NOTICE, "Unknown load_code (0x%x) from MCP",
load_code);
break;
}
}
static void
storm_memset_func_cfg(struct bnx2x_softc *sc,
struct tstorm_eth_function_common_config *tcfg,
uint16_t abs_fid)
{
uint32_t addr;
size_t size;
addr = (BAR_TSTRORM_INTMEM +
TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
size = sizeof(struct tstorm_eth_function_common_config);
ecore_storm_memset_struct(sc, addr, size, (uint32_t *) tcfg);
}
static void bnx2x_func_init(struct bnx2x_softc *sc, struct bnx2x_func_init_params *p)
{
struct tstorm_eth_function_common_config tcfg = { 0 };
if (CHIP_IS_E1x(sc)) {
storm_memset_func_cfg(sc, &tcfg, p->func_id);
}
/* Enable the function in the FW */
storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
storm_memset_func_en(sc, p->func_id, 1);
/* spq */
if (p->func_flgs & FUNC_FLG_SPQ) {
storm_memset_spq_addr(sc, p->spq_map, p->func_id);
REG_WR(sc,
(XSEM_REG_FAST_MEMORY +
XSTORM_SPQ_PROD_OFFSET(p->func_id)), p->spq_prod);
}
}
/*
* Calculates the sum of vn_min_rates.
* It's needed for further normalizing of the min_rates.
* Returns:
* sum of vn_min_rates.
* or
* 0 - if all the min_rates are 0.
* In the later case fainess algorithm should be deactivated.
* If all min rates are not zero then those that are zeroes will be set to 1.
*/
static void bnx2x_calc_vn_min(struct bnx2x_softc *sc, struct cmng_init_input *input)
{
uint32_t vn_cfg;
uint32_t vn_min_rate;
int all_zero = 1;
int vn;
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
vn_cfg = sc->devinfo.mf_info.mf_config[vn];
vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
/* skip hidden VNs */
vn_min_rate = 0;
} else if (!vn_min_rate) {
/* If min rate is zero - set it to 100 */
vn_min_rate = DEF_MIN_RATE;
} else {
all_zero = 0;
}
input->vnic_min_rate[vn] = vn_min_rate;
}
/* if ETS or all min rates are zeros - disable fairness */
if (all_zero) {
input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
} else {
input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
}
}
static uint16_t
bnx2x_extract_max_cfg(__rte_unused struct bnx2x_softc *sc, uint32_t mf_cfg)
{
uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
FUNC_MF_CFG_MAX_BW_SHIFT);
if (!max_cfg) {
PMD_DRV_LOG(DEBUG,
"Max BW configured to 0 - using 100 instead");
max_cfg = 100;
}
return max_cfg;
}
static void
bnx2x_calc_vn_max(struct bnx2x_softc *sc, int vn, struct cmng_init_input *input)
{
uint16_t vn_max_rate;
uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
uint32_t max_cfg;
if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
vn_max_rate = 0;
} else {
max_cfg = bnx2x_extract_max_cfg(sc, vn_cfg);
if (IS_MF_SI(sc)) {
/* max_cfg in percents of linkspeed */
vn_max_rate =
((sc->link_vars.line_speed * max_cfg) / 100);
} else { /* SD modes */
/* max_cfg is absolute in 100Mb units */
vn_max_rate = (max_cfg * 100);
}
}
input->vnic_max_rate[vn] = vn_max_rate;
}
static void
bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg, uint8_t cmng_type)
{
struct cmng_init_input input;
int vn;
memset(&input, 0, sizeof(struct cmng_init_input));
input.port_rate = sc->link_vars.line_speed;
if (cmng_type == CMNG_FNS_MINMAX) {
/* read mf conf from shmem */
if (read_cfg) {
bnx2x_read_mf_cfg(sc);
}
/* get VN min rate and enable fairness if not 0 */
bnx2x_calc_vn_min(sc, &input);
/* get VN max rate */
if (sc->port.pmf) {
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
bnx2x_calc_vn_max(sc, vn, &input);
}
}
/* always enable rate shaping and fairness */
input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
ecore_init_cmng(&input, &sc->cmng);
return;
}
}
static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc)
{
if (CHIP_REV_IS_SLOW(sc)) {
return CMNG_FNS_NONE;
}
if (IS_MF(sc)) {
return CMNG_FNS_MINMAX;
}
return CMNG_FNS_NONE;
}
static void
storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng, uint8_t port)
{
int vn;
int func;
uint32_t addr;
size_t size;
addr = (BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
size = sizeof(struct cmng_struct_per_port);
ecore_storm_memset_struct(sc, addr, size, (uint32_t *) & cmng->port);
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
func = func_by_vn(sc, vn);
addr = (BAR_XSTRORM_INTMEM +
XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
size = sizeof(struct rate_shaping_vars_per_vn);
ecore_storm_memset_struct(sc, addr, size,
(uint32_t *) & cmng->
vnic.vnic_max_rate[vn]);
addr = (BAR_XSTRORM_INTMEM +
XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
size = sizeof(struct fairness_vars_per_vn);
ecore_storm_memset_struct(sc, addr, size,
(uint32_t *) & cmng->
vnic.vnic_min_rate[vn]);
}
}
static void bnx2x_pf_init(struct bnx2x_softc *sc)
{
struct bnx2x_func_init_params func_init;
struct event_ring_data eq_data;
uint16_t flags;
memset(&eq_data, 0, sizeof(struct event_ring_data));
memset(&func_init, 0, sizeof(struct bnx2x_func_init_params));
if (!CHIP_IS_E1x(sc)) {
/* reset IGU PF statistics: MSIX + ATTN */
/* PF */
REG_WR(sc,
(IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
(BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
4)), 0);
/* ATTN */
REG_WR(sc,
(IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
(BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
(BNX2X_IGU_STAS_MSG_PF_CNT * 4) +
((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
4)), 0);
}
/* function setup flags */
flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
func_init.func_flgs = flags;
func_init.pf_id = SC_FUNC(sc);
func_init.func_id = SC_FUNC(sc);
func_init.spq_map = sc->spq_dma.paddr;
func_init.spq_prod = sc->spq_prod_idx;
bnx2x_func_init(sc, &func_init);
memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
/*
* Congestion management values depend on the link rate.
* There is no active link so initial link rate is set to 10Gbps.
* When the link comes up the congestion management values are
* re-calculated according to the actual link rate.
*/
sc->link_vars.line_speed = SPEED_10000;
bnx2x_cmng_fns_init(sc, TRUE, bnx2x_get_cmng_fns_mode(sc));
/* Only the PMF sets the HW */
if (sc->port.pmf) {
storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
}
/* init Event Queue - PCI bus guarantees correct endainity */
eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
eq_data.producer = sc->eq_prod;
eq_data.index_id = HC_SP_INDEX_EQ_CONS;
eq_data.sb_id = DEF_SB_ID;
storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
}
static void bnx2x_hc_int_enable(struct bnx2x_softc *sc)
{
int port = SC_PORT(sc);
uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
uint32_t val = REG_RD(sc, addr);
uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
|| (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
if (msix) {
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0);
val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
if (single_msix) {
val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
}
} else if (msi) {
val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
} else {
val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
REG_WR(sc, addr, val);
val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
}
REG_WR(sc, addr, val);
/* ensure that HC_CONFIG is written before leading/trailing edge config */
mb();
/* init leading/trailing edge */
if (IS_MF(sc)) {
val = (0xee0f | (1 << (SC_VN(sc) + 4)));
if (sc->port.pmf) {
/* enable nig and gpio3 attention */
val |= 0x1100;
}
} else {
val = 0xffff;
}
REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port * 8), val);
REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port * 8), val);
/* make sure that interrupts are indeed enabled from here on */
mb();
}
static void bnx2x_igu_int_enable(struct bnx2x_softc *sc)
{
uint32_t val;
uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
|| (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
if (msix) {
val &= ~(IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_SINGLE_ISR_EN);
val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN);
if (single_msix) {
val |= IGU_PF_CONF_SINGLE_ISR_EN;
}
} else if (msi) {
val &= ~IGU_PF_CONF_INT_LINE_EN;
val |= (IGU_PF_CONF_MSI_MSIX_EN |
IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
} else {
val &= ~IGU_PF_CONF_MSI_MSIX_EN;
val |= (IGU_PF_CONF_INT_LINE_EN |
IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
}
/* clean previous status - need to configure igu prior to ack */
if ((!msix) || single_msix) {
REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
bnx2x_ack_int(sc);
}
val |= IGU_PF_CONF_FUNC_EN;
PMD_DRV_LOG(DEBUG, "write 0x%x to IGU mode %s",
val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
mb();
/* init leading/trailing edge */
if (IS_MF(sc)) {
val = (0xee0f | (1 << (SC_VN(sc) + 4)));
if (sc->port.pmf) {
/* enable nig and gpio3 attention */
val |= 0x1100;
}
} else {
val = 0xffff;
}
REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
/* make sure that interrupts are indeed enabled from here on */
mb();
}
static void bnx2x_int_enable(struct bnx2x_softc *sc)
{
if (sc->devinfo.int_block == INT_BLOCK_HC) {
bnx2x_hc_int_enable(sc);
} else {
bnx2x_igu_int_enable(sc);
}
}
static void bnx2x_hc_int_disable(struct bnx2x_softc *sc)
{
int port = SC_PORT(sc);
uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
uint32_t val = REG_RD(sc, addr);
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0);
/* flush all outstanding writes */
mb();
REG_WR(sc, addr, val);
if (REG_RD(sc, addr) != val) {
PMD_DRV_LOG(ERR, "proper val not read from HC IGU!");
}
}
static void bnx2x_igu_int_disable(struct bnx2x_softc *sc)
{
uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN);
PMD_DRV_LOG(DEBUG, "write %x to IGU", val);
/* flush all outstanding writes */
mb();
REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
PMD_DRV_LOG(ERR, "proper val not read from IGU!");
}
}
static void bnx2x_int_disable(struct bnx2x_softc *sc)
{
if (sc->devinfo.int_block == INT_BLOCK_HC) {
bnx2x_hc_int_disable(sc);
} else {
bnx2x_igu_int_disable(sc);
}
}
static void bnx2x_nic_init(struct bnx2x_softc *sc, int load_code)
{
int i;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < sc->num_queues; i++) {
bnx2x_init_eth_fp(sc, i);
}
rmb(); /* ensure status block indices were read */
bnx2x_init_rx_rings(sc);
bnx2x_init_tx_rings(sc);
if (IS_VF(sc)) {
bnx2x_memset_stats(sc);
return;
}
/* initialize MOD_ABS interrupts */
elink_init_mod_abs_int(sc, &sc->link_vars,
sc->devinfo.chip_id,
sc->devinfo.shmem_base,
sc->devinfo.shmem2_base, SC_PORT(sc));
bnx2x_init_def_sb(sc);
bnx2x_update_dsb_idx(sc);
bnx2x_init_sp_ring(sc);
bnx2x_init_eq_ring(sc);
bnx2x_init_internal(sc, load_code);
bnx2x_pf_init(sc);
bnx2x_stats_init(sc);
/* flush all before enabling interrupts */
mb();
bnx2x_int_enable(sc);
/* check for SPIO5 */
bnx2x_attn_int_deasserted0(sc,
REG_RD(sc,
(MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
SC_PORT(sc) * 4)) &
AEU_INPUTS_ATTN_BITS_SPIO5);
}
static void bnx2x_init_objs(struct bnx2x_softc *sc)
{
/* mcast rules must be added to tx if tx switching is enabled */
ecore_obj_type o_type;
if (sc->flags & BNX2X_TX_SWITCHING)
o_type = ECORE_OBJ_TYPE_RX_TX;
else
o_type = ECORE_OBJ_TYPE_RX;
/* RX_MODE controlling object */
ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
/* multicast configuration controlling object */
ecore_init_mcast_obj(sc,
&sc->mcast_obj,
sc->fp[0].cl_id,
sc->fp[0].index,
SC_FUNC(sc),
SC_FUNC(sc),
BNX2X_SP(sc, mcast_rdata),
(rte_iova_t)BNX2X_SP_MAPPING(sc, mcast_rdata),
ECORE_FILTER_MCAST_PENDING,
&sc->sp_state, o_type);
/* Setup CAM credit pools */
ecore_init_mac_credit_pool(sc,
&sc->macs_pool,
SC_FUNC(sc),
CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
VNICS_PER_PATH(sc));
ecore_init_vlan_credit_pool(sc,
&sc->vlans_pool,
SC_ABS_FUNC(sc) >> 1,
CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
VNICS_PER_PATH(sc));
/* RSS configuration object */
ecore_init_rss_config_obj(&sc->rss_conf_obj,
sc->fp[0].cl_id,
sc->fp[0].index,
SC_FUNC(sc),
SC_FUNC(sc),
BNX2X_SP(sc, rss_rdata),
(rte_iova_t)BNX2X_SP_MAPPING(sc, rss_rdata),
ECORE_FILTER_RSS_CONF_PENDING,
&sc->sp_state, ECORE_OBJ_TYPE_RX);
}
/*
* Initialize the function. This must be called before sending CLIENT_SETUP
* for the first client.
*/
static int bnx2x_func_start(struct bnx2x_softc *sc)
{
struct ecore_func_state_params func_params = { NULL };
struct ecore_func_start_params *start_params =
&func_params.params.start;
/* Prepare parameters for function state transitions */
bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
func_params.f_obj = &sc->func_obj;
func_params.cmd = ECORE_F_CMD_START;
/* Function parameters */
start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
start_params->sd_vlan_tag = OVLAN(sc);
if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
start_params->network_cos_mode = STATIC_COS;
} else { /* CHIP_IS_E1X */
start_params->network_cos_mode = FW_WRR;
}
start_params->gre_tunnel_mode = 0;
start_params->gre_tunnel_rss = 0;
return ecore_func_state_change(sc, &func_params);
}
static int bnx2x_set_power_state(struct bnx2x_softc *sc, uint8_t state)
{
uint16_t pmcsr;
/* If there is no power capability, silently succeed */
if (!(sc->devinfo.pcie_cap_flags & BNX2X_PM_CAPABLE_FLAG)) {
PMD_DRV_LOG(WARNING, "No power capability");
return 0;
}
pci_read(sc, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), &pmcsr,
2);
switch (state) {
case PCI_PM_D0:
pci_write_word(sc,
(sc->devinfo.pcie_pm_cap_reg +
PCIR_POWER_STATUS),
((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME));
if (pmcsr & PCIM_PSTAT_DMASK) {
/* delay required during transition out of D3hot */
DELAY(20000);
}
break;
case PCI_PM_D3hot:
/* don't shut down the power for emulation and FPGA */
if (CHIP_REV_IS_SLOW(sc)) {
return 0;
}
pmcsr &= ~PCIM_PSTAT_DMASK;
pmcsr |= PCIM_PSTAT_D3;
if (sc->wol) {
pmcsr |= PCIM_PSTAT_PMEENABLE;
}
pci_write_long(sc,
(sc->devinfo.pcie_pm_cap_reg +
PCIR_POWER_STATUS), pmcsr);
/*
* No more memory access after this point until device is brought back
* to D0 state.
*/
break;
default:
PMD_DRV_LOG(NOTICE, "Can't support PCI power state = %d",
state);
return -1;
}
return 0;
}
/* return true if succeeded to acquire the lock */
static uint8_t bnx2x_trylock_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
{
uint32_t lock_status;
uint32_t resource_bit = (1 << resource);
int func = SC_FUNC(sc);
uint32_t hw_lock_control_reg;
/* Validating that the resource is within range */
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
PMD_DRV_LOG(INFO,
"resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)",
resource, HW_LOCK_MAX_RESOURCE_VALUE);
return FALSE;
}
if (func <= 5) {
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func * 8);
} else {
hw_lock_control_reg =
(MISC_REG_DRIVER_CONTROL_7 + (func - 6) * 8);
}
/* try to acquire the lock */
REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
lock_status = REG_RD(sc, hw_lock_control_reg);
if (lock_status & resource_bit) {
return TRUE;
}
PMD_DRV_LOG(NOTICE, "Failed to get a resource lock 0x%x", resource);
return FALSE;
}
/*
* Get the recovery leader resource id according to the engine this function
* belongs to. Currently only only 2 engines is supported.
*/
static int bnx2x_get_leader_lock_resource(struct bnx2x_softc *sc)
{
if (SC_PATH(sc)) {
return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
} else {
return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
}
}
/* try to acquire a leader lock for current engine */
static uint8_t bnx2x_trylock_leader_lock(struct bnx2x_softc *sc)
{
return bnx2x_trylock_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
}
static int bnx2x_release_leader_lock(struct bnx2x_softc *sc)
{
return bnx2x_release_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
}
/* close gates #2, #3 and #4 */
static void bnx2x_set_234_gates(struct bnx2x_softc *sc, uint8_t close)
{
uint32_t val;
/* gates #2 and #4a are closed/opened */
/* #4 */
REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, ! !close);
/* #2 */
REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, ! !close);
/* #3 */
if (CHIP_IS_E1x(sc)) {
/* prevent interrupts from HC on both ports */
val = REG_RD(sc, HC_REG_CONFIG_1);
if (close)
REG_WR(sc, HC_REG_CONFIG_1, (val & ~(uint32_t)
HC_CONFIG_1_REG_BLOCK_DISABLE_1));
else
REG_WR(sc, HC_REG_CONFIG_1,
(val | HC_CONFIG_1_REG_BLOCK_DISABLE_1));
val = REG_RD(sc, HC_REG_CONFIG_0);
if (close)
REG_WR(sc, HC_REG_CONFIG_0, (val & ~(uint32_t)
HC_CONFIG_0_REG_BLOCK_DISABLE_0));
else
REG_WR(sc, HC_REG_CONFIG_0,
(val | HC_CONFIG_0_REG_BLOCK_DISABLE_0));
} else {
/* Prevent incoming interrupts in IGU */
val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
if (close)
REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
(val & ~(uint32_t)
IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
else
REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
(val |
IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
}
wmb();
}
/* poll for pending writes bit, it should get cleared in no more than 1s */
static int bnx2x_er_poll_igu_vq(struct bnx2x_softc *sc)
{
uint32_t cnt = 1000;
uint32_t pend_bits = 0;
do {
pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
if (pend_bits == 0) {
break;
}
DELAY(1000);
} while (cnt-- > 0);
if (cnt <= 0) {
PMD_DRV_LOG(NOTICE, "Still pending IGU requests bits=0x%08x!",
pend_bits);
return -1;
}
return 0;
}
#define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */
static void bnx2x_clp_reset_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
{
/* Do some magic... */
uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
*magic_val = val & SHARED_MF_CLP_MAGIC;
MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
}
/* restore the value of the 'magic' bit */
static void bnx2x_clp_reset_done(struct bnx2x_softc *sc, uint32_t magic_val)
{
/* Restore the 'magic' bit value... */
uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
MFCFG_WR(sc, shared_mf_config.clp_mb,
(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
}
/* prepare for MCP reset, takes care of CLP configurations */
static void bnx2x_reset_mcp_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
{
uint32_t shmem;
uint32_t validity_offset;
/* set `magic' bit in order to save MF config */
bnx2x_clp_reset_prep(sc, magic_val);
/* get shmem offset */
shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
validity_offset =
offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
/* Clear validity map flags */
if (shmem > 0) {
REG_WR(sc, shmem + validity_offset, 0);
}
}
#define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
#define MCP_ONE_TIMEOUT 100 /* 100 ms */
static void bnx2x_mcp_wait_one(struct bnx2x_softc *sc)
{
/* special handling for emulation and FPGA (10 times longer) */
if (CHIP_REV_IS_SLOW(sc)) {
DELAY((MCP_ONE_TIMEOUT * 10) * 1000);
} else {
DELAY((MCP_ONE_TIMEOUT) * 1000);
}
}
/* initialize shmem_base and waits for validity signature to appear */
static int bnx2x_init_shmem(struct bnx2x_softc *sc)
{
int cnt = 0;
uint32_t val = 0;
do {
sc->devinfo.shmem_base =
sc->link_params.shmem_base =
REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
if (sc->devinfo.shmem_base) {
val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
if (val & SHR_MEM_VALIDITY_MB)
return 0;
}
bnx2x_mcp_wait_one(sc);
} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
PMD_DRV_LOG(NOTICE, "BAD MCP validity signature");
return -1;
}
static int bnx2x_reset_mcp_comp(struct bnx2x_softc *sc, uint32_t magic_val)
{
int rc = bnx2x_init_shmem(sc);
/* Restore the `magic' bit value */
bnx2x_clp_reset_done(sc, magic_val);
return rc;
}
static void bnx2x_pxp_prep(struct bnx2x_softc *sc)
{
REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
wmb();
}
/*
* Reset the whole chip except for:
* - PCIE core
* - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
* - IGU
* - MISC (including AEU)
* - GRC
* - RBCN, RBCP
*/
static void bnx2x_process_kill_chip_reset(struct bnx2x_softc *sc, uint8_t global)
{
uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
uint32_t global_bits2, stay_reset2;
/*
* Bits that have to be set in reset_mask2 if we want to reset 'global'
* (per chip) blocks.
*/
global_bits2 =
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
/*
* Don't reset the following blocks.
* Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
* reset, as in 4 port device they might still be owned
* by the MCP (there is only one leader per path).
*/
not_reset_mask1 =
MISC_REGISTERS_RESET_REG_1_RST_HC |
MISC_REGISTERS_RESET_REG_1_RST_PXPV |
MISC_REGISTERS_RESET_REG_1_RST_PXP;
not_reset_mask2 =
MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
MISC_REGISTERS_RESET_REG_2_RST_RBCN |
MISC_REGISTERS_RESET_REG_2_RST_GRC |
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
MISC_REGISTERS_RESET_REG_2_RST_ATC |
MISC_REGISTERS_RESET_REG_2_PGLC |
MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
MISC_REGISTERS_RESET_REG_2_UMAC0 | MISC_REGISTERS_RESET_REG_2_UMAC1;
/*
* Keep the following blocks in reset:
* - all xxMACs are handled by the elink code.
*/
stay_reset2 =
MISC_REGISTERS_RESET_REG_2_XMAC |
MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
/* Full reset masks according to the chip */
reset_mask1 = 0xffffffff;
if (CHIP_IS_E1H(sc))
reset_mask2 = 0x1ffff;
else if (CHIP_IS_E2(sc))
reset_mask2 = 0xfffff;
else /* CHIP_IS_E3 */
reset_mask2 = 0x3ffffff;
/* Don't reset global blocks unless we need to */
if (!global)
reset_mask2 &= ~global_bits2;
/*
* In case of attention in the QM, we need to reset PXP
* (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
* because otherwise QM reset would release 'close the gates' shortly
* before resetting the PXP, then the PSWRQ would send a write
* request to PGLUE. Then when PXP is reset, PGLUE would try to
* read the payload data from PSWWR, but PSWWR would not
* respond. The write queue in PGLUE would stuck, dmae commands
* would not return. Therefore it's important to reset the second
* reset register (containing the
* MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
* first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
* bit).
*/
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
reset_mask2 & (~not_reset_mask2));
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
reset_mask1 & (~not_reset_mask1));
mb();
wmb();
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
reset_mask2 & (~stay_reset2));
mb();
wmb();
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
wmb();
}
static int bnx2x_process_kill(struct bnx2x_softc *sc, uint8_t global)
{
int cnt = 1000;
uint32_t val = 0;
uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
uint32_t tags_63_32 = 0;
/* Empty the Tetris buffer, wait for 1s */
do {
sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
if (CHIP_IS_E3(sc)) {
tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
}
if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
((port_is_idle_0 & 0x1) == 0x1) &&
((port_is_idle_1 & 0x1) == 0x1) &&
(pgl_exp_rom2 == 0xffffffff) &&
(!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
break;
DELAY(1000);
} while (cnt-- > 0);
if (cnt <= 0) {
PMD_DRV_LOG(NOTICE,
"ERROR: Tetris buffer didn't get empty or there "
"are still outstanding read requests after 1s! "
"sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
"port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x",
sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
pgl_exp_rom2);
return -1;
}
mb();
/* Close gates #2, #3 and #4 */
bnx2x_set_234_gates(sc, TRUE);
/* Poll for IGU VQs for 57712 and newer chips */
if (!CHIP_IS_E1x(sc) && bnx2x_er_poll_igu_vq(sc)) {
return -1;
}
/* clear "unprepared" bit */
REG_WR(sc, MISC_REG_UNPREPARED, 0);
mb();
/* Make sure all is written to the chip before the reset */
wmb();
/*
* Wait for 1ms to empty GLUE and PCI-E core queues,
* PSWHST, GRC and PSWRD Tetris buffer.
*/
DELAY(1000);
/* Prepare to chip reset: */
/* MCP */
if (global) {
bnx2x_reset_mcp_prep(sc, &val);
}
/* PXP */
bnx2x_pxp_prep(sc);
mb();
/* reset the chip */
bnx2x_process_kill_chip_reset(sc, global);
mb();
/* Recover after reset: */
/* MCP */
if (global && bnx2x_reset_mcp_comp(sc, val)) {
return -1;
}
/* Open the gates #2, #3 and #4 */
bnx2x_set_234_gates(sc, FALSE);
return 0;
}
static int bnx2x_leader_reset(struct bnx2x_softc *sc)
{
int rc = 0;
uint8_t global = bnx2x_reset_is_global(sc);
uint32_t load_code;
/*
* If not going to reset MCP, load "fake" driver to reset HW while
* driver is owner of the HW.
*/
if (!global && !BNX2X_NOMCP(sc)) {
load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
if (!load_code) {
PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
rc = -1;
goto exit_leader_reset;
}
if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
(load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
PMD_DRV_LOG(NOTICE,
"MCP unexpected response, aborting");
rc = -1;
goto exit_leader_reset2;
}
load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
if (!load_code) {
PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
rc = -1;
goto exit_leader_reset2;
}
}
/* try to recover after the failure */
if (bnx2x_process_kill(sc, global)) {
PMD_DRV_LOG(NOTICE, "Something bad occurred on engine %d!",
SC_PATH(sc));
rc = -1;
goto exit_leader_reset2;
}
/*
* Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
* state.
*/
bnx2x_set_reset_done(sc);
if (global) {
bnx2x_clear_reset_global(sc);
}
exit_leader_reset2:
/* unload "fake driver" if it was loaded */
if (!global &&!BNX2X_NOMCP(sc)) {
bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
}
exit_leader_reset:
sc->is_leader = 0;
bnx2x_release_leader_lock(sc);
mb();
return rc;
}
/*
* prepare INIT transition, parameters configured:
* - HC configuration
* - Queue's CDU context
*/
static void
bnx2x_pf_q_prep_init(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
struct ecore_queue_init_params *init_params)
{
uint8_t cos;
int cxt_index, cxt_offset;
bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
/* HC rate */
init_params->rx.hc_rate =
sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
init_params->tx.hc_rate =
sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
/* FW SB ID */
init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
/* CQ index among the SB indices */
init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
/* set maximum number of COSs supported by this queue */
init_params->max_cos = sc->max_cos;
/* set the context pointers queue object */
for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
cxt_index = fp->index / ILT_PAGE_CIDS;
cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
init_params->cxts[cos] =
&sc->context[cxt_index].vcxt[cxt_offset].eth;
}
}
/* set flags that are common for the Tx-only and not normal connections */
static unsigned long
bnx2x_get_common_flags(struct bnx2x_softc *sc, uint8_t zero_stats)
{
unsigned long flags = 0;
/* PF driver will always initialize the Queue to an ACTIVE state */
bnx2x_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
/*
* tx only connections collect statistics (on the same index as the
* parent connection). The statistics are zeroed when the parent
* connection is initialized.
*/
bnx2x_set_bit(ECORE_Q_FLG_STATS, &flags);
if (zero_stats) {
bnx2x_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
}
/*
* tx only connections can support tx-switching, though their
* CoS-ness doesn't survive the loopback
*/
if (sc->flags & BNX2X_TX_SWITCHING) {
bnx2x_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
}
bnx2x_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
return flags;
}
static unsigned long bnx2x_get_q_flags(struct bnx2x_softc *sc, uint8_t leading)
{
unsigned long flags = 0;
if (IS_MF_SD(sc)) {
bnx2x_set_bit(ECORE_Q_FLG_OV, &flags);
}
if (leading) {
bnx2x_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
bnx2x_set_bit(ECORE_Q_FLG_MCAST, &flags);
}
bnx2x_set_bit(ECORE_Q_FLG_VLAN, &flags);
/* merge with common flags */
return flags | bnx2x_get_common_flags(sc, TRUE);
}
static void
bnx2x_pf_q_prep_general(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
struct ecore_general_setup_params *gen_init, uint8_t cos)
{
gen_init->stat_id = bnx2x_stats_id(fp);
gen_init->spcl_id = fp->cl_id;
gen_init->mtu = sc->mtu;
gen_init->cos = cos;
}
static void
bnx2x_pf_rx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
struct rxq_pause_params *pause,
struct ecore_rxq_setup_params *rxq_init)
{
struct bnx2x_rx_queue *rxq;
rxq = sc->rx_queues[fp->index];
if (!rxq) {
PMD_RX_LOG(ERR, "RX queue is NULL");
return;
}
/* pause */
pause->bd_th_lo = BD_TH_LO(sc);
pause->bd_th_hi = BD_TH_HI(sc);
pause->rcq_th_lo = RCQ_TH_LO(sc);
pause->rcq_th_hi = RCQ_TH_HI(sc);
/* validate rings have enough entries to cross high thresholds */
if (sc->dropless_fc &&
pause->bd_th_hi + FW_PREFETCH_CNT > sc->rx_ring_size) {
PMD_DRV_LOG(WARNING, "rx bd ring threshold limit");
}
if (sc->dropless_fc &&
pause->rcq_th_hi + FW_PREFETCH_CNT > USABLE_RCQ_ENTRIES(rxq)) {
PMD_DRV_LOG(WARNING, "rcq ring threshold limit");
}
pause->pri_map = 1;
/* rxq setup */
rxq_init->dscr_map = (rte_iova_t)rxq->rx_ring_phys_addr;
rxq_init->rcq_map = (rte_iova_t)rxq->cq_ring_phys_addr;
rxq_init->rcq_np_map = (rte_iova_t)(rxq->cq_ring_phys_addr +
BNX2X_PAGE_SIZE);
/*
* This should be a maximum number of data bytes that may be
* placed on the BD (not including paddings).
*/
rxq_init->buf_sz = (fp->rx_buf_size - IP_HEADER_ALIGNMENT_PADDING);
rxq_init->cl_qzone_id = fp->cl_qzone_id;
rxq_init->rss_engine_id = SC_FUNC(sc);
rxq_init->mcast_engine_id = SC_FUNC(sc);
rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
rxq_init->fw_sb_id = fp->fw_sb_id;
rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
/*
* configure silent vlan removal
* if multi function mode is afex, then mask default vlan
*/
if (IS_MF_AFEX(sc)) {
rxq_init->silent_removal_value =
sc->devinfo.mf_info.afex_def_vlan_tag;
rxq_init->silent_removal_mask = EVL_VLID_MASK;
}
}
static void
bnx2x_pf_tx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
struct ecore_txq_setup_params *txq_init, uint8_t cos)
{
struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
if (!txq) {
PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
return;
}
txq_init->dscr_map = (rte_iova_t)txq->tx_ring_phys_addr;
txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
txq_init->fw_sb_id = fp->fw_sb_id;
/*
* set the TSS leading client id for TX classfication to the
* leading RSS client id
*/
txq_init->tss_leading_cl_id = BNX2X_FP(sc, 0, cl_id);
}
/*
* This function performs 2 steps in a queue state machine:
* 1) RESET->INIT
* 2) INIT->SETUP
*/
static int
bnx2x_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, uint8_t leading)
{
struct ecore_queue_state_params q_params = { NULL };
struct ecore_queue_setup_params *setup_params = &q_params.params.setup;
int rc;
PMD_DRV_LOG(DEBUG, "setting up queue %d", fp->index);
bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
q_params.q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
/* we want to wait for completion in this context */
bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
/* prepare the INIT parameters */
bnx2x_pf_q_prep_init(sc, fp, &q_params.params.init);
/* Set the command */
q_params.cmd = ECORE_Q_CMD_INIT;
/* Change the state to INIT */
rc = ecore_queue_state_change(sc, &q_params);
if (rc) {
PMD_DRV_LOG(NOTICE, "Queue(%d) INIT failed", fp->index);
return rc;
}
PMD_DRV_LOG(DEBUG, "init complete");
/* now move the Queue to the SETUP state */
memset(setup_params, 0, sizeof(*setup_params));
/* set Queue flags */
setup_params->flags = bnx2x_get_q_flags(sc, leading);
/* set general SETUP parameters */
bnx2x_pf_q_prep_general(sc, fp, &setup_params->gen_params,
FIRST_TX_COS_INDEX);
bnx2x_pf_rx_q_prep(sc, fp,
&setup_params->pause_params,
&setup_params->rxq_params);
bnx2x_pf_tx_q_prep(sc, fp, &setup_params->txq_params, FIRST_TX_COS_INDEX);
/* Set the command */
q_params.cmd = ECORE_Q_CMD_SETUP;
/* change the state to SETUP */
rc = ecore_queue_state_change(sc, &q_params);
if (rc) {
PMD_DRV_LOG(NOTICE, "Queue(%d) SETUP failed", fp->index);
return rc;
}
return rc;
}
static int bnx2x_setup_leading(struct bnx2x_softc *sc)
{
if (IS_PF(sc))
return bnx2x_setup_queue(sc, &sc->fp[0], TRUE);
else /* VF */
return bnx2x_vf_setup_queue(sc, &sc->fp[0], TRUE);
}
static int
bnx2x_config_rss_pf(struct bnx2x_softc *sc, struct ecore_rss_config_obj *rss_obj,
uint8_t config_hash)
{
struct ecore_config_rss_params params = { NULL };
uint32_t i;
/*
* Although RSS is meaningless when there is a single HW queue we
* still need it enabled in order to have HW Rx hash generated.
*/
params.rss_obj = rss_obj;
bnx2x_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
bnx2x_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
/* RSS configuration */
bnx2x_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
bnx2x_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
bnx2x_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
bnx2x_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
if (rss_obj->udp_rss_v4) {
bnx2x_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
}
if (rss_obj->udp_rss_v6) {
bnx2x_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
}
/* Hash bits */
params.rss_result_mask = MULTI_MASK;
rte_memcpy(params.ind_table, rss_obj->ind_table,
sizeof(params.ind_table));
if (config_hash) {
/* RSS keys */
for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
params.rss_key[i] = (uint32_t) rte_rand();
}
bnx2x_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
}
if (IS_PF(sc))
return ecore_config_rss(sc, &params);
else
return bnx2x_vf_config_rss(sc, &params);
}
static int bnx2x_config_rss_eth(struct bnx2x_softc *sc, uint8_t config_hash)
{
return bnx2x_config_rss_pf(sc, &sc->rss_conf_obj, config_hash);
}
static int bnx2x_init_rss_pf(struct bnx2x_softc *sc)
{
uint8_t num_eth_queues = BNX2X_NUM_ETH_QUEUES(sc);
uint32_t i;
/*
* Prepare the initial contents of the indirection table if
* RSS is enabled
*/
for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
sc->rss_conf_obj.ind_table[i] =
(sc->fp->cl_id + (i % num_eth_queues));
}
if (sc->udp_rss) {
sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
}
/*
* For 57711 SEARCHER configuration (rss_keys) is
* per-port, so if explicit configuration is needed, do it only
* for a PMF.
*
* For 57712 and newer it's a per-function configuration.
*/
return bnx2x_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc));
}
static int
bnx2x_set_mac_one(struct bnx2x_softc *sc, uint8_t * mac,
struct ecore_vlan_mac_obj *obj, uint8_t set, int mac_type,
unsigned long *ramrod_flags)
{
struct ecore_vlan_mac_ramrod_params ramrod_param;
int rc;
memset(&ramrod_param, 0, sizeof(ramrod_param));
/* fill in general parameters */
ramrod_param.vlan_mac_obj = obj;
ramrod_param.ramrod_flags = *ramrod_flags;
/* fill a user request section if needed */
if (!bnx2x_test_bit(RAMROD_CONT, ramrod_flags)) {
rte_memcpy(ramrod_param.user_req.u.mac.mac, mac,
ETH_ALEN);
bnx2x_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
/* Set the command: ADD or DEL */
ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
ECORE_VLAN_MAC_DEL;
}
rc = ecore_config_vlan_mac(sc, &ramrod_param);
if (rc == ECORE_EXISTS) {
PMD_DRV_LOG(INFO, "Failed to schedule ADD operations (EEXIST)");
/* do not treat adding same MAC as error */
rc = 0;
} else if (rc < 0) {
PMD_DRV_LOG(ERR,
"%s MAC failed (%d)", (set ? "Set" : "Delete"), rc);
}
return rc;
}
static int bnx2x_set_eth_mac(struct bnx2x_softc *sc, uint8_t set)
{
unsigned long ramrod_flags = 0;
PMD_DRV_LOG(DEBUG, "Adding Ethernet MAC");
bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
/* Eth MAC is set on RSS leading client (fp[0]) */
return bnx2x_set_mac_one(sc, sc->link_params.mac_addr,
&sc->sp_objs->mac_obj,
set, ECORE_ETH_MAC, &ramrod_flags);
}
static int bnx2x_get_cur_phy_idx(struct bnx2x_softc *sc)
{
uint32_t sel_phy_idx = 0;
if (sc->link_params.num_phys <= 1) {
return ELINK_INT_PHY;
}
if (sc->link_vars.link_up) {
sel_phy_idx = ELINK_EXT_PHY1;
/* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
(sc->link_params.phy[ELINK_EXT_PHY2].supported &
ELINK_SUPPORTED_FIBRE))
sel_phy_idx = ELINK_EXT_PHY2;
} else {
switch (elink_phy_selection(&sc->link_params)) {
case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
sel_phy_idx = ELINK_EXT_PHY1;
break;
case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
sel_phy_idx = ELINK_EXT_PHY2;
break;
}
}
return sel_phy_idx;
}
static int bnx2x_get_link_cfg_idx(struct bnx2x_softc *sc)
{
uint32_t sel_phy_idx = bnx2x_get_cur_phy_idx(sc);
/*
* The selected activated PHY is always after swapping (in case PHY
* swapping is enabled). So when swapping is enabled, we need to reverse
* the configuration
*/
if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
if (sel_phy_idx == ELINK_EXT_PHY1)
sel_phy_idx = ELINK_EXT_PHY2;
else if (sel_phy_idx == ELINK_EXT_PHY2)
sel_phy_idx = ELINK_EXT_PHY1;
}
return ELINK_LINK_CONFIG_IDX(sel_phy_idx);
}
static void bnx2x_set_requested_fc(struct bnx2x_softc *sc)
{
/*
* Initialize link parameters structure variables
* It is recommended to turn off RX FC for jumbo frames
* for better performance
*/
if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
} else {
sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
}
}
static void bnx2x_calc_fc_adv(struct bnx2x_softc *sc)
{
uint8_t cfg_idx = bnx2x_get_link_cfg_idx(sc);
switch (sc->link_vars.ieee_fc &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
default:
sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
ADVERTISED_Pause);
break;
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
ADVERTISED_Pause);
break;
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
break;
}
}
static uint16_t bnx2x_get_mf_speed(struct bnx2x_softc *sc)
{
uint16_t line_speed = sc->link_vars.line_speed;
if (IS_MF(sc)) {
uint16_t maxCfg = bnx2x_extract_max_cfg(sc,
sc->devinfo.
mf_info.mf_config[SC_VN
(sc)]);
/* calculate the current MAX line speed limit for the MF devices */
if (IS_MF_SI(sc)) {
line_speed = (line_speed * maxCfg) / 100;
} else { /* SD mode */
uint16_t vn_max_rate = maxCfg * 100;
if (vn_max_rate < line_speed) {
line_speed = vn_max_rate;
}
}
}
return line_speed;
}
static void
bnx2x_fill_report_data(struct bnx2x_softc *sc, struct bnx2x_link_report_data *data)
{
uint16_t line_speed = bnx2x_get_mf_speed(sc);
memset(data, 0, sizeof(*data));
/* fill the report data with the effective line speed */
data->line_speed = line_speed;
/* Link is down */
if (!sc->link_vars.link_up || (sc->flags & BNX2X_MF_FUNC_DIS)) {
bnx2x_set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
&data->link_report_flags);
}
/* Full DUPLEX */
if (sc->link_vars.duplex == DUPLEX_FULL) {
bnx2x_set_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
&data->link_report_flags);
}
/* Rx Flow Control is ON */
if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
bnx2x_set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
}
/* Tx Flow Control is ON */
if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
bnx2x_set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
}
}
/* report link status to OS, should be called under phy_lock */
static void bnx2x_link_report(struct bnx2x_softc *sc)
{
struct bnx2x_link_report_data cur_data;
/* reread mf_cfg */
if (IS_PF(sc)) {
bnx2x_read_mf_cfg(sc);
}
/* Read the current link report info */
bnx2x_fill_report_data(sc, &cur_data);
/* Don't report link down or exactly the same link status twice */
if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
(bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
&sc->last_reported_link.link_report_flags) &&
bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
&cur_data.link_report_flags))) {
return;
}
sc->link_cnt++;
/* report new link params and remember the state for the next time */
rte_memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
if (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
&cur_data.link_report_flags)) {
PMD_DRV_LOG(INFO, "NIC Link is Down");
} else {
__rte_unused const char *duplex;
__rte_unused const char *flow;
if (bnx2x_test_and_clear_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
&cur_data.link_report_flags)) {
duplex = "full";
} else {
duplex = "half";
}
/*
* Handle the FC at the end so that only these flags would be
* possibly set. This way we may easily check if there is no FC
* enabled.
*/
if (cur_data.link_report_flags) {
if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
&cur_data.link_report_flags) &&
bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
&cur_data.link_report_flags)) {
flow = "ON - receive & transmit";
} else if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
&cur_data.link_report_flags) &&
!bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
&cur_data.link_report_flags)) {
flow = "ON - receive";
} else if (!bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
&cur_data.link_report_flags) &&
bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
&cur_data.link_report_flags)) {
flow = "ON - transmit";
} else {
flow = "none"; /* possible? */
}
} else {
flow = "none";
}
PMD_DRV_LOG(INFO,
"NIC Link is Up, %d Mbps %s duplex, Flow control: %s",
cur_data.line_speed, duplex, flow);
}
}
void bnx2x_link_status_update(struct bnx2x_softc *sc)
{
if (sc->state != BNX2X_STATE_OPEN) {
return;
}
if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
elink_link_status_update(&sc->link_params, &sc->link_vars);
} else {
sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
ELINK_SUPPORTED_10baseT_Full |
ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full |
ELINK_SUPPORTED_1000baseT_Full |
ELINK_SUPPORTED_2500baseX_Full |
ELINK_SUPPORTED_10000baseT_Full |
ELINK_SUPPORTED_TP |
ELINK_SUPPORTED_FIBRE |
ELINK_SUPPORTED_Autoneg |
ELINK_SUPPORTED_Pause |
ELINK_SUPPORTED_Asym_Pause);
sc->port.advertising[0] = sc->port.supported[0];
sc->link_params.sc = sc;
sc->link_params.port = SC_PORT(sc);
sc->link_params.req_duplex[0] = DUPLEX_FULL;
sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
sc->link_params.req_line_speed[0] = SPEED_10000;
sc->link_params.speed_cap_mask[0] = 0x7f0000;
sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
if (CHIP_REV_IS_FPGA(sc)) {
sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
sc->link_vars.line_speed = ELINK_SPEED_1000;
sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
} else {
sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
sc->link_vars.line_speed = ELINK_SPEED_10000;
sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
}
sc->link_vars.link_up = 1;
sc->link_vars.duplex = DUPLEX_FULL;
sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
if (IS_PF(sc)) {
REG_WR(sc,
NIG_REG_EGRESS_DRAIN0_MODE +
sc->link_params.port * 4, 0);
bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
bnx2x_link_report(sc);
}
}
if (IS_PF(sc)) {
if (sc->link_vars.link_up) {
bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
} else {
bnx2x_stats_handle(sc, STATS_EVENT_STOP);
}
bnx2x_link_report(sc);
} else {
bnx2x_link_report(sc);
bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
}
}
static int bnx2x_initial_phy_init(struct bnx2x_softc *sc, int load_mode)
{
int rc, cfg_idx = bnx2x_get_link_cfg_idx(sc);
uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
struct elink_params *lp = &sc->link_params;
bnx2x_set_requested_fc(sc);
if (load_mode == LOAD_DIAG) {
lp->loopback_mode = ELINK_LOOPBACK_XGXS;
/* Prefer doing PHY loopback at 10G speed, if possible */
if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
if (lp->speed_cap_mask[cfg_idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
} else {
lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
}
}
}
if (load_mode == LOAD_LOOPBACK_EXT) {
lp->loopback_mode = ELINK_LOOPBACK_EXT;
}
rc = elink_phy_init(&sc->link_params, &sc->link_vars);
bnx2x_calc_fc_adv(sc);
if (sc->link_vars.link_up) {
bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
bnx2x_link_report(sc);
}
sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
return rc;
}
/* update flags in shmem */
static void
bnx2x_update_drv_flags(struct bnx2x_softc *sc, uint32_t flags, uint32_t set)
{
uint32_t drv_flags;
if (SHMEM2_HAS(sc, drv_flags)) {
bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
drv_flags = SHMEM2_RD(sc, drv_flags);
if (set) {
drv_flags |= flags;
} else {
drv_flags &= ~flags;
}
SHMEM2_WR(sc, drv_flags, drv_flags);
bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
}
}
/* periodic timer callout routine, only runs when the interface is up */
void bnx2x_periodic_callout(struct bnx2x_softc *sc)
{
if ((sc->state != BNX2X_STATE_OPEN) ||
(atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
PMD_DRV_LOG(INFO, "periodic callout exit (state=0x%x)",
sc->state);
return;
}
if (!CHIP_REV_IS_SLOW(sc)) {
/*
* This barrier is needed to ensure the ordering between the writing
* to the sc->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
* the reading here.
*/
mb();
if (sc->port.pmf) {
elink_period_func(&sc->link_params, &sc->link_vars);
}
}
#ifdef BNX2X_PULSE
if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
int mb_idx = SC_FW_MB_IDX(sc);
uint32_t drv_pulse;
uint32_t mcp_pulse;
++sc->fw_drv_pulse_wr_seq;
sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
drv_pulse = sc->fw_drv_pulse_wr_seq;
bnx2x_drv_pulse(sc);
mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
MCP_PULSE_SEQ_MASK);
/*
* The delta between driver pulse and mcp response should
* be 1 (before mcp response) or 0 (after mcp response).
*/
if ((drv_pulse != mcp_pulse) &&
(drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
/* someone lost a heartbeat... */
PMD_DRV_LOG(ERR,
"drv_pulse (0x%x) != mcp_pulse (0x%x)",
drv_pulse, mcp_pulse);
}
}
#endif
}
/* start the controller */
static __rte_noinline
int bnx2x_nic_load(struct bnx2x_softc *sc)
{
uint32_t val;
uint32_t load_code = 0;
int i, rc = 0;
PMD_INIT_FUNC_TRACE();
sc->state = BNX2X_STATE_OPENING_WAITING_LOAD;
if (IS_PF(sc)) {
/* must be called before memory allocation and HW init */
bnx2x_ilt_set_info(sc);
}
bnx2x_set_fp_rx_buf_size(sc);
if (IS_PF(sc)) {
if (bnx2x_alloc_mem(sc) != 0) {
sc->state = BNX2X_STATE_CLOSED;
rc = -ENOMEM;
goto bnx2x_nic_load_error0;
}
}
if (bnx2x_alloc_fw_stats_mem(sc) != 0) {
sc->state = BNX2X_STATE_CLOSED;
rc = -ENOMEM;
goto bnx2x_nic_load_error0;
}
if (IS_VF(sc)) {
rc = bnx2x_vf_init(sc);
if (rc) {
sc->state = BNX2X_STATE_ERROR;
goto bnx2x_nic_load_error0;
}
}
if (IS_PF(sc)) {
/* set pf load just before approaching the MCP */
bnx2x_set_pf_load(sc);
/* if MCP exists send load request and analyze response */
if (!BNX2X_NOMCP(sc)) {
/* attempt to load pf */
if (bnx2x_nic_load_request(sc, &load_code) != 0) {
sc->state = BNX2X_STATE_CLOSED;
rc = -ENXIO;
goto bnx2x_nic_load_error1;
}
/* what did the MCP say? */
if (bnx2x_nic_load_analyze_req(sc, load_code) != 0) {
bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
sc->state = BNX2X_STATE_CLOSED;
rc = -ENXIO;
goto bnx2x_nic_load_error2;
}
} else {
PMD_DRV_LOG(INFO, "Device has no MCP!");
load_code = bnx2x_nic_load_no_mcp(sc);
}
/* mark PMF if applicable */
bnx2x_nic_load_pmf(sc, load_code);
/* Init Function state controlling object */
bnx2x_init_func_obj(sc);
/* Initialize HW */
if (bnx2x_init_hw(sc, load_code) != 0) {
PMD_DRV_LOG(NOTICE, "HW init failed");
bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
sc->state = BNX2X_STATE_CLOSED;
rc = -ENXIO;
goto bnx2x_nic_load_error2;
}
}
bnx2x_nic_init(sc, load_code);
/* Init per-function objects */
if (IS_PF(sc)) {
bnx2x_init_objs(sc);
/* set AFEX default VLAN tag to an invalid value */
sc->devinfo.mf_info.afex_def_vlan_tag = -1;
sc->state = BNX2X_STATE_OPENING_WAITING_PORT;
rc = bnx2x_func_start(sc);
if (rc) {
PMD_DRV_LOG(NOTICE, "Function start failed!");
bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
sc->state = BNX2X_STATE_ERROR;
goto bnx2x_nic_load_error3;
}
/* send LOAD_DONE command to MCP */
if (!BNX2X_NOMCP(sc)) {
load_code =
bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
if (!load_code) {
PMD_DRV_LOG(NOTICE,
"MCP response failure, aborting");
sc->state = BNX2X_STATE_ERROR;
rc = -ENXIO;
goto bnx2x_nic_load_error3;
}
}
}
rc = bnx2x_setup_leading(sc);
if (rc) {
PMD_DRV_LOG(NOTICE, "Setup leading failed!");
sc->state = BNX2X_STATE_ERROR;
goto bnx2x_nic_load_error3;
}
FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
if (IS_PF(sc))
rc = bnx2x_setup_queue(sc, &sc->fp[i], FALSE);
else /* IS_VF(sc) */
rc = bnx2x_vf_setup_queue(sc, &sc->fp[i], FALSE);
if (rc) {
PMD_DRV_LOG(NOTICE, "Queue(%d) setup failed", i);
sc->state = BNX2X_STATE_ERROR;
goto bnx2x_nic_load_error3;
}
}
rc = bnx2x_init_rss_pf(sc);
if (rc) {
PMD_DRV_LOG(NOTICE, "PF RSS init failed");
sc->state = BNX2X_STATE_ERROR;
goto bnx2x_nic_load_error3;
}
/* now when Clients are configured we are ready to work */
sc->state = BNX2X_STATE_OPEN;
/* Configure a ucast MAC */
if (IS_PF(sc)) {
rc = bnx2x_set_eth_mac(sc, TRUE);
} else { /* IS_VF(sc) */
rc = bnx2x_vf_set_mac(sc, TRUE);
}
if (rc) {
PMD_DRV_LOG(NOTICE, "Setting Ethernet MAC failed");
sc->state = BNX2X_STATE_ERROR;
goto bnx2x_nic_load_error3;
}
if (sc->port.pmf) {
rc = bnx2x_initial_phy_init(sc, LOAD_OPEN);
if (rc) {
sc->state = BNX2X_STATE_ERROR;
goto bnx2x_nic_load_error3;
}
}
sc->link_params.feature_config_flags &=
~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
/* start the Tx */
switch (LOAD_OPEN) {
case LOAD_NORMAL:
case LOAD_OPEN:
break;
case LOAD_DIAG:
case LOAD_LOOPBACK_EXT:
sc->state = BNX2X_STATE_DIAG;
break;
default:
break;
}
if (sc->port.pmf) {
bnx2x_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
} else {
bnx2x_link_status_update(sc);
}
if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
/* mark driver is loaded in shmem2 */
val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
(val |
DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
DRV_FLAGS_CAPABILITIES_LOADED_L2));
}
/* start fast path */
/* Initialize Rx filter */
bnx2x_set_rx_mode(sc);
/* wait for all pending SP commands to complete */
if (IS_PF(sc) && !bnx2x_wait_sp_comp(sc, ~0x0UL)) {
PMD_DRV_LOG(NOTICE, "Timeout waiting for all SPs to complete!");
bnx2x_periodic_stop(sc);
bnx2x_nic_unload(sc, UNLOAD_CLOSE, FALSE);
return -ENXIO;
}
PMD_DRV_LOG(DEBUG, "NIC successfully loaded");
return 0;
bnx2x_nic_load_error3:
if (IS_PF(sc)) {
bnx2x_int_disable_sync(sc, 1);
/* clean out queued objects */
bnx2x_squeeze_objects(sc);
}
bnx2x_nic_load_error2:
if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
}
sc->port.pmf = 0;
bnx2x_nic_load_error1:
/* clear pf_load status, as it was already set */
if (IS_PF(sc)) {
bnx2x_clear_pf_load(sc);
}
bnx2x_nic_load_error0:
bnx2x_free_fw_stats_mem(sc);
bnx2x_free_mem(sc);
return rc;
}
/*
* Handles controller initialization.
*/
int bnx2x_init(struct bnx2x_softc *sc)
{
int other_engine = SC_PATH(sc) ? 0 : 1;
uint8_t other_load_status, load_status;
uint8_t global = FALSE;
int rc;
/* Check if the driver is still running and bail out if it is. */
if (sc->state != BNX2X_STATE_CLOSED) {
PMD_DRV_LOG(DEBUG, "Init called while driver is running!");
rc = 0;
goto bnx2x_init_done;
}
bnx2x_set_power_state(sc, PCI_PM_D0);
/*
* If parity occurred during the unload, then attentions and/or
* RECOVERY_IN_PROGRESS may still be set. If so we want the first function
* loaded on the current engine to complete the recovery. Parity recovery
* is only relevant for PF driver.
*/
if (IS_PF(sc)) {
other_load_status = bnx2x_get_load_status(sc, other_engine);
load_status = bnx2x_get_load_status(sc, SC_PATH(sc));
if (!bnx2x_reset_is_done(sc, SC_PATH(sc)) ||
bnx2x_chk_parity_attn(sc, &global, TRUE)) {
do {
/*
* If there are attentions and they are in global blocks, set
* the GLOBAL_RESET bit regardless whether it will be this
* function that will complete the recovery or not.
*/
if (global) {
bnx2x_set_reset_global(sc);
}
/*
* Only the first function on the current engine should try
* to recover in open. In case of attentions in global blocks
* only the first in the chip should try to recover.
*/
if ((!load_status
&& (!global ||!other_load_status))
&& bnx2x_trylock_leader_lock(sc)
&& !bnx2x_leader_reset(sc)) {
PMD_DRV_LOG(INFO,
"Recovered during init");
break;
}
/* recovery has failed... */
bnx2x_set_power_state(sc, PCI_PM_D3hot);
sc->recovery_state = BNX2X_RECOVERY_FAILED;
PMD_DRV_LOG(NOTICE,
"Recovery flow hasn't properly "
"completed yet, try again later. "
"If you still see this message after a "
"few retries then power cycle is required.");
rc = -ENXIO;
goto bnx2x_init_done;
} while (0);
}
}
sc->recovery_state = BNX2X_RECOVERY_DONE;
rc = bnx2x_nic_load(sc);
bnx2x_init_done:
if (rc) {
PMD_DRV_LOG(NOTICE, "Initialization failed, "
"stack notified driver is NOT running!");
}
return rc;
}
static void bnx2x_get_function_num(struct bnx2x_softc *sc)
{
uint32_t val = 0;
/*
* Read the ME register to get the function number. The ME register
* holds the relative-function number and absolute-function number. The
* absolute-function number appears only in E2 and above. Before that
* these bits always contained zero, therefore we cannot blindly use them.
*/
val = REG_RD(sc, BAR_ME_REGISTER);
sc->pfunc_rel =
(uint8_t) ((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
sc->path_id =
(uint8_t) ((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) &
1;
if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
} else {
sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
}
PMD_DRV_LOG(DEBUG,
"Relative function %d, Absolute function %d, Path %d",
sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
}
static uint32_t bnx2x_get_shmem_mf_cfg_base(struct bnx2x_softc *sc)
{
uint32_t shmem2_size;
uint32_t offset;
uint32_t mf_cfg_offset_value;
/* Non 57712 */
offset = (SHMEM_ADDR(sc, func_mb) +
(MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
/* 57712 plus */
if (sc->devinfo.shmem2_base != 0) {
shmem2_size = SHMEM2_RD(sc, size);
if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
offset = mf_cfg_offset_value;
}
}
}
return offset;
}
static uint32_t bnx2x_pcie_capability_read(struct bnx2x_softc *sc, int reg)
{
uint32_t ret;
struct bnx2x_pci_cap *caps;
/* ensure PCIe capability is enabled */
caps = pci_find_cap(sc, PCIY_EXPRESS, BNX2X_PCI_CAP);
if (NULL != caps) {
PMD_DRV_LOG(DEBUG, "Found PCIe capability: "
"id=0x%04X type=0x%04X addr=0x%08X",
caps->id, caps->type, caps->addr);
pci_read(sc, (caps->addr + reg), &ret, 2);
return ret;
}
PMD_DRV_LOG(WARNING, "PCIe capability NOT FOUND!!!");
return 0;
}
static uint8_t bnx2x_is_pcie_pending(struct bnx2x_softc *sc)
{
return bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA) &
PCIM_EXP_STA_TRANSACTION_PND;
}
/*
* Walk the PCI capabiites list for the device to find what features are
* supported. These capabilites may be enabled/disabled by firmware so it's
* best to walk the list rather than make assumptions.
*/
static void bnx2x_probe_pci_caps(struct bnx2x_softc *sc)
{
PMD_INIT_FUNC_TRACE();
struct bnx2x_pci_cap *caps;
uint16_t link_status;
#ifdef RTE_LIBRTE_BNX2X_DEBUG
int reg = 0;
#endif
/* check if PCI Power Management is enabled */
caps = pci_find_cap(sc, PCIY_PMG, BNX2X_PCI_CAP);
if (NULL != caps) {
PMD_DRV_LOG(DEBUG, "Found PM capability: "
"id=0x%04X type=0x%04X addr=0x%08X",
caps->id, caps->type, caps->addr);
sc->devinfo.pcie_cap_flags |= BNX2X_PM_CAPABLE_FLAG;
sc->devinfo.pcie_pm_cap_reg = caps->addr;
}
link_status = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA);
sc->devinfo.pcie_link_speed = (link_status & PCIM_LINK_STA_SPEED);
sc->devinfo.pcie_link_width =
((link_status & PCIM_LINK_STA_WIDTH) >> 4);
PMD_DRV_LOG(DEBUG, "PCIe link speed=%d width=%d",
sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
sc->devinfo.pcie_cap_flags |= BNX2X_PCIE_CAPABLE_FLAG;
/* check if MSI capability is enabled */
caps = pci_find_cap(sc, PCIY_MSI, BNX2X_PCI_CAP);
if (NULL != caps) {
PMD_DRV_LOG(DEBUG, "Found MSI capability at 0x%04x", reg);
sc->devinfo.pcie_cap_flags |= BNX2X_MSI_CAPABLE_FLAG;
sc->devinfo.pcie_msi_cap_reg = caps->addr;
}
/* check if MSI-X capability is enabled */
caps = pci_find_cap(sc, PCIY_MSIX, BNX2X_PCI_CAP);
if (NULL != caps) {
PMD_DRV_LOG(DEBUG, "Found MSI-X capability at 0x%04x", reg);
sc->devinfo.pcie_cap_flags |= BNX2X_MSIX_CAPABLE_FLAG;
sc->devinfo.pcie_msix_cap_reg = caps->addr;
}
}
static int bnx2x_get_shmem_mf_cfg_info_sd(struct bnx2x_softc *sc)
{
struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
uint32_t val;
/* get the outer vlan if we're in switch-dependent mode */
val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
mf_info->ext_id = (uint16_t) val;
mf_info->multi_vnics_mode = 1;
if (!VALID_OVLAN(mf_info->ext_id)) {
PMD_DRV_LOG(NOTICE, "Invalid VLAN (%d)", mf_info->ext_id);
return 1;
}
/* get the capabilities */
if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
FUNC_MF_CFG_PROTOCOL_ISCSI) {
mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
} else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK)
== FUNC_MF_CFG_PROTOCOL_FCOE) {
mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
} else {
mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
}
mf_info->vnics_per_port =
(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
return 0;
}
static uint32_t bnx2x_get_shmem_ext_proto_support_flags(struct bnx2x_softc *sc)
{
uint32_t retval = 0;
uint32_t val;
val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
retval |= MF_PROTO_SUPPORT_ETHERNET;
}
if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
retval |= MF_PROTO_SUPPORT_ISCSI;
}
if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
retval |= MF_PROTO_SUPPORT_FCOE;
}
}
return retval;
}
static int bnx2x_get_shmem_mf_cfg_info_si(struct bnx2x_softc *sc)
{
struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
uint32_t val;
/*
* There is no outer vlan if we're in switch-independent mode.
* If the mac is valid then assume multi-function.
*/
val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
mf_info->mf_protos_supported =
bnx2x_get_shmem_ext_proto_support_flags(sc);
mf_info->vnics_per_port =
(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
return 0;
}
static int bnx2x_get_shmem_mf_cfg_info_niv(struct bnx2x_softc *sc)
{
struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
uint32_t e1hov_tag;
uint32_t func_config;
uint32_t niv_config;
mf_info->multi_vnics_mode = 1;
e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
mf_info->ext_id =
(uint16_t) ((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
FUNC_MF_CFG_E1HOV_TAG_SHIFT);
mf_info->default_vlan =
(uint16_t) ((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
FUNC_MF_CFG_AFEX_VLAN_SHIFT);
mf_info->niv_allowed_priorities =
(uint8_t) ((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
mf_info->niv_default_cos =
(uint8_t) ((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
mf_info->afex_vlan_mode =
((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
mf_info->niv_mba_enabled =
((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
mf_info->mf_protos_supported =
bnx2x_get_shmem_ext_proto_support_flags(sc);
mf_info->vnics_per_port =
(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
return 0;
}
static int bnx2x_check_valid_mf_cfg(struct bnx2x_softc *sc)
{
struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
uint32_t mf_cfg1;
uint32_t mf_cfg2;
uint32_t ovlan1;
uint32_t ovlan2;
uint8_t i, j;
/* various MF mode sanity checks... */
if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
PMD_DRV_LOG(NOTICE,
"Enumerated function %d is marked as hidden",
SC_PORT(sc));
return 1;
}
if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
PMD_DRV_LOG(NOTICE, "vnics_per_port=%d multi_vnics_mode=%d",
mf_info->vnics_per_port, mf_info->multi_vnics_mode);
return 1;
}
if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
/* vnic id > 0 must have valid ovlan in switch-dependent mode */
if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
PMD_DRV_LOG(NOTICE, "mf_mode=SD vnic_id=%d ovlan=%d",
SC_VN(sc), OVLAN(sc));
return 1;
}
if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
PMD_DRV_LOG(NOTICE,
"mf_mode=SD multi_vnics_mode=%d ovlan=%d",
mf_info->multi_vnics_mode, OVLAN(sc));
return 1;
}
/*
* Verify all functions are either MF or SF mode. If MF, make sure
* sure that all non-hidden functions have a valid ovlan. If SF,
* make sure that all non-hidden functions have an invalid ovlan.
*/
FOREACH_ABS_FUNC_IN_PORT(sc, i) {
mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
(((mf_info->multi_vnics_mode)
&& !VALID_OVLAN(ovlan1))
|| ((!mf_info->multi_vnics_mode)
&& VALID_OVLAN(ovlan1)))) {
PMD_DRV_LOG(NOTICE,
"mf_mode=SD function %d MF config "
"mismatch, multi_vnics_mode=%d ovlan=%d",
i, mf_info->multi_vnics_mode,
ovlan1);
return 1;
}
}
/* Verify all funcs on the same port each have a different ovlan. */
FOREACH_ABS_FUNC_IN_PORT(sc, i) {
mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
/* iterate from the next function on the port to the max func */
for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
mf_cfg2 =
MFCFG_RD(sc, func_mf_config[j].config);
ovlan2 =
MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE)
&& VALID_OVLAN(ovlan1)
&& !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE)
&& VALID_OVLAN(ovlan2)
&& (ovlan1 == ovlan2)) {
PMD_DRV_LOG(NOTICE,
"mf_mode=SD functions %d and %d "
"have the same ovlan (%d)",
i, j, ovlan1);
return 1;
}
}
}
}
/* MULTI_FUNCTION_SD */
return 0;
}
static int bnx2x_get_mf_cfg_info(struct bnx2x_softc *sc)
{
struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
uint32_t val, mac_upper;
uint8_t i, vnic;
/* initialize mf_info defaults */
mf_info->vnics_per_port = 1;
mf_info->multi_vnics_mode = FALSE;
mf_info->path_has_ovlan = FALSE;
mf_info->mf_mode = SINGLE_FUNCTION;
if (!CHIP_IS_MF_CAP(sc)) {
return 0;
}
if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
PMD_DRV_LOG(NOTICE, "Invalid mf_cfg_base!");
return 1;
}
/* get the MF mode (switch dependent / independent / single-function) */
val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) {
case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
mac_upper =
MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
/* check for legal upper mac bytes */
if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
mf_info->mf_mode = MULTI_FUNCTION_SI;
} else {
PMD_DRV_LOG(NOTICE,
"Invalid config for Switch Independent mode");
}
break;
case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
/* get outer vlan configuration */
val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
mf_info->mf_mode = MULTI_FUNCTION_SD;
} else {
PMD_DRV_LOG(NOTICE,
"Invalid config for Switch Dependent mode");
}
break;
case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
/* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
return 0;
case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
/*
* Mark MF mode as NIV if MCP version includes NPAR-SD support
* and the MAC address is valid.
*/
mac_upper =
MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
if ((SHMEM2_HAS(sc, afex_driver_support)) &&
(mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
mf_info->mf_mode = MULTI_FUNCTION_AFEX;
} else {
PMD_DRV_LOG(NOTICE, "Invalid config for AFEX mode");
}
break;
default:
PMD_DRV_LOG(NOTICE, "Unknown MF mode (0x%08x)",
(val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
return 1;
}
/* set path mf_mode (which could be different than function mf_mode) */
if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
mf_info->path_has_ovlan = TRUE;
} else if (mf_info->mf_mode == SINGLE_FUNCTION) {
/*
* Decide on path multi vnics mode. If we're not in MF mode and in
* 4-port mode, this is good enough to check vnic-0 of the other port
* on the same path
*/
if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
uint8_t other_port = !(PORT_ID(sc) & 1);
uint8_t abs_func_other_port =
(SC_PATH(sc) + (2 * other_port));
val =
MFCFG_RD(sc,
func_mf_config
[abs_func_other_port].e1hov_tag);
mf_info->path_has_ovlan = VALID_OVLAN((uint16_t) val);
}
}
if (mf_info->mf_mode == SINGLE_FUNCTION) {
/* invalid MF config */
if (SC_VN(sc) >= 1) {
PMD_DRV_LOG(NOTICE, "VNIC ID >= 1 in SF mode");
return 1;
}
return 0;
}
/* get the MF configuration */
mf_info->mf_config[SC_VN(sc)] =
MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
switch (mf_info->mf_mode) {
case MULTI_FUNCTION_SD:
bnx2x_get_shmem_mf_cfg_info_sd(sc);
break;
case MULTI_FUNCTION_SI:
bnx2x_get_shmem_mf_cfg_info_si(sc);
break;
case MULTI_FUNCTION_AFEX:
bnx2x_get_shmem_mf_cfg_info_niv(sc);
break;
default:
PMD_DRV_LOG(NOTICE, "Get MF config failed (mf_mode=0x%08x)",
mf_info->mf_mode);
return 1;
}
/* get the congestion management parameters */
vnic = 0;
FOREACH_ABS_FUNC_IN_PORT(sc, i) {
/* get min/max bw */
val = MFCFG_RD(sc, func_mf_config[i].config);
mf_info->min_bw[vnic] =
((val & FUNC_MF_CFG_MIN_BW_MASK) >>
FUNC_MF_CFG_MIN_BW_SHIFT);
mf_info->max_bw[vnic] =
((val & FUNC_MF_CFG_MAX_BW_MASK) >>
FUNC_MF_CFG_MAX_BW_SHIFT);
vnic++;
}
return bnx2x_check_valid_mf_cfg(sc);
}
static int bnx2x_get_shmem_info(struct bnx2x_softc *sc)
{
int port;
uint32_t mac_hi, mac_lo, val;
PMD_INIT_FUNC_TRACE();
port = SC_PORT(sc);
mac_hi = mac_lo = 0;
sc->link_params.sc = sc;
sc->link_params.port = port;
/* get the hardware config info */
sc->devinfo.hw_config = SHMEM_RD(sc, dev_info.shared_hw_config.config);
sc->devinfo.hw_config2 =
SHMEM_RD(sc, dev_info.shared_hw_config.config2);
sc->link_params.hw_led_mode =
((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
SHARED_HW_CFG_LED_MODE_SHIFT);
/* get the port feature config */
sc->port.config =
SHMEM_RD(sc, dev_info.port_feature_config[port].config);
/* get the link params */
sc->link_params.speed_cap_mask[ELINK_INT_PHY] =
SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask)
& PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
sc->link_params.speed_cap_mask[ELINK_EXT_PHY1] =
SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2)
& PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
/* get the lane config */
sc->link_params.lane_config =
SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
/* get the link config */
val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
sc->port.link_config[ELINK_INT_PHY] = val;
sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
sc->port.link_config[ELINK_EXT_PHY1] =
SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
/* get the override preemphasis flag and enable it or turn it off */
val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
sc->link_params.feature_config_flags |=
ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
} else {
sc->link_params.feature_config_flags &=
~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
}
/* get the initial value of the link params */
sc->link_params.multi_phy_config =
SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
/* get external phy info */
sc->port.ext_phy_config =
SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
/* get the multifunction configuration */
bnx2x_get_mf_cfg_info(sc);
/* get the mac address */
if (IS_MF(sc)) {
mac_hi =
MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
mac_lo =
MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
} else {
mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
}
if ((mac_lo == 0) && (mac_hi == 0)) {
*sc->mac_addr_str = 0;
PMD_DRV_LOG(NOTICE, "No Ethernet address programmed!");
} else {
sc->link_params.mac_addr[0] = (uint8_t) (mac_hi >> 8);
sc->link_params.mac_addr[1] = (uint8_t) (mac_hi);
sc->link_params.mac_addr[2] = (uint8_t) (mac_lo >> 24);
sc->link_params.mac_addr[3] = (uint8_t) (mac_lo >> 16);
sc->link_params.mac_addr[4] = (uint8_t) (mac_lo >> 8);
sc->link_params.mac_addr[5] = (uint8_t) (mac_lo);
snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
"%02x:%02x:%02x:%02x:%02x:%02x",
sc->link_params.mac_addr[0],
sc->link_params.mac_addr[1],
sc->link_params.mac_addr[2],
sc->link_params.mac_addr[3],
sc->link_params.mac_addr[4],
sc->link_params.mac_addr[5]);
PMD_DRV_LOG(DEBUG, "Ethernet address: %s", sc->mac_addr_str);
}
return 0;
}
static void bnx2x_media_detect(struct bnx2x_softc *sc)
{
uint32_t phy_idx = bnx2x_get_cur_phy_idx(sc);
switch (sc->link_params.phy[phy_idx].media_type) {
case ELINK_ETH_PHY_SFPP_10G_FIBER:
case ELINK_ETH_PHY_SFP_1G_FIBER:
case ELINK_ETH_PHY_XFP_FIBER:
case ELINK_ETH_PHY_KR:
case ELINK_ETH_PHY_CX4:
PMD_DRV_LOG(INFO, "Found 10GBase-CX4 media.");
sc->media = IFM_10G_CX4;
break;
case ELINK_ETH_PHY_DA_TWINAX:
PMD_DRV_LOG(INFO, "Found 10Gb Twinax media.");
sc->media = IFM_10G_TWINAX;
break;
case ELINK_ETH_PHY_BASE_T:
PMD_DRV_LOG(INFO, "Found 10GBase-T media.");
sc->media = IFM_10G_T;
break;
case ELINK_ETH_PHY_NOT_PRESENT:
PMD_DRV_LOG(INFO, "Media not present.");
sc->media = 0;
break;
case ELINK_ETH_PHY_UNSPECIFIED:
default:
PMD_DRV_LOG(INFO, "Unknown media!");
sc->media = 0;
break;
}
}
#define GET_FIELD(value, fname) \
(((value) & (fname##_MASK)) >> (fname##_SHIFT))
#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
static int bnx2x_get_igu_cam_info(struct bnx2x_softc *sc)
{
int pfid = SC_FUNC(sc);
int igu_sb_id;
uint32_t val;
uint8_t fid, igu_sb_cnt = 0;
sc->igu_base_sb = 0xff;
if (CHIP_INT_MODE_IS_BC(sc)) {
int vn = SC_VN(sc);
igu_sb_cnt = sc->igu_sb_cnt;
sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
FP_SB_MAX_E1x);
sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
(CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
return 0;
}
/* IGU in normal mode - read CAM */
for (igu_sb_id = 0;
igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; igu_sb_id++) {
val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
continue;
}
fid = IGU_FID(val);
if ((fid & IGU_FID_ENCODE_IS_PF)) {
if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
continue;
}
if (IGU_VEC(val) == 0) {
/* default status block */
sc->igu_dsb_id = igu_sb_id;
} else {
if (sc->igu_base_sb == 0xff) {
sc->igu_base_sb = igu_sb_id;
}
igu_sb_cnt++;
}
}
}
/*
* Due to new PF resource allocation by MFW T7.4 and above, it's optional
* that number of CAM entries will not be equal to the value advertised in
* PCI. Driver should use the minimal value of both as the actual status
* block count
*/
sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
if (igu_sb_cnt == 0) {
PMD_DRV_LOG(ERR, "CAM configuration error");
return -1;
}
return 0;
}
/*
* Gather various information from the device config space, the device itself,
* shmem, and the user input.
*/
static int bnx2x_get_device_info(struct bnx2x_softc *sc)
{
uint32_t val;
int rc;
/* get the chip revision (chip metal comes from pci config space) */
sc->devinfo.chip_id = sc->link_params.chip_id =
(((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
(((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
/* force 57811 according to MISC register */
if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
if (CHIP_IS_57810(sc)) {
sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
(sc->
devinfo.chip_id & 0x0000ffff));
} else if (CHIP_IS_57810_MF(sc)) {
sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
(sc->
devinfo.chip_id & 0x0000ffff));
}
sc->devinfo.chip_id |= 0x1;
}
PMD_DRV_LOG(DEBUG,
"chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)",
sc->devinfo.chip_id,
((sc->devinfo.chip_id >> 16) & 0xffff),
((sc->devinfo.chip_id >> 12) & 0xf),
((sc->devinfo.chip_id >> 4) & 0xff),
((sc->devinfo.chip_id >> 0) & 0xf));
val = (REG_RD(sc, 0x2874) & 0x55);
if ((sc->devinfo.chip_id & 0x1) || (CHIP_IS_E1H(sc) && (val == 0x55))) {
sc->flags |= BNX2X_ONE_PORT_FLAG;
PMD_DRV_LOG(DEBUG, "single port device");
}
/* set the doorbell size */
sc->doorbell_size = (1 << BNX2X_DB_SHIFT);
/* determine whether the device is in 2 port or 4 port mode */
sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1h */
if (CHIP_IS_E2E3(sc)) {
/*
* Read port4mode_en_ovwr[0]:
* If 1, four port mode is in port4mode_en_ovwr[1].
* If 0, four port mode is in port4mode_en[0].
*/
val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
if (val & 1) {
val = ((val >> 1) & 1);
} else {
val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
}
sc->devinfo.chip_port_mode =
(val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
PMD_DRV_LOG(DEBUG, "Port mode = %s", (val) ? "4" : "2");
}
/* get the function and path info for the device */
bnx2x_get_function_num(sc);
/* get the shared memory base address */
sc->devinfo.shmem_base =
sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
sc->devinfo.shmem2_base =
REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
MISC_REG_GENERIC_CR_0));
if (!sc->devinfo.shmem_base) {
/* this should ONLY prevent upcoming shmem reads */
PMD_DRV_LOG(INFO, "MCP not active");
sc->flags |= BNX2X_NO_MCP_FLAG;
return 0;
}
/* make sure the shared memory contents are valid */
val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
(SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
PMD_DRV_LOG(NOTICE, "Invalid SHMEM validity signature: 0x%08x",
val);
return 0;
}
/* get the bootcode version */
sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
snprintf(sc->devinfo.bc_ver_str,
sizeof(sc->devinfo.bc_ver_str),
"%d.%d.%d",
((sc->devinfo.bc_ver >> 24) & 0xff),
((sc->devinfo.bc_ver >> 16) & 0xff),
((sc->devinfo.bc_ver >> 8) & 0xff));
PMD_DRV_LOG(INFO, "Bootcode version: %s", sc->devinfo.bc_ver_str);
/* get the bootcode shmem address */
sc->devinfo.mf_cfg_base = bnx2x_get_shmem_mf_cfg_base(sc);
/* clean indirect addresses as they're not used */
pci_write_long(sc, PCICFG_GRC_ADDRESS, 0);
if (IS_PF(sc)) {
REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
if (CHIP_IS_E1x(sc)) {
REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
}
}
/* get the nvram size */
val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
sc->devinfo.flash_size =
(NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
bnx2x_set_power_state(sc, PCI_PM_D0);
/* get various configuration parameters from shmem */
bnx2x_get_shmem_info(sc);
/* initialize IGU parameters */
if (CHIP_IS_E1x(sc)) {
sc->devinfo.int_block = INT_BLOCK_HC;
sc->igu_dsb_id = DEF_SB_IGU_ID;
sc->igu_base_sb = 0;
} else {
sc->devinfo.int_block = INT_BLOCK_IGU;
/* do not allow device reset during IGU info preocessing */
bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
int tout = 5000;
val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
tout--;
DELAY(1000);
}
if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
PMD_DRV_LOG(NOTICE,
"FORCING IGU Normal Mode failed!!!");
bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
return -1;
}
}
if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
PMD_DRV_LOG(DEBUG, "IGU Backward Compatible Mode");
sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
} else {
PMD_DRV_LOG(DEBUG, "IGU Normal Mode");
}
rc = bnx2x_get_igu_cam_info(sc);
bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
if (rc) {
return rc;
}
}
/*
* Get base FW non-default (fast path) status block ID. This value is
* used to initialize the fw_sb_id saved on the fp/queue structure to
* determine the id used by the FW.
*/
if (CHIP_IS_E1x(sc)) {
sc->base_fw_ndsb =
((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
} else {
/*
* 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
* the same queue are indicated on the same IGU SB). So we prefer
* FW and IGU SBs to be the same value.
*/
sc->base_fw_ndsb = sc->igu_base_sb;
}
elink_phy_probe(&sc->link_params);
return 0;
}
static void
bnx2x_link_settings_supported(struct bnx2x_softc *sc, uint32_t switch_cfg)
{
uint32_t cfg_size = 0;
uint32_t idx;
uint8_t port = SC_PORT(sc);
/* aggregation of supported attributes of all external phys */
sc->port.supported[0] = 0;
sc->port.supported[1] = 0;
switch (sc->link_params.num_phys) {
case 1:
sc->port.supported[0] =
sc->link_params.phy[ELINK_INT_PHY].supported;
cfg_size = 1;
break;
case 2:
sc->port.supported[0] =
sc->link_params.phy[ELINK_EXT_PHY1].supported;
cfg_size = 1;
break;
case 3:
if (sc->link_params.multi_phy_config &
PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
sc->port.supported[1] =
sc->link_params.phy[ELINK_EXT_PHY1].supported;
sc->port.supported[0] =
sc->link_params.phy[ELINK_EXT_PHY2].supported;
} else {
sc->port.supported[0] =
sc->link_params.phy[ELINK_EXT_PHY1].supported;
sc->port.supported[1] =
sc->link_params.phy[ELINK_EXT_PHY2].supported;
}
cfg_size = 2;
break;
}
if (!(sc->port.supported[0] || sc->port.supported[1])) {
PMD_DRV_LOG(ERR,
"Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)",
SHMEM_RD(sc,
dev_info.port_hw_config
[port].external_phy_config),
SHMEM_RD(sc,
dev_info.port_hw_config
[port].external_phy_config2));
return;
}
if (CHIP_IS_E3(sc))
sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
else {
switch (switch_cfg) {
case ELINK_SWITCH_CFG_1G:
sc->port.phy_addr =
REG_RD(sc,
NIG_REG_SERDES0_CTRL_PHY_ADDR + port * 0x10);
break;
case ELINK_SWITCH_CFG_10G:
sc->port.phy_addr =
REG_RD(sc,
NIG_REG_XGXS0_CTRL_PHY_ADDR + port * 0x18);
break;
default:
PMD_DRV_LOG(ERR,
"Invalid switch config in"
"link_config=0x%08x",
sc->port.link_config[0]);
return;
}
}
PMD_DRV_LOG(INFO, "PHY addr 0x%08x", sc->port.phy_addr);
/* mask what we support according to speed_cap_mask per configuration */
for (idx = 0; idx < cfg_size; idx++) {
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
sc->port.supported[idx] &=
~ELINK_SUPPORTED_10baseT_Half;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
sc->port.supported[idx] &=
~ELINK_SUPPORTED_10baseT_Full;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
sc->port.supported[idx] &=
~ELINK_SUPPORTED_100baseT_Half;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
sc->port.supported[idx] &=
~ELINK_SUPPORTED_100baseT_Full;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
sc->port.supported[idx] &=
~ELINK_SUPPORTED_1000baseT_Full;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
sc->port.supported[idx] &=
~ELINK_SUPPORTED_2500baseX_Full;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
sc->port.supported[idx] &=
~ELINK_SUPPORTED_10000baseT_Full;
}
if (!(sc->link_params.speed_cap_mask[idx] &
PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
sc->port.supported[idx] &=
~ELINK_SUPPORTED_20000baseKR2_Full;
}
}
PMD_DRV_LOG(INFO, "PHY supported 0=0x%08x 1=0x%08x",
sc->port.supported[0], sc->port.supported[1]);
}
static void bnx2x_link_settings_requested(struct bnx2x_softc *sc)
{
uint32_t link_config;
uint32_t idx;
uint32_t cfg_size = 0;
sc->port.advertising[0] = 0;
sc->port.advertising[1] = 0;
switch (sc->link_params.num_phys) {
case 1:
case 2:
cfg_size = 1;
break;
case 3:
cfg_size = 2;
break;
}
for (idx = 0; idx < cfg_size; idx++) {
sc->link_params.req_duplex[idx] = DUPLEX_FULL;
link_config = sc->port.link_config[idx];
switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
case PORT_FEATURE_LINK_SPEED_AUTO:
if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
sc->link_params.req_line_speed[idx] =
ELINK_SPEED_AUTO_NEG;
sc->port.advertising[idx] |=
sc->port.supported[idx];
if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BNX2X84833)
sc->port.advertising[idx] |=
(ELINK_SUPPORTED_100baseT_Half |
ELINK_SUPPORTED_100baseT_Full);
} else {
/* force 10G, no AN */
sc->link_params.req_line_speed[idx] =
ELINK_SPEED_10000;
sc->port.advertising[idx] |=
(ADVERTISED_10000baseT_Full |
ADVERTISED_FIBRE);
continue;
}
break;
case PORT_FEATURE_LINK_SPEED_10M_FULL:
if (sc->
port.supported[idx] & ELINK_SUPPORTED_10baseT_Full)
{
sc->link_params.req_line_speed[idx] =
ELINK_SPEED_10;
sc->port.advertising[idx] |=
(ADVERTISED_10baseT_Full | ADVERTISED_TP);
} else {
PMD_DRV_LOG(ERR,
"Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x",
link_config,
sc->
link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_10M_HALF:
if (sc->
port.supported[idx] & ELINK_SUPPORTED_10baseT_Half)
{
sc->link_params.req_line_speed[idx] =
ELINK_SPEED_10;
sc->link_params.req_duplex[idx] = DUPLEX_HALF;
sc->port.advertising[idx] |=
(ADVERTISED_10baseT_Half | ADVERTISED_TP);
} else {
PMD_DRV_LOG(ERR,
"Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x",
link_config,
sc->
link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_100M_FULL:
if (sc->
port.supported[idx] & ELINK_SUPPORTED_100baseT_Full)
{
sc->link_params.req_line_speed[idx] =
ELINK_SPEED_100;
sc->port.advertising[idx] |=
(ADVERTISED_100baseT_Full | ADVERTISED_TP);
} else {
PMD_DRV_LOG(ERR,
"Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x",
link_config,
sc->
link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_100M_HALF:
if (sc->
port.supported[idx] & ELINK_SUPPORTED_100baseT_Half)
{
sc->link_params.req_line_speed[idx] =
ELINK_SPEED_100;
sc->link_params.req_duplex[idx] = DUPLEX_HALF;
sc->port.advertising[idx] |=
(ADVERTISED_100baseT_Half | ADVERTISED_TP);
} else {
PMD_DRV_LOG(ERR,
"Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x",
link_config,
sc->
link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_1G:
if (sc->port.supported[idx] &
ELINK_SUPPORTED_1000baseT_Full) {
sc->link_params.req_line_speed[idx] =
ELINK_SPEED_1000;
sc->port.advertising[idx] |=
(ADVERTISED_1000baseT_Full | ADVERTISED_TP);
} else {
PMD_DRV_LOG(ERR,
"Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x",
link_config,
sc->
link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_2_5G:
if (sc->port.supported[idx] &
ELINK_SUPPORTED_2500baseX_Full) {
sc->link_params.req_line_speed[idx] =
ELINK_SPEED_2500;
sc->port.advertising[idx] |=
(ADVERTISED_2500baseX_Full | ADVERTISED_TP);
} else {
PMD_DRV_LOG(ERR,
"Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x",
link_config,
sc->
link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_10G_CX4:
if (sc->port.supported[idx] &
ELINK_SUPPORTED_10000baseT_Full) {
sc->link_params.req_line_speed[idx] =
ELINK_SPEED_10000;
sc->port.advertising[idx] |=
(ADVERTISED_10000baseT_Full |
ADVERTISED_FIBRE);
} else {
PMD_DRV_LOG(ERR,
"Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x",
link_config,
sc->
link_params.speed_cap_mask[idx]);
return;
}
break;
case PORT_FEATURE_LINK_SPEED_20G:
sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
break;
default:
PMD_DRV_LOG(ERR,
"Invalid NVRAM config link_config=0x%08x "
"speed_cap_mask=0x%08x", link_config,
sc->link_params.speed_cap_mask[idx]);
sc->link_params.req_line_speed[idx] =
ELINK_SPEED_AUTO_NEG;
sc->port.advertising[idx] = sc->port.supported[idx];
break;
}
sc->link_params.req_flow_ctrl[idx] =
(link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
if (!
(sc->
port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
sc->link_params.req_flow_ctrl[idx] =
ELINK_FLOW_CTRL_NONE;
} else {
bnx2x_set_requested_fc(sc);
}
}
}
}
static void bnx2x_get_phy_info(struct bnx2x_softc *sc)
{
uint8_t port = SC_PORT(sc);
uint32_t eee_mode;
PMD_INIT_FUNC_TRACE();
/* shmem data already read in bnx2x_get_shmem_info() */
bnx2x_link_settings_supported(sc, sc->link_params.switch_cfg);
bnx2x_link_settings_requested(sc);
/* configure link feature according to nvram value */
eee_mode =
(((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode))
& PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
ELINK_EEE_MODE_ENABLE_LPI |
ELINK_EEE_MODE_OUTPUT_TIME);
} else {
sc->link_params.eee_mode = 0;
}
/* get the media type */
bnx2x_media_detect(sc);
}
static void bnx2x_set_modes_bitmap(struct bnx2x_softc *sc)
{
uint32_t flags = MODE_ASIC | MODE_PORT2;
if (CHIP_IS_E2(sc)) {
flags |= MODE_E2;
} else if (CHIP_IS_E3(sc)) {
flags |= MODE_E3;
if (CHIP_REV(sc) == CHIP_REV_Ax) {
flags |= MODE_E3_A0;
} else { /*if (CHIP_REV(sc) == CHIP_REV_Bx) */
flags |= MODE_E3_B0 | MODE_COS3;
}
}
if (IS_MF(sc)) {
flags |= MODE_MF;
switch (sc->devinfo.mf_info.mf_mode) {
case MULTI_FUNCTION_SD:
flags |= MODE_MF_SD;
break;
case MULTI_FUNCTION_SI:
flags |= MODE_MF_SI;
break;
case MULTI_FUNCTION_AFEX:
flags |= MODE_MF_AFEX;
break;
}
} else {
flags |= MODE_SF;
}
#if defined(__LITTLE_ENDIAN)
flags |= MODE_LITTLE_ENDIAN;
#else /* __BIG_ENDIAN */
flags |= MODE_BIG_ENDIAN;
#endif
INIT_MODE_FLAGS(sc) = flags;
}
int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc)
{
struct bnx2x_fastpath *fp;
char buf[32];
uint32_t i;
if (IS_PF(sc)) {
/************************/
/* DEFAULT STATUS BLOCK */
/************************/
if (bnx2x_dma_alloc(sc, sizeof(struct host_sp_status_block),
&sc->def_sb_dma, "def_sb",
RTE_CACHE_LINE_SIZE) != 0) {
return -1;
}
sc->def_sb =
(struct host_sp_status_block *)sc->def_sb_dma.vaddr;
/***************/
/* EVENT QUEUE */
/***************/
if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
&sc->eq_dma, "ev_queue",
RTE_CACHE_LINE_SIZE) != 0) {
sc->def_sb = NULL;
return -1;
}
sc->eq = (union event_ring_elem *)sc->eq_dma.vaddr;
/*************/
/* SLOW PATH */
/*************/
if (bnx2x_dma_alloc(sc, sizeof(struct bnx2x_slowpath),
&sc->sp_dma, "sp",
RTE_CACHE_LINE_SIZE) != 0) {
sc->eq = NULL;
sc->def_sb = NULL;
return -1;
}
sc->sp = (struct bnx2x_slowpath *)sc->sp_dma.vaddr;
/*******************/
/* SLOW PATH QUEUE */
/*******************/
if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
&sc->spq_dma, "sp_queue",
RTE_CACHE_LINE_SIZE) != 0) {
sc->sp = NULL;
sc->eq = NULL;
sc->def_sb = NULL;
return -1;
}
sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
/***************************/
/* FW DECOMPRESSION BUFFER */
/***************************/
if (bnx2x_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
"fw_buf", RTE_CACHE_LINE_SIZE) != 0) {
sc->spq = NULL;
sc->sp = NULL;
sc->eq = NULL;
sc->def_sb = NULL;
return -1;
}
sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
}
/*************/
/* FASTPATHS */
/*************/
/* allocate DMA memory for each fastpath structure */
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
fp->sc = sc;
fp->index = i;
/*******************/
/* FP STATUS BLOCK */
/*******************/
snprintf(buf, sizeof(buf), "fp_%d_sb", i);
if (bnx2x_dma_alloc(sc, sizeof(union bnx2x_host_hc_status_block),
&fp->sb_dma, buf, RTE_CACHE_LINE_SIZE) != 0) {
PMD_DRV_LOG(NOTICE, "Failed to alloc %s", buf);
return -1;
} else {
if (CHIP_IS_E2E3(sc)) {
fp->status_block.e2_sb =
(struct host_hc_status_block_e2 *)
fp->sb_dma.vaddr;
} else {
fp->status_block.e1x_sb =
(struct host_hc_status_block_e1x *)
fp->sb_dma.vaddr;
}
}
}
return 0;
}
void bnx2x_free_hsi_mem(struct bnx2x_softc *sc)
{
struct bnx2x_fastpath *fp;
int i;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
/*******************/
/* FP STATUS BLOCK */
/*******************/
memset(&fp->status_block, 0, sizeof(fp->status_block));
}
/***************************/
/* FW DECOMPRESSION BUFFER */
/***************************/
sc->gz_buf = NULL;
/*******************/
/* SLOW PATH QUEUE */
/*******************/
sc->spq = NULL;
/*************/
/* SLOW PATH */
/*************/
sc->sp = NULL;
/***************/
/* EVENT QUEUE */
/***************/
sc->eq = NULL;
/************************/
/* DEFAULT STATUS BLOCK */
/************************/
sc->def_sb = NULL;
}
/*
* Previous driver DMAE transaction may have occurred when pre-boot stage
* ended and boot began. This would invalidate the addresses of the
* transaction, resulting in was-error bit set in the PCI causing all
* hw-to-host PCIe transactions to timeout. If this happened we want to clear
* the interrupt which detected this from the pglueb and the was-done bit
*/
static void bnx2x_prev_interrupted_dmae(struct bnx2x_softc *sc)
{
uint32_t val;
if (!CHIP_IS_E1x(sc)) {
val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
1 << SC_FUNC(sc));
}
}
}
static int bnx2x_prev_mcp_done(struct bnx2x_softc *sc)
{
uint32_t rc = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
if (!rc) {
PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
return -1;
}
return 0;
}
static struct bnx2x_prev_list_node *bnx2x_prev_path_get_entry(struct bnx2x_softc *sc)
{
struct bnx2x_prev_list_node *tmp;
LIST_FOREACH(tmp, &bnx2x_prev_list, node) {
if ((sc->pcie_bus == tmp->bus) &&
(sc->pcie_device == tmp->slot) &&
(SC_PATH(sc) == tmp->path)) {
return tmp;
}
}
return NULL;
}
static uint8_t bnx2x_prev_is_path_marked(struct bnx2x_softc *sc)
{
struct bnx2x_prev_list_node *tmp;
int rc = FALSE;
rte_spinlock_lock(&bnx2x_prev_mtx);
tmp = bnx2x_prev_path_get_entry(sc);
if (tmp) {
if (tmp->aer) {
PMD_DRV_LOG(DEBUG,
"Path %d/%d/%d was marked by AER",
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
} else {
rc = TRUE;
PMD_DRV_LOG(DEBUG,
"Path %d/%d/%d was already cleaned from previous drivers",
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
}
}
rte_spinlock_unlock(&bnx2x_prev_mtx);
return rc;
}
static int bnx2x_prev_mark_path(struct bnx2x_softc *sc, uint8_t after_undi)
{
struct bnx2x_prev_list_node *tmp;
rte_spinlock_lock(&bnx2x_prev_mtx);
/* Check whether the entry for this path already exists */
tmp = bnx2x_prev_path_get_entry(sc);
if (tmp) {
if (!tmp->aer) {
PMD_DRV_LOG(DEBUG,
"Re-marking AER in path %d/%d/%d",
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
} else {
PMD_DRV_LOG(DEBUG,
"Removing AER indication from path %d/%d/%d",
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
tmp->aer = 0;
}
rte_spinlock_unlock(&bnx2x_prev_mtx);
return 0;
}
rte_spinlock_unlock(&bnx2x_prev_mtx);
/* Create an entry for this path and add it */
tmp = rte_malloc("", sizeof(struct bnx2x_prev_list_node),
RTE_CACHE_LINE_SIZE);
if (!tmp) {
PMD_DRV_LOG(NOTICE, "Failed to allocate 'bnx2x_prev_list_node'");
return -1;
}
tmp->bus = sc->pcie_bus;
tmp->slot = sc->pcie_device;
tmp->path = SC_PATH(sc);
tmp->aer = 0;
tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
rte_spinlock_lock(&bnx2x_prev_mtx);
LIST_INSERT_HEAD(&bnx2x_prev_list, tmp, node);
rte_spinlock_unlock(&bnx2x_prev_mtx);
return 0;
}
static int bnx2x_do_flr(struct bnx2x_softc *sc)
{
int i;
/* only E2 and onwards support FLR */
if (CHIP_IS_E1x(sc)) {
PMD_DRV_LOG(WARNING, "FLR not supported in E1H");
return -1;
}
/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
PMD_DRV_LOG(WARNING,
"FLR not supported by BC_VER: 0x%08x",
sc->devinfo.bc_ver);
return -1;
}
/* Wait for Transaction Pending bit clean */
for (i = 0; i < 4; i++) {
if (i) {
DELAY(((1 << (i - 1)) * 100) * 1000);
}
if (!bnx2x_is_pcie_pending(sc)) {
goto clear;
}
}
PMD_DRV_LOG(NOTICE, "PCIE transaction is not cleared, "
"proceeding with reset anyway");
clear:
bnx2x_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
return 0;
}
struct bnx2x_mac_vals {
uint32_t xmac_addr;
uint32_t xmac_val;
uint32_t emac_addr;
uint32_t emac_val;
uint32_t umac_addr;
uint32_t umac_val;
uint32_t bmac_addr;
uint32_t bmac_val[2];
};
static void
bnx2x_prev_unload_close_mac(struct bnx2x_softc *sc, struct bnx2x_mac_vals *vals)
{
uint32_t val, base_addr, offset, mask, reset_reg;
uint8_t mac_stopped = FALSE;
uint8_t port = SC_PORT(sc);
uint32_t wb_data[2];
/* reset addresses as they also mark which values were changed */
vals->bmac_addr = 0;
vals->umac_addr = 0;
vals->xmac_addr = 0;
vals->emac_addr = 0;
reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
if (!CHIP_IS_E3(sc)) {
val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
if ((mask & reset_reg) && val) {
base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
: NIG_REG_INGRESS_BMAC0_MEM;
offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
: BIGMAC_REGISTER_BMAC_CONTROL;
/*
* use rd/wr since we cannot use dmae. This is safe
* since MCP won't access the bus due to the request
* to unload, and no function on the path can be
* loaded at this time.
*/
wb_data[0] = REG_RD(sc, base_addr + offset);
wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
vals->bmac_addr = base_addr + offset;
vals->bmac_val[0] = wb_data[0];
vals->bmac_val[1] = wb_data[1];
wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
REG_WR(sc, vals->bmac_addr, wb_data[0]);
REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
}
vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc) * 4;
vals->emac_val = REG_RD(sc, vals->emac_addr);
REG_WR(sc, vals->emac_addr, 0);
mac_stopped = TRUE;
} else {
if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
val & ~(1 << 1));
REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
val | (1 << 1));
vals->xmac_addr = base_addr + XMAC_REG_CTRL;
vals->xmac_val = REG_RD(sc, vals->xmac_addr);
REG_WR(sc, vals->xmac_addr, 0);
mac_stopped = TRUE;
}
mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
if (mask & reset_reg) {
base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
vals->umac_val = REG_RD(sc, vals->umac_addr);
REG_WR(sc, vals->umac_addr, 0);
mac_stopped = TRUE;
}
}
if (mac_stopped) {
DELAY(20000);
}
}
#define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
#define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
#define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
#define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
static void
bnx2x_prev_unload_undi_inc(struct bnx2x_softc *sc, uint8_t port, uint8_t inc)
{
uint16_t rcq, bd;
uint32_t tmp_reg = REG_RD(sc, BNX2X_PREV_UNDI_PROD_ADDR(port));
rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
REG_WR(sc, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
}
static int bnx2x_prev_unload_common(struct bnx2x_softc *sc)
{
uint32_t reset_reg, tmp_reg = 0, rc;
uint8_t prev_undi = FALSE;
struct bnx2x_mac_vals mac_vals;
uint32_t timer_count = 1000;
uint32_t prev_brb;
/*
* It is possible a previous function received 'common' answer,
* but hasn't loaded yet, therefore creating a scenario of
* multiple functions receiving 'common' on the same path.
*/
memset(&mac_vals, 0, sizeof(mac_vals));
if (bnx2x_prev_is_path_marked(sc)) {
return bnx2x_prev_mcp_done(sc);
}
reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
/* Reset should be performed after BRB is emptied */
if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
/* Close the MAC Rx to prevent BRB from filling up */
bnx2x_prev_unload_close_mac(sc, &mac_vals);
/* close LLH filters towards the BRB */
elink_set_rx_filter(&sc->link_params, 0);
/*
* Check if the UNDI driver was previously loaded.
* UNDI driver initializes CID offset for normal bell to 0x7
*/
if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
if (tmp_reg == 0x7) {
PMD_DRV_LOG(DEBUG, "UNDI previously loaded");
prev_undi = TRUE;
/* clear the UNDI indication */
REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
/* clear possible idle check errors */
REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
}
}
/* wait until BRB is empty */
tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
while (timer_count) {
prev_brb = tmp_reg;
tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
if (!tmp_reg) {
break;
}
PMD_DRV_LOG(DEBUG, "BRB still has 0x%08x", tmp_reg);
/* reset timer as long as BRB actually gets emptied */
if (prev_brb > tmp_reg) {
timer_count = 1000;
} else {
timer_count--;
}
/* If UNDI resides in memory, manually increment it */
if (prev_undi) {
bnx2x_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
}
DELAY(10);
}
if (!timer_count) {
PMD_DRV_LOG(NOTICE, "Failed to empty BRB");
}
}
/* No packets are in the pipeline, path is ready for reset */
bnx2x_reset_common(sc);
if (mac_vals.xmac_addr) {
REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
}
if (mac_vals.umac_addr) {
REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
}
if (mac_vals.emac_addr) {
REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
}
if (mac_vals.bmac_addr) {
REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
}
rc = bnx2x_prev_mark_path(sc, prev_undi);
if (rc) {
bnx2x_prev_mcp_done(sc);
return rc;
}
return bnx2x_prev_mcp_done(sc);
}
static int bnx2x_prev_unload_uncommon(struct bnx2x_softc *sc)
{
int rc;
/* Test if previous unload process was already finished for this path */
if (bnx2x_prev_is_path_marked(sc)) {
return bnx2x_prev_mcp_done(sc);
}
/*
* If function has FLR capabilities, and existing FW version matches
* the one required, then FLR will be sufficient to clean any residue
* left by previous driver
*/
rc = bnx2x_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
if (!rc) {
/* fw version is good */
rc = bnx2x_do_flr(sc);
}
if (!rc) {
/* FLR was performed */
return 0;
}
PMD_DRV_LOG(INFO, "Could not FLR");
/* Close the MCP request, return failure */
rc = bnx2x_prev_mcp_done(sc);
if (!rc) {
rc = BNX2X_PREV_WAIT_NEEDED;
}
return rc;
}
static int bnx2x_prev_unload(struct bnx2x_softc *sc)
{
int time_counter = 10;
uint32_t fw, hw_lock_reg, hw_lock_val;
uint32_t rc = 0;
/*
* Clear HW from errors which may have resulted from an interrupted
* DMAE transaction.
*/
bnx2x_prev_interrupted_dmae(sc);
/* Release previously held locks */
if (SC_FUNC(sc) <= 5)
hw_lock_reg = (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8);
else
hw_lock_reg =
(MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
hw_lock_val = (REG_RD(sc, hw_lock_reg));
if (hw_lock_val) {
if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
(MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
}
REG_WR(sc, hw_lock_reg, 0xffffffff);
}
if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
}
do {
/* Lock MCP using an unload request */
fw = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
if (!fw) {
PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
rc = -1;
break;
}
if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
rc = bnx2x_prev_unload_common(sc);
break;
}
/* non-common reply from MCP might require looping */
rc = bnx2x_prev_unload_uncommon(sc);
if (rc != BNX2X_PREV_WAIT_NEEDED) {
break;
}
DELAY(20000);
} while (--time_counter);
if (!time_counter || rc) {
PMD_DRV_LOG(NOTICE, "Failed to unload previous driver!");
rc = -1;
}
return rc;
}
static void
bnx2x_dcbx_set_state(struct bnx2x_softc *sc, uint8_t dcb_on, uint32_t dcbx_enabled)
{
if (!CHIP_IS_E1x(sc)) {
sc->dcb_state = dcb_on;
sc->dcbx_enabled = dcbx_enabled;
} else {
sc->dcb_state = FALSE;
sc->dcbx_enabled = BNX2X_DCBX_ENABLED_INVALID;
}
PMD_DRV_LOG(DEBUG,
"DCB state [%s:%s]",
dcb_on ? "ON" : "OFF",
(dcbx_enabled == BNX2X_DCBX_ENABLED_OFF) ? "user-mode" :
(dcbx_enabled ==
BNX2X_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static"
: (dcbx_enabled ==
BNX2X_DCBX_ENABLED_ON_NEG_ON) ?
"on-chip with negotiation" : "invalid");
}
static int bnx2x_set_qm_cid_count(struct bnx2x_softc *sc)
{
int cid_count = BNX2X_L2_MAX_CID(sc);
if (CNIC_SUPPORT(sc)) {
cid_count += CNIC_CID_MAX;
}
return roundup(cid_count, QM_CID_ROUND);
}
static void bnx2x_init_multi_cos(struct bnx2x_softc *sc)
{
int pri, cos;
uint32_t pri_map = 0;
for (pri = 0; pri < BNX2X_MAX_PRIORITY; pri++) {
cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
if (cos < sc->max_cos) {
sc->prio_to_cos[pri] = cos;
} else {
PMD_DRV_LOG(WARNING,
"Invalid COS %d for priority %d "
"(max COS is %d), setting to 0", cos, pri,
(sc->max_cos - 1));
sc->prio_to_cos[pri] = 0;
}
}
}
static int bnx2x_pci_get_caps(struct bnx2x_softc *sc)
{
struct {
uint8_t id;
uint8_t next;
} pci_cap;
uint16_t status;
struct bnx2x_pci_cap *cap;
cap = sc->pci_caps = rte_zmalloc("caps", sizeof(struct bnx2x_pci_cap),
RTE_CACHE_LINE_SIZE);
if (!cap) {
PMD_DRV_LOG(NOTICE, "Failed to allocate memory");
return -ENOMEM;
}
#ifndef __FreeBSD__
pci_read(sc, PCI_STATUS, &status, 2);
if (!(status & PCI_STATUS_CAP_LIST)) {
#else
pci_read(sc, PCIR_STATUS, &status, 2);
if (!(status & PCIM_STATUS_CAPPRESENT)) {
#endif
PMD_DRV_LOG(NOTICE, "PCIe capability reading failed");
return -1;
}
#ifndef __FreeBSD__
pci_read(sc, PCI_CAPABILITY_LIST, &pci_cap.next, 1);
#else
pci_read(sc, PCIR_CAP_PTR, &pci_cap.next, 1);
#endif
while (pci_cap.next) {
cap->addr = pci_cap.next & ~3;
pci_read(sc, pci_cap.next & ~3, &pci_cap, 2);
if (pci_cap.id == 0xff)
break;
cap->id = pci_cap.id;
cap->type = BNX2X_PCI_CAP;
cap->next = rte_zmalloc("pci_cap",
sizeof(struct bnx2x_pci_cap),
RTE_CACHE_LINE_SIZE);
if (!cap->next) {
PMD_DRV_LOG(NOTICE, "Failed to allocate memory");
return -ENOMEM;
}
cap = cap->next;
}
return 0;
}
static void bnx2x_init_rte(struct bnx2x_softc *sc)
{
if (IS_VF(sc)) {
sc->max_tx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
sc->igu_sb_cnt);
sc->max_rx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
sc->igu_sb_cnt);
} else {
sc->max_rx_queues = BNX2X_MAX_RSS_COUNT(sc);
sc->max_tx_queues = sc->max_rx_queues;
}
}
#define FW_HEADER_LEN 104
#define FW_NAME_57711 "/lib/firmware/bnx2x/bnx2x-e1h-7.2.51.0.fw"
#define FW_NAME_57810 "/lib/firmware/bnx2x/bnx2x-e2-7.2.51.0.fw"
void bnx2x_load_firmware(struct bnx2x_softc *sc)
{
const char *fwname;
int f;
struct stat st;
fwname = sc->devinfo.device_id == CHIP_NUM_57711
? FW_NAME_57711 : FW_NAME_57810;
f = open(fwname, O_RDONLY);
if (f < 0) {
PMD_DRV_LOG(NOTICE, "Can't open firmware file");
return;
}
if (fstat(f, &st) < 0) {
PMD_DRV_LOG(NOTICE, "Can't stat firmware file");
close(f);
return;
}
sc->firmware = rte_zmalloc("bnx2x_fw", st.st_size, RTE_CACHE_LINE_SIZE);
if (!sc->firmware) {
PMD_DRV_LOG(NOTICE, "Can't allocate memory for firmware");
close(f);
return;
}
if (read(f, sc->firmware, st.st_size) != st.st_size) {
PMD_DRV_LOG(NOTICE, "Can't read firmware data");
close(f);
return;
}
close(f);
sc->fw_len = st.st_size;
if (sc->fw_len < FW_HEADER_LEN) {
PMD_DRV_LOG(NOTICE, "Invalid fw size: %" PRIu64, sc->fw_len);
return;
}
PMD_DRV_LOG(DEBUG, "fw_len = %" PRIu64, sc->fw_len);
}
static void
bnx2x_data_to_init_ops(uint8_t * data, struct raw_op *dst, uint32_t len)
{
uint32_t *src = (uint32_t *) data;
uint32_t i, j, tmp;
for (i = 0, j = 0; i < len / 8; ++i, j += 2) {
tmp = rte_be_to_cpu_32(src[j]);
dst[i].op = (tmp >> 24) & 0xFF;
dst[i].offset = tmp & 0xFFFFFF;
dst[i].raw_data = rte_be_to_cpu_32(src[j + 1]);
}
}
static void
bnx2x_data_to_init_offsets(uint8_t * data, uint16_t * dst, uint32_t len)
{
uint16_t *src = (uint16_t *) data;
uint32_t i;
for (i = 0; i < len / 2; ++i)
dst[i] = rte_be_to_cpu_16(src[i]);
}
static void bnx2x_data_to_init_data(uint8_t * data, uint32_t * dst, uint32_t len)
{
uint32_t *src = (uint32_t *) data;
uint32_t i;
for (i = 0; i < len / 4; ++i)
dst[i] = rte_be_to_cpu_32(src[i]);
}
static void bnx2x_data_to_iro_array(uint8_t * data, struct iro *dst, uint32_t len)
{
uint32_t *src = (uint32_t *) data;
uint32_t i, j, tmp;
for (i = 0, j = 0; i < len / sizeof(struct iro); ++i, ++j) {
dst[i].base = rte_be_to_cpu_32(src[j++]);
tmp = rte_be_to_cpu_32(src[j]);
dst[i].m1 = (tmp >> 16) & 0xFFFF;
dst[i].m2 = tmp & 0xFFFF;
++j;
tmp = rte_be_to_cpu_32(src[j]);
dst[i].m3 = (tmp >> 16) & 0xFFFF;
dst[i].size = tmp & 0xFFFF;
}
}
/*
* Device attach function.
*
* Allocates device resources, performs secondary chip identification, and
* initializes driver instance variables. This function is called from driver
* load after a successful probe.
*
* Returns:
* 0 = Success, >0 = Failure
*/
int bnx2x_attach(struct bnx2x_softc *sc)
{
int rc;
PMD_DRV_LOG(DEBUG, "Starting attach...");
rc = bnx2x_pci_get_caps(sc);
if (rc) {
PMD_DRV_LOG(NOTICE, "PCIe caps reading was failed");
return rc;
}
sc->state = BNX2X_STATE_CLOSED;
pci_write_long(sc, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET);
sc->igu_base_addr = IS_VF(sc) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
/* get PCI capabilites */
bnx2x_probe_pci_caps(sc);
if (sc->devinfo.pcie_msix_cap_reg != 0) {
uint32_t val;
pci_read(sc,
(sc->devinfo.pcie_msix_cap_reg + PCIR_MSIX_CTRL), &val,
2);
sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE) + 1;
} else {
sc->igu_sb_cnt = 1;
}
/* Init RTE stuff */
bnx2x_init_rte(sc);
if (IS_PF(sc)) {
/* Enable internal target-read (in case we are probed after PF
* FLR). Must be done prior to any BAR read access. Only for
* 57712 and up
*/
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ,
1);
DELAY(200000);
}
/* get device info and set params */
if (bnx2x_get_device_info(sc) != 0) {
PMD_DRV_LOG(NOTICE, "getting device info");
return -ENXIO;
}
/* get phy settings from shmem and 'and' against admin settings */
bnx2x_get_phy_info(sc);
} else {
/* Left mac of VF unfilled, PF should set it for VF */
memset(sc->link_params.mac_addr, 0, ETHER_ADDR_LEN);
}
sc->wol = 0;
/* set the default MTU (changed via ifconfig) */
sc->mtu = ETHER_MTU;
bnx2x_set_modes_bitmap(sc);
/* need to reset chip if UNDI was active */
if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
/* init fw_seq */
sc->fw_seq =
(SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
DRV_MSG_SEQ_NUMBER_MASK);
bnx2x_prev_unload(sc);
}
bnx2x_dcbx_set_state(sc, FALSE, BNX2X_DCBX_ENABLED_OFF);
/* calculate qm_cid_count */
sc->qm_cid_count = bnx2x_set_qm_cid_count(sc);
sc->max_cos = 1;
bnx2x_init_multi_cos(sc);
return 0;
}
static void
bnx2x_igu_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t segment,
uint16_t index, uint8_t op, uint8_t update)
{
uint32_t igu_addr = sc->igu_base_addr;
igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id) * 8;
bnx2x_igu_ack_sb_gen(sc, segment, index, op, update, igu_addr);
}
static void
bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t storm,
uint16_t index, uint8_t op, uint8_t update)
{
if (unlikely(sc->devinfo.int_block == INT_BLOCK_HC))
bnx2x_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
else {
uint8_t segment;
if (CHIP_INT_MODE_IS_BC(sc)) {
segment = storm;
} else if (igu_sb_id != sc->igu_dsb_id) {
segment = IGU_SEG_ACCESS_DEF;
} else if (storm == ATTENTION_ID) {
segment = IGU_SEG_ACCESS_ATTN;
} else {
segment = IGU_SEG_ACCESS_DEF;
}
bnx2x_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
}
}
static void
bnx2x_igu_clear_sb_gen(struct bnx2x_softc *sc, uint8_t func, uint8_t idu_sb_id,
uint8_t is_pf)
{
uint32_t data, ctl, cnt = 100;
uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP +
(idu_sb_id / 32) * 4;
uint32_t sb_bit = 1 << (idu_sb_id % 32);
uint32_t func_encode = func |
(is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
/* Not supported in BC mode */
if (CHIP_INT_MODE_IS_BC(sc)) {
return;
}
data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP);
ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
(func_encode << IGU_CTRL_REG_FID_SHIFT) |
(IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
REG_WR(sc, igu_addr_data, data);
mb();
PMD_DRV_LOG(DEBUG, "write 0x%08x to IGU(via GRC) addr 0x%x",
ctl, igu_addr_ctl);
REG_WR(sc, igu_addr_ctl, ctl);
mb();
/* wait for clean up to finish */
while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
DELAY(20000);
}
if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
PMD_DRV_LOG(DEBUG,
"Unable to finish IGU cleanup: "
"idu_sb_id %d offset %d bit %d (cnt %d)",
idu_sb_id, idu_sb_id / 32, idu_sb_id % 32, cnt);
}
}
static void bnx2x_igu_clear_sb(struct bnx2x_softc *sc, uint8_t idu_sb_id)
{
bnx2x_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
}
/*******************/
/* ECORE CALLBACKS */
/*******************/
static void bnx2x_reset_common(struct bnx2x_softc *sc)
{
uint32_t val = 0x1400;
PMD_INIT_FUNC_TRACE();
/* reset_common */
REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR),
0xd3ffff7f);
if (CHIP_IS_E3(sc)) {
val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
}
REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
}
static void bnx2x_common_init_phy(struct bnx2x_softc *sc)
{
uint32_t shmem_base[2];
uint32_t shmem2_base[2];
/* Avoid common init in case MFW supports LFA */
if (SHMEM2_RD(sc, size) >
(uint32_t) offsetof(struct shmem2_region,
lfa_host_addr[SC_PORT(sc)])) {
return;
}
shmem_base[0] = sc->devinfo.shmem_base;
shmem2_base[0] = sc->devinfo.shmem2_base;
if (!CHIP_IS_E1x(sc)) {
shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
}
elink_common_init_phy(sc, shmem_base, shmem2_base,
sc->devinfo.chip_id, 0);
}
static void bnx2x_pf_disable(struct bnx2x_softc *sc)
{
uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
val &= ~IGU_PF_CONF_FUNC_EN;
REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
}
static void bnx2x_init_pxp(struct bnx2x_softc *sc)
{
uint16_t devctl;
int r_order, w_order;
devctl = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL);
w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
ecore_init_pxp_arb(sc, r_order, w_order);
}
static uint32_t bnx2x_get_pretend_reg(struct bnx2x_softc *sc)
{
uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
return base + (SC_ABS_FUNC(sc)) * stride;
}
/*
* Called only on E1H or E2.
* When pretending to be PF, the pretend value is the function number 0..7.
* When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
* combination.
*/
static int bnx2x_pretend_func(struct bnx2x_softc *sc, uint16_t pretend_func_val)
{
uint32_t pretend_reg;
if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX))
return -1;
/* get my own pretend register */
pretend_reg = bnx2x_get_pretend_reg(sc);
REG_WR(sc, pretend_reg, pretend_func_val);
REG_RD(sc, pretend_reg);
return 0;
}
static void bnx2x_setup_fan_failure_detection(struct bnx2x_softc *sc)
{
int is_required;
uint32_t val;
int port;
is_required = 0;
val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
SHARED_HW_CFG_FAN_FAILURE_MASK);
if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
is_required = 1;
}
/*
* The fan failure mechanism is usually related to the PHY type since
* the power consumption of the board is affected by the PHY. Currently,
* fan is required for most designs with SFX7101, BNX2X8727 and BNX2X8481.
*/
else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
for (port = PORT_0; port < PORT_MAX; port++) {
is_required |= elink_fan_failure_det_req(sc,
sc->
devinfo.shmem_base,
sc->
devinfo.shmem2_base,
port);
}
}
if (is_required == 0) {
return;
}
/* Fan failure is indicated by SPIO 5 */
bnx2x_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
/* set to active low mode */
val = REG_RD(sc, MISC_REG_SPIO_INT);
val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
REG_WR(sc, MISC_REG_SPIO_INT, val);
/* enable interrupt to signal the IGU */
val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
val |= MISC_SPIO_SPIO5;
REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
}
static void bnx2x_enable_blocks_attention(struct bnx2x_softc *sc)
{
uint32_t val;
REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
} else {
REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
}
REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
/*
* mask read length error interrupts in brb for parser
* (parsing unit and 'checksum and crc' unit)
* these errors are legal (PU reads fixed length and CAC can cause
* read length error on truncated packets)
*/
REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
REG_WR(sc, QM_REG_QM_INT_MASK, 0);
REG_WR(sc, TM_REG_TM_INT_MASK, 0);
REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
/* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
/* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
/* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
/* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
/* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
/* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
if (!CHIP_IS_E1x(sc)) {
val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
}
REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
/* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
if (!CHIP_IS_E1x(sc)) {
/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
}
REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
/* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
}
/**
* bnx2x_init_hw_common - initialize the HW at the COMMON phase.
*
* @sc: driver handle
*/
static int bnx2x_init_hw_common(struct bnx2x_softc *sc)
{
uint8_t abs_func_id;
uint32_t val;
PMD_DRV_LOG(DEBUG, "starting common init for func %d", SC_ABS_FUNC(sc));
/*
* take the RESET lock to protect undi_unload flow from accessing
* registers while we are resetting the chip
*/
bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
bnx2x_reset_common(sc);
REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
val = 0xfffc;
if (CHIP_IS_E3(sc)) {
val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
}
REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
if (!CHIP_IS_E1x(sc)) {
/*
* 4-port mode or 2-port mode we need to turn off master-enable for
* everyone. After that we turn it back on for self. So, we disregard
* multi-function, and always disable all functions on the given path,
* this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
*/
for (abs_func_id = SC_PATH(sc);
abs_func_id < (E2_FUNC_MAX * 2); abs_func_id += 2) {
if (abs_func_id == SC_ABS_FUNC(sc)) {
REG_WR(sc,
PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
1);
continue;
}
bnx2x_pretend_func(sc, abs_func_id);
/* clear pf enable */
bnx2x_pf_disable(sc);
bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
}
}
ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
bnx2x_init_pxp(sc);
#ifdef __BIG_ENDIAN
REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
/* make sure this value is 0 */
REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
//REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
#endif
ecore_ilt_init_page_size(sc, INITOP_SET);
if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
}
/* let the HW do it's magic... */
DELAY(100000);
/* finish PXP init */
val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
if (val != 1) {
PMD_DRV_LOG(NOTICE, "PXP2 CFG failed");
return -1;
}
val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
if (val != 1) {
PMD_DRV_LOG(NOTICE, "PXP2 RD_INIT failed");
return -1;
}
/*
* Timer bug workaround for E2 only. We need to set the entire ILT to have
* entries with value "0" and valid bit on. This needs to be done by the
* first PF that is loaded in a path (i.e. common phase)
*/
if (!CHIP_IS_E1x(sc)) {
/*
* In E2 there is a bug in the timers block that can cause function 6 / 7
* (i.e. vnic3) to start even if it is marked as "scan-off".
* This occurs when a different function (func2,3) is being marked
* as "scan-off". Real-life scenario for example: if a driver is being
* load-unloaded while func6,7 are down. This will cause the timer to access
* the ilt, translate to a logical address and send a request to read/write.
* Since the ilt for the function that is down is not valid, this will cause
* a translation error which is unrecoverable.
* The Workaround is intended to make sure that when this happens nothing
* fatal will occur. The workaround:
* 1. First PF driver which loads on a path will:
* a. After taking the chip out of reset, by using pretend,
* it will write "0" to the following registers of
* the other vnics.
* REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
* REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
* REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
* And for itself it will write '1' to
* PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
* dmae-operations (writing to pram for example.)
* note: can be done for only function 6,7 but cleaner this
* way.
* b. Write zero+valid to the entire ILT.
* c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
* VNIC3 (of that port). The range allocated will be the
* entire ILT. This is needed to prevent ILT range error.
* 2. Any PF driver load flow:
* a. ILT update with the physical addresses of the allocated
* logical pages.
* b. Wait 20msec. - note that this timeout is needed to make
* sure there are no requests in one of the PXP internal
* queues with "old" ILT addresses.
* c. PF enable in the PGLC.
* d. Clear the was_error of the PF in the PGLC. (could have
* occurred while driver was down)
* e. PF enable in the CFC (WEAK + STRONG)
* f. Timers scan enable
* 3. PF driver unload flow:
* a. Clear the Timers scan_en.
* b. Polling for scan_on=0 for that PF.
* c. Clear the PF enable bit in the PXP.
* d. Clear the PF enable in the CFC (WEAK + STRONG)
* e. Write zero+valid to all ILT entries (The valid bit must
* stay set)
* f. If this is VNIC 3 of a port then also init
* first_timers_ilt_entry to zero and last_timers_ilt_entry
* to the last enrty in the ILT.
*
* Notes:
* Currently the PF error in the PGLC is non recoverable.
* In the future the there will be a recovery routine for this error.
* Currently attention is masked.
* Having an MCP lock on the load/unload process does not guarantee that
* there is no Timer disable during Func6/7 enable. This is because the
* Timers scan is currently being cleared by the MCP on FLR.
* Step 2.d can be done only for PF6/7 and the driver can also check if
* there is error before clearing it. But the flow above is simpler and
* more general.
* All ILT entries are written by zero+valid and not just PF6/7
* ILT entries since in the future the ILT entries allocation for
* PF-s might be dynamic.
*/
struct ilt_client_info ilt_cli;
struct ecore_ilt ilt;
memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
memset(&ilt, 0, sizeof(struct ecore_ilt));
/* initialize dummy TM client */
ilt_cli.start = 0;
ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
ilt_cli.client_num = ILT_CLIENT_TM;
/*
* Step 1: set zeroes to all ilt page entries with valid bit on
* Step 2: set the timers first/last ilt entry to point
* to the entire range to prevent ILT range error for 3rd/4th
* vnic (this code assumes existence of the vnic)
*
* both steps performed by call to ecore_ilt_client_init_op()
* with dummy TM client
*
* we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
* and his brother are split registers
*/
bnx2x_pretend_func(sc, (SC_PATH(sc) + 6));
ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
}
REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
if (!CHIP_IS_E1x(sc)) {
int factor = 0;
ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
/* let the HW do it's magic... */
do {
DELAY(200000);
val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
} while (factor-- && (val != 1));
if (val != 1) {
PMD_DRV_LOG(NOTICE, "ATC_INIT failed");
return -1;
}
}
ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
/* clean the DMAE memory */
sc->dmae_ready = 1;
ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8);
ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
bnx2x_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
bnx2x_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
bnx2x_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
bnx2x_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
/* QM queues pointers table */
ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
/* soft reset pulse */
REG_WR(sc, QM_REG_SOFT_RESET, 1);
REG_WR(sc, QM_REG_SOFT_RESET, 0);
if (CNIC_SUPPORT(sc))
ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
REG_WR(sc, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
if (!CHIP_REV_IS_SLOW(sc)) {
/* enable hw interrupt from doorbell Q */
REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
}
ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
if (IS_MF_AFEX(sc)) {
/*
* configure that AFEX and VLAN headers must be
* received in AFEX mode
*/
REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
} else {
/*
* Bit-map indicating which L2 hdrs may appear
* after the basic Ethernet header
*/
REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
}
}
ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
if (!CHIP_IS_E1x(sc)) {
/* reset VFC memories */
REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
VFC_MEMORIES_RST_REG_CAM_RST |
VFC_MEMORIES_RST_REG_RAM_RST);
REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
VFC_MEMORIES_RST_REG_CAM_RST |
VFC_MEMORIES_RST_REG_RAM_RST);
DELAY(20000);
}
ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
/* sync semi rtc */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000);
ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
if (!CHIP_IS_E1x(sc)) {
if (IS_MF_AFEX(sc)) {
/*
* configure that AFEX and VLAN headers must be
* sent in AFEX mode
*/
REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
} else {
REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
}
}
REG_WR(sc, SRC_REG_SOFT_RST, 1);
ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
if (CNIC_SUPPORT(sc)) {
REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
}
REG_WR(sc, SRC_REG_SOFT_RST, 0);
if (sizeof(union cdu_context) != 1024) {
/* we currently assume that a context is 1024 bytes */
PMD_DRV_LOG(NOTICE,
"please adjust the size of cdu_context(%ld)",
(long)sizeof(union cdu_context));
}
ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
val = (4 << 24) + (0 << 12) + 1024;
REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
/* enable context validation interrupt from CFC */
REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
/* set the thresholds to prevent CFC/CDU race */
REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
if (!CHIP_IS_E1x(sc) && BNX2X_NOMCP(sc)) {
REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
}
ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
/* Reset PCIE errors for debug */
REG_WR(sc, 0x2814, 0xffffffff);
REG_WR(sc, 0x3820, 0xffffffff);
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
(PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
(PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
(PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
}
ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
/* in E3 this done in per-port section */
if (!CHIP_IS_E3(sc))
REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
if (CHIP_IS_E1H(sc)) {
/* not applicable for E2 (and above ...) */
REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
}
if (CHIP_REV_IS_SLOW(sc)) {
DELAY(200000);
}
/* finish CFC init */
val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
if (val != 1) {
PMD_DRV_LOG(NOTICE, "CFC LL_INIT failed");
return -1;
}
val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
if (val != 1) {
PMD_DRV_LOG(NOTICE, "CFC AC_INIT failed");
return -1;
}
val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
if (val != 1) {
PMD_DRV_LOG(NOTICE, "CFC CAM_INIT failed");
return -1;
}
REG_WR(sc, CFC_REG_DEBUG0, 0);
bnx2x_setup_fan_failure_detection(sc);
/* clear PXP2 attentions */
REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
bnx2x_enable_blocks_attention(sc);
if (!CHIP_REV_IS_SLOW(sc)) {
ecore_enable_blocks_parity(sc);
}
if (!BNX2X_NOMCP(sc)) {
if (CHIP_IS_E1x(sc)) {
bnx2x_common_init_phy(sc);
}
}
return 0;
}
/**
* bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
*
* @sc: driver handle
*/
static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc)
{
int rc = bnx2x_init_hw_common(sc);
if (rc) {
return rc;
}
/* In E2 2-PORT mode, same ext phy is used for the two paths */
if (!BNX2X_NOMCP(sc)) {
bnx2x_common_init_phy(sc);
}
return 0;
}
static int bnx2x_init_hw_port(struct bnx2x_softc *sc)
{
int port = SC_PORT(sc);
int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
uint32_t low, high;
uint32_t val;
PMD_DRV_LOG(DEBUG, "starting port init for port %d", port);
REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
ecore_init_block(sc, BLOCK_MISC, init_phase);
ecore_init_block(sc, BLOCK_PXP, init_phase);
ecore_init_block(sc, BLOCK_PXP2, init_phase);
/*
* Timers bug workaround: disables the pf_master bit in pglue at
* common phase, we need to enable it here before any dmae access are
* attempted. Therefore we manually added the enable-master to the
* port phase (it also happens in the function phase)
*/
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
}
ecore_init_block(sc, BLOCK_ATC, init_phase);
ecore_init_block(sc, BLOCK_DMAE, init_phase);
ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
ecore_init_block(sc, BLOCK_QM, init_phase);
ecore_init_block(sc, BLOCK_TCM, init_phase);
ecore_init_block(sc, BLOCK_UCM, init_phase);
ecore_init_block(sc, BLOCK_CCM, init_phase);
ecore_init_block(sc, BLOCK_XCM, init_phase);
/* QM cid (connection) count */
ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
if (CNIC_SUPPORT(sc)) {
ecore_init_block(sc, BLOCK_TM, init_phase);
REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port * 4, 20);
REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port * 4, 31);
}
ecore_init_block(sc, BLOCK_DORQ, init_phase);
ecore_init_block(sc, BLOCK_BRB1, init_phase);
if (CHIP_IS_E1H(sc)) {
if (IS_MF(sc)) {
low = (BNX2X_ONE_PORT(sc) ? 160 : 246);
} else if (sc->mtu > 4096) {
if (BNX2X_ONE_PORT(sc)) {
low = 160;
} else {
val = sc->mtu;
/* (24*1024 + val*4)/256 */
low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
}
} else {
low = (BNX2X_ONE_PORT(sc) ? 80 : 160);
}
high = (low + 56); /* 14*1024/256 */
REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port * 4, low);
REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port * 4, high);
}
if (CHIP_IS_MODE_4_PORT(sc)) {
REG_WR(sc, SC_PORT(sc) ?
BRB1_REG_MAC_GUARANTIED_1 :
BRB1_REG_MAC_GUARANTIED_0, 40);
}
ecore_init_block(sc, BLOCK_PRS, init_phase);
if (CHIP_IS_E3B0(sc)) {
if (IS_MF_AFEX(sc)) {
/* configure headers for AFEX mode */
if (SC_PORT(sc)) {
REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_1,
0xE);
REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_1,
0x6);
REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_1, 0xA);
} else {
REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_0,
0xE);
REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_0,
0x6);
REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
}
} else {
/* Ovlan exists only if we are in multi-function +
* switch-dependent mode, in switch-independent there
* is no ovlan headers
*/
REG_WR(sc, SC_PORT(sc) ?
PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
PRS_REG_HDRS_AFTER_BASIC_PORT_0,
(sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
}
}
ecore_init_block(sc, BLOCK_TSDM, init_phase);
ecore_init_block(sc, BLOCK_CSDM, init_phase);
ecore_init_block(sc, BLOCK_USDM, init_phase);
ecore_init_block(sc, BLOCK_XSDM, init_phase);
ecore_init_block(sc, BLOCK_TSEM, init_phase);
ecore_init_block(sc, BLOCK_USEM, init_phase);
ecore_init_block(sc, BLOCK_CSEM, init_phase);
ecore_init_block(sc, BLOCK_XSEM, init_phase);
ecore_init_block(sc, BLOCK_UPB, init_phase);
ecore_init_block(sc, BLOCK_XPB, init_phase);
ecore_init_block(sc, BLOCK_PBF, init_phase);
if (CHIP_IS_E1x(sc)) {
/* configure PBF to work without PAUSE mtu 9000 */
REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port * 4, 0);
/* update threshold */
REG_WR(sc, PBF_REG_P0_ARB_THRSH + port * 4, (9040 / 16));
/* update init credit */
REG_WR(sc, PBF_REG_P0_INIT_CRD + port * 4,
(9040 / 16) + 553 - 22);
/* probe changes */
REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 1);
DELAY(50);
REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 0);
}
if (CNIC_SUPPORT(sc)) {
ecore_init_block(sc, BLOCK_SRC, init_phase);
}
ecore_init_block(sc, BLOCK_CDU, init_phase);
ecore_init_block(sc, BLOCK_CFC, init_phase);
ecore_init_block(sc, BLOCK_HC, init_phase);
ecore_init_block(sc, BLOCK_IGU, init_phase);
ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
/* init aeu_mask_attn_func_0/1:
* - SF mode: bits 3-7 are masked. only bits 0-2 are in use
* - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
* bits 4-7 are used for "per vn group attention" */
val = IS_MF(sc) ? 0xF7 : 0x7;
val |= 0x10;
REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, val);
ecore_init_block(sc, BLOCK_NIG, init_phase);
if (!CHIP_IS_E1x(sc)) {
/* Bit-map indicating which L2 hdrs may appear after the
* basic Ethernet header
*/
if (IS_MF_AFEX(sc)) {
REG_WR(sc, SC_PORT(sc) ?
NIG_REG_P1_HDRS_AFTER_BASIC :
NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
} else {
REG_WR(sc, SC_PORT(sc) ?
NIG_REG_P1_HDRS_AFTER_BASIC :
NIG_REG_P0_HDRS_AFTER_BASIC,
IS_MF_SD(sc) ? 7 : 6);
}
if (CHIP_IS_E3(sc)) {
REG_WR(sc, SC_PORT(sc) ?
NIG_REG_LLH1_MF_MODE :
NIG_REG_LLH_MF_MODE, IS_MF(sc));
}
}
if (!CHIP_IS_E3(sc)) {
REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port * 4, 1);
}
/* 0x2 disable mf_ov, 0x1 enable */
REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port * 4,
(IS_MF_SD(sc) ? 0x1 : 0x2));
if (!CHIP_IS_E1x(sc)) {
val = 0;
switch (sc->devinfo.mf_info.mf_mode) {
case MULTI_FUNCTION_SD:
val = 1;
break;
case MULTI_FUNCTION_SI:
case MULTI_FUNCTION_AFEX:
val = 2;
break;
}
REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
NIG_REG_LLH0_CLS_TYPE), val);
}
REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port * 4, 0);
REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port * 4, 0);
REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port * 4, 1);
/* If SPIO5 is set to generate interrupts, enable it for this port */
val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
if (val & MISC_SPIO_SPIO5) {
uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
val = REG_RD(sc, reg_addr);
val |= AEU_INPUTS_ATTN_BITS_SPIO5;
REG_WR(sc, reg_addr, val);
}
return 0;
}
static uint32_t
bnx2x_flr_clnup_reg_poll(struct bnx2x_softc *sc, uint32_t reg,
uint32_t expected, uint32_t poll_count)
{
uint32_t cur_cnt = poll_count;
uint32_t val;
while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
DELAY(FLR_WAIT_INTERVAL);
}
return val;
}
static int
bnx2x_flr_clnup_poll_hw_counter(struct bnx2x_softc *sc, uint32_t reg,
__rte_unused const char *msg, uint32_t poll_cnt)
{
uint32_t val = bnx2x_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
if (val != 0) {
PMD_DRV_LOG(NOTICE, "%s usage count=%d", msg, val);
return -1;
}
return 0;
}
/* Common routines with VF FLR cleanup */
static uint32_t bnx2x_flr_clnup_poll_count(struct bnx2x_softc *sc)
{
/* adjust polling timeout */
if (CHIP_REV_IS_EMUL(sc)) {
return FLR_POLL_CNT * 2000;
}
if (CHIP_REV_IS_FPGA(sc)) {
return FLR_POLL_CNT * 120;
}
return FLR_POLL_CNT;
}
static int bnx2x_poll_hw_usage_counters(struct bnx2x_softc *sc, uint32_t poll_cnt)
{
/* wait for CFC PF usage-counter to zero (includes all the VFs) */
if (bnx2x_flr_clnup_poll_hw_counter(sc,
CFC_REG_NUM_LCIDS_INSIDE_PF,
"CFC PF usage counter timed out",
poll_cnt)) {
return -1;
}
/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
if (bnx2x_flr_clnup_poll_hw_counter(sc,
DORQ_REG_PF_USAGE_CNT,
"DQ PF usage counter timed out",
poll_cnt)) {
return -1;
}
/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
if (bnx2x_flr_clnup_poll_hw_counter(sc,
QM_REG_PF_USG_CNT_0 + 4 * SC_FUNC(sc),
"QM PF usage counter timed out",
poll_cnt)) {
return -1;
}
/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
if (bnx2x_flr_clnup_poll_hw_counter(sc,
TM_REG_LIN0_VNIC_UC + 4 * SC_PORT(sc),
"Timers VNIC usage counter timed out",
poll_cnt)) {
return -1;
}
if (bnx2x_flr_clnup_poll_hw_counter(sc,
TM_REG_LIN0_NUM_SCANS +
4 * SC_PORT(sc),
"Timers NUM_SCANS usage counter timed out",
poll_cnt)) {
return -1;
}
/* Wait DMAE PF usage counter to zero */
if (bnx2x_flr_clnup_poll_hw_counter(sc,
dmae_reg_go_c[INIT_DMAE_C(sc)],
"DMAE dommand register timed out",
poll_cnt)) {
return -1;
}
return 0;
}
#define OP_GEN_PARAM(param) \
(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
#define OP_GEN_TYPE(type) \
(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
#define OP_GEN_AGG_VECT(index) \
(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
static int
bnx2x_send_final_clnup(struct bnx2x_softc *sc, uint8_t clnup_func,
uint32_t poll_cnt)
{
uint32_t op_gen_command = 0;
uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
int ret = 0;
if (REG_RD(sc, comp_addr)) {
PMD_DRV_LOG(NOTICE,
"Cleanup complete was not 0 before sending");
return -1;
}
op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
if (bnx2x_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
PMD_DRV_LOG(NOTICE, "FW final cleanup did not succeed");
PMD_DRV_LOG(DEBUG, "At timeout completion address contained %x",
(REG_RD(sc, comp_addr)));
rte_panic("FLR cleanup failed");
return -1;
}
/* Zero completion for nxt FLR */
REG_WR(sc, comp_addr, 0);
return ret;
}
static void
bnx2x_pbf_pN_buf_flushed(struct bnx2x_softc *sc, struct pbf_pN_buf_regs *regs,
uint32_t poll_count)
{
uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
uint32_t cur_cnt = poll_count;
crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
crd = crd_start = REG_RD(sc, regs->crd);
init_crd = REG_RD(sc, regs->init_crd);
while ((crd != init_crd) &&
((uint32_t) ((int32_t) crd_freed - (int32_t) crd_freed_start) <
(init_crd - crd_start))) {
if (cur_cnt--) {
DELAY(FLR_WAIT_INTERVAL);
crd = REG_RD(sc, regs->crd);
crd_freed = REG_RD(sc, regs->crd_freed);
} else {
break;
}
}
}
static void
bnx2x_pbf_pN_cmd_flushed(struct bnx2x_softc *sc, struct pbf_pN_cmd_regs *regs,
uint32_t poll_count)
{
uint32_t occup, to_free, freed, freed_start;
uint32_t cur_cnt = poll_count;
occup = to_free = REG_RD(sc, regs->lines_occup);
freed = freed_start = REG_RD(sc, regs->lines_freed);
while (occup &&
((uint32_t) ((int32_t) freed - (int32_t) freed_start) <
to_free)) {
if (cur_cnt--) {
DELAY(FLR_WAIT_INTERVAL);
occup = REG_RD(sc, regs->lines_occup);
freed = REG_RD(sc, regs->lines_freed);
} else {
break;
}
}
}
static void bnx2x_tx_hw_flushed(struct bnx2x_softc *sc, uint32_t poll_count)
{
struct pbf_pN_cmd_regs cmd_regs[] = {
{0, (CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_OCCUPANCY_Q0 : PBF_REG_P0_TQ_OCCUPANCY,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_LINES_FREED_CNT_Q0 : PBF_REG_P0_TQ_LINES_FREED_CNT},
{1, (CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_OCCUPANCY_Q1 : PBF_REG_P1_TQ_OCCUPANCY,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_LINES_FREED_CNT_Q1 : PBF_REG_P1_TQ_LINES_FREED_CNT},
{4, (CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_OCCUPANCY_LB_Q : PBF_REG_P4_TQ_OCCUPANCY,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
PBF_REG_P4_TQ_LINES_FREED_CNT}
};
struct pbf_pN_buf_regs buf_regs[] = {
{0, (CHIP_IS_E3B0(sc)) ?
PBF_REG_INIT_CRD_Q0 : PBF_REG_P0_INIT_CRD,
(CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q0 : PBF_REG_P0_CREDIT,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
{1, (CHIP_IS_E3B0(sc)) ?
PBF_REG_INIT_CRD_Q1 : PBF_REG_P1_INIT_CRD,
(CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q1 : PBF_REG_P1_CREDIT,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
{4, (CHIP_IS_E3B0(sc)) ?
PBF_REG_INIT_CRD_LB_Q : PBF_REG_P4_INIT_CRD,
(CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_LB_Q : PBF_REG_P4_CREDIT,
(CHIP_IS_E3B0(sc)) ?
PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
};
uint32_t i;
/* Verify the command queues are flushed P0, P1, P4 */
for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
bnx2x_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
}
/* Verify the transmission buffers are flushed P0, P1, P4 */
for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
bnx2x_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
}
}
static void bnx2x_hw_enable_status(struct bnx2x_softc *sc)
{
__rte_unused uint32_t val;
val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
PMD_DRV_LOG(DEBUG, "CFC_REG_WEAK_ENABLE_PF is 0x%x", val);
val = REG_RD(sc, PBF_REG_DISABLE_PF);
PMD_DRV_LOG(DEBUG, "PBF_REG_DISABLE_PF is 0x%x", val);
val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSI_EN is 0x%x", val);
val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSIX_EN is 0x%x", val);
val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x", val);
val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x", val);
val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x", val);
val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x",
val);
}
/**
* bnx2x_pf_flr_clnup
* a. re-enable target read on the PF
* b. poll cfc per function usgae counter
* c. poll the qm perfunction usage counter
* d. poll the tm per function usage counter
* e. poll the tm per function scan-done indication
* f. clear the dmae channel associated wit hthe PF
* g. zero the igu 'trailing edge' and 'leading edge' regs (attentions)
* h. call the common flr cleanup code with -1 (pf indication)
*/
static int bnx2x_pf_flr_clnup(struct bnx2x_softc *sc)
{
uint32_t poll_cnt = bnx2x_flr_clnup_poll_count(sc);
/* Re-enable PF target read access */
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
/* Poll HW usage counters */
if (bnx2x_poll_hw_usage_counters(sc, poll_cnt)) {
return -1;
}
/* Zero the igu 'trailing edge' and 'leading edge' */
/* Send the FW cleanup command */
if (bnx2x_send_final_clnup(sc, (uint8_t) SC_FUNC(sc), poll_cnt)) {
return -1;
}
/* ATC cleanup */
/* Verify TX hw is flushed */
bnx2x_tx_hw_flushed(sc, poll_cnt);
/* Wait 100ms (not adjusted according to platform) */
DELAY(100000);
/* Verify no pending pci transactions */
if (bnx2x_is_pcie_pending(sc)) {
PMD_DRV_LOG(NOTICE, "PCIE Transactions still pending");
}
/* Debug */
bnx2x_hw_enable_status(sc);
/*
* Master enable - Due to WB DMAE writes performed before this
* register is re-initialized as part of the regular function init
*/
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
return 0;
}
static int bnx2x_init_hw_func(struct bnx2x_softc *sc)
{
int port = SC_PORT(sc);
int func = SC_FUNC(sc);
int init_phase = PHASE_PF0 + func;
struct ecore_ilt *ilt = sc->ilt;
uint16_t cdu_ilt_start;
uint32_t addr, val;
uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
int main_mem_width, rc;
uint32_t i;
PMD_DRV_LOG(DEBUG, "starting func init for func %d", func);
/* FLR cleanup */
if (!CHIP_IS_E1x(sc)) {
rc = bnx2x_pf_flr_clnup(sc);
if (rc) {
PMD_DRV_LOG(NOTICE, "FLR cleanup failed!");
return rc;
}
}
/* set MSI reconfigure capability */
if (sc->devinfo.int_block == INT_BLOCK_HC) {
addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
val = REG_RD(sc, addr);
val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
REG_WR(sc, addr, val);
}
ecore_init_block(sc, BLOCK_PXP, init_phase);
ecore_init_block(sc, BLOCK_PXP2, init_phase);
ilt = sc->ilt;
cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
for (i = 0; i < L2_ILT_LINES(sc); i++) {
ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
ilt->lines[cdu_ilt_start + i].page_mapping =
(rte_iova_t)sc->context[i].vcxt_dma.paddr;
ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
}
ecore_ilt_init_op(sc, INITOP_SET);
REG_WR(sc, PRS_REG_NIC_MODE, 1);
if (!CHIP_IS_E1x(sc)) {
uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
/* Turn on a single ISR mode in IGU if driver is going to use
* INT#x or MSI
*/
if ((sc->interrupt_mode != INTR_MODE_MSIX)
|| (sc->interrupt_mode != INTR_MODE_SINGLE_MSIX)) {
pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
}
/*
* Timers workaround bug: function init part.
* Need to wait 20msec after initializing ILT,
* needed to make sure there are no requests in
* one of the PXP internal queues with "old" ILT addresses
*/
DELAY(20000);
/*
* Master enable - Due to WB DMAE writes performed before this
* register is re-initialized as part of the regular function
* init
*/
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
/* Enable the function in IGU */
REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
}
sc->dmae_ready = 1;
ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
if (!CHIP_IS_E1x(sc))
REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
ecore_init_block(sc, BLOCK_ATC, init_phase);
ecore_init_block(sc, BLOCK_DMAE, init_phase);
ecore_init_block(sc, BLOCK_NIG, init_phase);
ecore_init_block(sc, BLOCK_SRC, init_phase);
ecore_init_block(sc, BLOCK_MISC, init_phase);
ecore_init_block(sc, BLOCK_TCM, init_phase);
ecore_init_block(sc, BLOCK_UCM, init_phase);
ecore_init_block(sc, BLOCK_CCM, init_phase);
ecore_init_block(sc, BLOCK_XCM, init_phase);
ecore_init_block(sc, BLOCK_TSEM, init_phase);
ecore_init_block(sc, BLOCK_USEM, init_phase);
ecore_init_block(sc, BLOCK_CSEM, init_phase);
ecore_init_block(sc, BLOCK_XSEM, init_phase);
if (!CHIP_IS_E1x(sc))
REG_WR(sc, QM_REG_PF_EN, 1);
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
}
ecore_init_block(sc, BLOCK_QM, init_phase);
ecore_init_block(sc, BLOCK_TM, init_phase);
ecore_init_block(sc, BLOCK_DORQ, init_phase);
ecore_init_block(sc, BLOCK_BRB1, init_phase);
ecore_init_block(sc, BLOCK_PRS, init_phase);
ecore_init_block(sc, BLOCK_TSDM, init_phase);
ecore_init_block(sc, BLOCK_CSDM, init_phase);
ecore_init_block(sc, BLOCK_USDM, init_phase);
ecore_init_block(sc, BLOCK_XSDM, init_phase);
ecore_init_block(sc, BLOCK_UPB, init_phase);
ecore_init_block(sc, BLOCK_XPB, init_phase);
ecore_init_block(sc, BLOCK_PBF, init_phase);
if (!CHIP_IS_E1x(sc))
REG_WR(sc, PBF_REG_DISABLE_PF, 0);
ecore_init_block(sc, BLOCK_CDU, init_phase);
ecore_init_block(sc, BLOCK_CFC, init_phase);
if (!CHIP_IS_E1x(sc))
REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
if (IS_MF(sc)) {
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, OVLAN(sc));
}
ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
/* HC init per function */
if (sc->devinfo.int_block == INT_BLOCK_HC) {
if (CHIP_IS_E1H(sc)) {
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
}
ecore_init_block(sc, BLOCK_HC, init_phase);
} else {
uint32_t num_segs, sb_idx, prod_offset;
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
if (!CHIP_IS_E1x(sc)) {
REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
}
ecore_init_block(sc, BLOCK_IGU, init_phase);
if (!CHIP_IS_E1x(sc)) {
int dsb_idx = 0;
/**
* Producer memory:
* E2 mode: address 0-135 match to the mapping memory;
* 136 - PF0 default prod; 137 - PF1 default prod;
* 138 - PF2 default prod; 139 - PF3 default prod;
* 140 - PF0 attn prod; 141 - PF1 attn prod;
* 142 - PF2 attn prod; 143 - PF3 attn prod;
* 144-147 reserved.
*
* E1.5 mode - In backward compatible mode;
* for non default SB; each even line in the memory
* holds the U producer and each odd line hold
* the C producer. The first 128 producers are for
* NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
* producers are for the DSB for each PF.
* Each PF has five segments: (the order inside each
* segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
* 132-135 C prods; 136-139 X prods; 140-143 T prods;
* 144-147 attn prods;
*/
/* non-default-status-blocks */
num_segs = CHIP_INT_MODE_IS_BC(sc) ?
IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
prod_offset = (sc->igu_base_sb + sb_idx) *
num_segs;
for (i = 0; i < num_segs; i++) {
addr = IGU_REG_PROD_CONS_MEMORY +
(prod_offset + i) * 4;
REG_WR(sc, addr, 0);
}
/* send consumer update with value 0 */
bnx2x_ack_sb(sc, sc->igu_base_sb + sb_idx,
USTORM_ID, 0, IGU_INT_NOP, 1);
bnx2x_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
}
/* default-status-blocks */
num_segs = CHIP_INT_MODE_IS_BC(sc) ?
IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
if (CHIP_IS_MODE_4_PORT(sc))
dsb_idx = SC_FUNC(sc);
else
dsb_idx = SC_VN(sc);
prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
IGU_BC_BASE_DSB_PROD + dsb_idx :
IGU_NORM_BASE_DSB_PROD + dsb_idx);
/*
* igu prods come in chunks of E1HVN_MAX (4) -
* does not matters what is the current chip mode
*/
for (i = 0; i < (num_segs * E1HVN_MAX); i += E1HVN_MAX) {
addr = IGU_REG_PROD_CONS_MEMORY +
(prod_offset + i) * 4;
REG_WR(sc, addr, 0);
}
/* send consumer update with 0 */
if (CHIP_INT_MODE_IS_BC(sc)) {
bnx2x_ack_sb(sc, sc->igu_dsb_id,
USTORM_ID, 0, IGU_INT_NOP, 1);
bnx2x_ack_sb(sc, sc->igu_dsb_id,
CSTORM_ID, 0, IGU_INT_NOP, 1);
bnx2x_ack_sb(sc, sc->igu_dsb_id,
XSTORM_ID, 0, IGU_INT_NOP, 1);
bnx2x_ack_sb(sc, sc->igu_dsb_id,
TSTORM_ID, 0, IGU_INT_NOP, 1);
bnx2x_ack_sb(sc, sc->igu_dsb_id,
ATTENTION_ID, 0, IGU_INT_NOP, 1);
} else {
bnx2x_ack_sb(sc, sc->igu_dsb_id,
USTORM_ID, 0, IGU_INT_NOP, 1);
bnx2x_ack_sb(sc, sc->igu_dsb_id,
ATTENTION_ID, 0, IGU_INT_NOP, 1);
}
bnx2x_igu_clear_sb(sc, sc->igu_dsb_id);
/* !!! these should become driver const once
rf-tool supports split-68 const */
REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
}
}
/* Reset PCIE errors for debug */
REG_WR(sc, 0x2114, 0xffffffff);
REG_WR(sc, 0x2120, 0xffffffff);
if (CHIP_IS_E1x(sc)) {
main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords */
main_mem_base = HC_REG_MAIN_MEMORY +
SC_PORT(sc) * (main_mem_size * 4);
main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
main_mem_width = 8;
val = REG_RD(sc, main_mem_prty_clr);
if (val) {
PMD_DRV_LOG(DEBUG,
"Parity errors in HC block during function init (0x%x)!",
val);
}
/* Clear "false" parity errors in MSI-X table */
for (i = main_mem_base;
i < main_mem_base + main_mem_size * 4;
i += main_mem_width) {
bnx2x_read_dmae(sc, i, main_mem_width / 4);
bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data),
i, main_mem_width / 4);
}
/* Clear HC parity attention */
REG_RD(sc, main_mem_prty_clr);
}
/* Enable STORMs SP logging */
REG_WR8(sc, BAR_USTRORM_INTMEM +
USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
REG_WR8(sc, BAR_TSTRORM_INTMEM +
TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
REG_WR8(sc, BAR_CSTRORM_INTMEM +
CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
REG_WR8(sc, BAR_XSTRORM_INTMEM +
XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
elink_phy_probe(&sc->link_params);
return 0;
}
static void bnx2x_link_reset(struct bnx2x_softc *sc)
{
if (!BNX2X_NOMCP(sc)) {
elink_lfa_reset(&sc->link_params, &sc->link_vars);
} else {
if (!CHIP_REV_IS_SLOW(sc)) {
PMD_DRV_LOG(WARNING,
"Bootcode is missing - cannot reset link");
}
}
}
static void bnx2x_reset_port(struct bnx2x_softc *sc)
{
int port = SC_PORT(sc);
uint32_t val;
/* reset physical Link */
bnx2x_link_reset(sc);
REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
/* Do not rcv packets to BRB */
REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port * 4, 0x0);
/* Do not direct rcv packets that are not for MCP to the BRB */
REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
/* Configure AEU */
REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, 0);
DELAY(100000);
/* Check for BRB port occupancy */
val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port * 4);
if (val) {
PMD_DRV_LOG(DEBUG,
"BRB1 is not empty, %d blocks are occupied", val);
}
}
static void bnx2x_ilt_wr(struct bnx2x_softc *sc, uint32_t index, rte_iova_t addr)
{
int reg;
uint32_t wb_write[2];
reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index * 8;
wb_write[0] = ONCHIP_ADDR1(addr);
wb_write[1] = ONCHIP_ADDR2(addr);
REG_WR_DMAE(sc, reg, wb_write, 2);
}
static void bnx2x_clear_func_ilt(struct bnx2x_softc *sc, uint32_t func)
{
uint32_t i, base = FUNC_ILT_BASE(func);
for (i = base; i < base + ILT_PER_FUNC; i++) {
bnx2x_ilt_wr(sc, i, 0);
}
}
static void bnx2x_reset_func(struct bnx2x_softc *sc)
{
struct bnx2x_fastpath *fp;
int port = SC_PORT(sc);
int func = SC_FUNC(sc);
int i;
/* Disable the function in the FW */
REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
/* FP SBs */
FOR_EACH_ETH_QUEUE(sc, i) {
fp = &sc->fp[i];
REG_WR8(sc, BAR_CSTRORM_INTMEM +
CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
SB_DISABLED);
}
/* SP SB */
REG_WR8(sc, BAR_CSTRORM_INTMEM +
CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), SB_DISABLED);
for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
0);
}
/* Configure IGU */
if (sc->devinfo.int_block == INT_BLOCK_HC) {
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
} else {
REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
}
if (CNIC_LOADED(sc)) {
/* Disable Timer scan */
REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port * 4, 0);
/*
* Wait for at least 10ms and up to 2 second for the timers
* scan to complete
*/
for (i = 0; i < 200; i++) {
DELAY(10000);
if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port * 4))
break;
}
}
/* Clear ILT */
bnx2x_clear_func_ilt(sc, func);
/*
* Timers workaround bug for E2: if this is vnic-3,
* we need to set the entire ilt range for this timers.
*/
if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
struct ilt_client_info ilt_cli;
/* use dummy TM client */
memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
ilt_cli.start = 0;
ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
ilt_cli.client_num = ILT_CLIENT_TM;
ecore_ilt_boundry_init_op(sc, &ilt_cli, 0);
}
/* this assumes that reset_port() called before reset_func() */
if (!CHIP_IS_E1x(sc)) {
bnx2x_pf_disable(sc);
}
sc->dmae_ready = 0;
}
static void bnx2x_release_firmware(struct bnx2x_softc *sc)
{
rte_free(sc->init_ops);
rte_free(sc->init_ops_offsets);
rte_free(sc->init_data);
rte_free(sc->iro_array);
}
static int bnx2x_init_firmware(struct bnx2x_softc *sc)
{
uint32_t len, i;
uint8_t *p = sc->firmware;
uint32_t off[24];
for (i = 0; i < 24; ++i)
off[i] = rte_be_to_cpu_32(*((uint32_t *) sc->firmware + i));
len = off[0];
sc->init_ops = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
if (!sc->init_ops)
goto alloc_failed;
bnx2x_data_to_init_ops(p + off[1], sc->init_ops, len);
len = off[2];
sc->init_ops_offsets = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
if (!sc->init_ops_offsets)
goto alloc_failed;
bnx2x_data_to_init_offsets(p + off[3], sc->init_ops_offsets, len);
len = off[4];
sc->init_data = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
if (!sc->init_data)
goto alloc_failed;
bnx2x_data_to_init_data(p + off[5], sc->init_data, len);
sc->tsem_int_table_data = p + off[7];
sc->tsem_pram_data = p + off[9];
sc->usem_int_table_data = p + off[11];
sc->usem_pram_data = p + off[13];
sc->csem_int_table_data = p + off[15];
sc->csem_pram_data = p + off[17];
sc->xsem_int_table_data = p + off[19];
sc->xsem_pram_data = p + off[21];
len = off[22];
sc->iro_array = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
if (!sc->iro_array)
goto alloc_failed;
bnx2x_data_to_iro_array(p + off[23], sc->iro_array, len);
return 0;
alloc_failed:
bnx2x_release_firmware(sc);
return -1;
}
static int cut_gzip_prefix(const uint8_t * zbuf, int len)
{
#define MIN_PREFIX_SIZE (10)
int n = MIN_PREFIX_SIZE;
uint16_t xlen;
if (!(zbuf[0] == 0x1f && zbuf[1] == 0x8b && zbuf[2] == Z_DEFLATED) ||
len <= MIN_PREFIX_SIZE) {
return -1;
}
/* optional extra fields are present */
if (zbuf[3] & 0x4) {
xlen = zbuf[13];
xlen <<= 8;
xlen += zbuf[12];
n += xlen;
}
/* file name is present */
if (zbuf[3] & 0x8) {
while ((zbuf[n++] != 0) && (n < len)) ;
}
return n;
}
static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t * zbuf, int len)
{
int ret;
int data_begin = cut_gzip_prefix(zbuf, len);
PMD_DRV_LOG(DEBUG, "ecore_gunzip %d", len);
if (data_begin <= 0) {
PMD_DRV_LOG(NOTICE, "bad gzip prefix");
return -1;
}
memset(&zlib_stream, 0, sizeof(zlib_stream));
zlib_stream.next_in = zbuf + data_begin;
zlib_stream.avail_in = len - data_begin;
zlib_stream.next_out = sc->gz_buf;
zlib_stream.avail_out = FW_BUF_SIZE;
ret = inflateInit2(&zlib_stream, -MAX_WBITS);
if (ret != Z_OK) {
PMD_DRV_LOG(NOTICE, "zlib inflateInit2 error");
return ret;
}
ret = inflate(&zlib_stream, Z_FINISH);
if ((ret != Z_STREAM_END) && (ret != Z_OK)) {
PMD_DRV_LOG(NOTICE, "zlib inflate error: %d %s", ret,
zlib_stream.msg);
}
sc->gz_outlen = zlib_stream.total_out;
if (sc->gz_outlen & 0x3) {
PMD_DRV_LOG(NOTICE, "firmware is not aligned. gz_outlen == %d",
sc->gz_outlen);
}
sc->gz_outlen >>= 2;
inflateEnd(&zlib_stream);
if (ret == Z_STREAM_END)
return 0;
return ret;
}
static void
ecore_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
uint32_t addr, uint32_t len)
{
bnx2x_write_dmae_phys_len(sc, phys_addr, addr, len);
}
void
ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr, size_t size,
uint32_t * data)
{
uint8_t i;
for (i = 0; i < size / 4; i++) {
REG_WR(sc, addr + (i * 4), data[i]);
}
}
static const char *get_ext_phy_type(uint32_t ext_phy_type)
{
uint32_t phy_type_idx = ext_phy_type >> 8;
static const char *types[] =
{ "DIRECT", "BNX2X-8071", "BNX2X-8072", "BNX2X-8073",
"BNX2X-8705", "BNX2X-8706", "BNX2X-8726", "BNX2X-8481", "SFX-7101",
"BNX2X-8727",
"BNX2X-8727-NOC", "BNX2X-84823", "NOT_CONN", "FAILURE"
};
if (phy_type_idx < 12)
return types[phy_type_idx];
else if (PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN == ext_phy_type)
return types[12];
else
return types[13];
}
static const char *get_state(uint32_t state)
{
uint32_t state_idx = state >> 12;
static const char *states[] = { "CLOSED", "OPENING_WAIT4_LOAD",
"OPENING_WAIT4_PORT", "OPEN", "CLOSING_WAIT4_HALT",
"CLOSING_WAIT4_DELETE", "CLOSING_WAIT4_UNLOAD",
"UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
"UNKNOWN", "DISABLED", "DIAG", "ERROR", "UNDEFINED"
};
if (state_idx <= 0xF)
return states[state_idx];
else
return states[0x10];
}
static const char *get_recovery_state(uint32_t state)
{
static const char *states[] = { "NONE", "DONE", "INIT",
"WAIT", "FAILED", "NIC_LOADING"
};
return states[state];
}
static const char *get_rx_mode(uint32_t mode)
{
static const char *modes[] = { "NONE", "NORMAL", "ALLMULTI",
"PROMISC", "MAX_MULTICAST", "ERROR"
};
if (mode < 0x4)
return modes[mode];
else if (BNX2X_MAX_MULTICAST == mode)
return modes[4];
else
return modes[5];
}
#define BNX2X_INFO_STR_MAX 256
static const char *get_bnx2x_flags(uint32_t flags)
{
int i;
static const char *flag[] = { "ONE_PORT ", "NO_ISCSI ",
"NO_FCOE ", "NO_WOL ", "USING_DAC ", "USING_MSIX ",
"USING_MSI ", "DISABLE_MSI ", "UNKNOWN ", "NO_MCP ",
"SAFC_TX_FLAG ", "MF_FUNC_DIS ", "TX_SWITCHING "
};
static char flag_str[BNX2X_INFO_STR_MAX];
memset(flag_str, 0, BNX2X_INFO_STR_MAX);
for (i = 0; i < 5; i++)
if (flags & (1 << i)) {
strcat(flag_str, flag[i]);
flags ^= (1 << i);
}
if (flags) {
static char unknown[BNX2X_INFO_STR_MAX];
snprintf(unknown, 32, "Unknown flag mask %x", flags);
strcat(flag_str, unknown);
}
return flag_str;
}
/*
* Prints useful adapter info.
*/
void bnx2x_print_adapter_info(struct bnx2x_softc *sc)
{
int i = 0;
__rte_unused uint32_t ext_phy_type;
PMD_INIT_FUNC_TRACE();
if (sc->link_vars.phy_flags & PHY_XGXS_FLAG)
ext_phy_type = ELINK_XGXS_EXT_PHY_TYPE(REG_RD(sc,
sc->
devinfo.shmem_base
+ offsetof(struct
shmem_region,
dev_info.port_hw_config
[0].external_phy_config)));
else
ext_phy_type = ELINK_SERDES_EXT_PHY_TYPE(REG_RD(sc,
sc->
devinfo.shmem_base
+
offsetof(struct
shmem_region,
dev_info.port_hw_config
[0].external_phy_config)));
PMD_INIT_LOG(DEBUG, "\n\n===================================\n");
/* Hardware chip info. */
PMD_INIT_LOG(DEBUG, "%12s : %#08x", "ASIC", sc->devinfo.chip_id);
PMD_INIT_LOG(DEBUG, "%12s : %c%d", "Rev", (CHIP_REV(sc) >> 12) + 'A',
(CHIP_METAL(sc) >> 4));
/* Bus info. */
PMD_INIT_LOG(DEBUG, "%12s : %d, ", "Bus PCIe", sc->devinfo.pcie_link_width);
switch (sc->devinfo.pcie_link_speed) {
case 1:
PMD_INIT_LOG(DEBUG, "%23s", "2.5 Gbps");
break;
case 2:
PMD_INIT_LOG(DEBUG, "%21s", "5 Gbps");
break;
case 4:
PMD_INIT_LOG(DEBUG, "%21s", "8 Gbps");
break;
default:
PMD_INIT_LOG(DEBUG, "%33s", "Unknown link speed");
}
/* Device features. */
PMD_INIT_LOG(DEBUG, "%12s : ", "Flags");
/* Miscellaneous flags. */
if (sc->devinfo.pcie_cap_flags & BNX2X_MSI_CAPABLE_FLAG) {
PMD_INIT_LOG(DEBUG, "%18s", "MSI");
i++;
}
if (sc->devinfo.pcie_cap_flags & BNX2X_MSIX_CAPABLE_FLAG) {
if (i > 0)
PMD_INIT_LOG(DEBUG, "|");
PMD_INIT_LOG(DEBUG, "%20s", "MSI-X");
i++;
}
if (IS_PF(sc)) {
PMD_INIT_LOG(DEBUG, "%12s : ", "Queues");
switch (sc->sp->rss_rdata.rss_mode) {
case ETH_RSS_MODE_DISABLED:
PMD_INIT_LOG(DEBUG, "%19s", "None");
break;
case ETH_RSS_MODE_REGULAR:
PMD_INIT_LOG(DEBUG, "%18s : %d", "RSS", sc->num_queues);
break;
default:
PMD_INIT_LOG(DEBUG, "%22s", "Unknown");
break;
}
}
/* RTE and Driver versions */
PMD_INIT_LOG(DEBUG, "%12s : %s", "DPDK",
rte_version());
PMD_INIT_LOG(DEBUG, "%12s : %s", "Driver",
bnx2x_pmd_version());
/* Firmware versions and device features. */
PMD_INIT_LOG(DEBUG, "%12s : %d.%d.%d",
"Firmware",
BNX2X_5710_FW_MAJOR_VERSION,
BNX2X_5710_FW_MINOR_VERSION,
BNX2X_5710_FW_REVISION_VERSION);
PMD_INIT_LOG(DEBUG, "%12s : %s",
"Bootcode", sc->devinfo.bc_ver_str);
PMD_INIT_LOG(DEBUG, "\n\n===================================\n");
PMD_INIT_LOG(DEBUG, "%12s : %u", "Bnx2x Func", sc->pcie_func);
PMD_INIT_LOG(DEBUG, "%12s : %s", "Bnx2x Flags", get_bnx2x_flags(sc->flags));
PMD_INIT_LOG(DEBUG, "%12s : %s", "DMAE Is",
(sc->dmae_ready ? "Ready" : "Not Ready"));
PMD_INIT_LOG(DEBUG, "%12s : %s", "OVLAN", (OVLAN(sc) ? "YES" : "NO"));
PMD_INIT_LOG(DEBUG, "%12s : %s", "MF", (IS_MF(sc) ? "YES" : "NO"));
PMD_INIT_LOG(DEBUG, "%12s : %u", "MTU", sc->mtu);
PMD_INIT_LOG(DEBUG, "%12s : %s", "PHY Type", get_ext_phy_type(ext_phy_type));
PMD_INIT_LOG(DEBUG, "%12s : %x:%x:%x:%x:%x:%x", "MAC Addr",
sc->link_params.mac_addr[0],
sc->link_params.mac_addr[1],
sc->link_params.mac_addr[2],
sc->link_params.mac_addr[3],
sc->link_params.mac_addr[4],
sc->link_params.mac_addr[5]);
PMD_INIT_LOG(DEBUG, "%12s : %s", "RX Mode", get_rx_mode(sc->rx_mode));
PMD_INIT_LOG(DEBUG, "%12s : %s", "State", get_state(sc->state));
if (sc->recovery_state)
PMD_INIT_LOG(DEBUG, "%12s : %s", "Recovery",
get_recovery_state(sc->recovery_state));
PMD_INIT_LOG(DEBUG, "%12s : CQ = %lx, EQ = %lx", "SPQ Left",
sc->cq_spq_left, sc->eq_spq_left);
PMD_INIT_LOG(DEBUG, "%12s : %x", "Switch", sc->link_params.switch_cfg);
PMD_INIT_LOG(DEBUG, "\n\n===================================\n");
}