mirror of https://github.com/F-Stack/f-stack.git
813 lines
25 KiB
C
813 lines
25 KiB
C
/*-
|
|
*
|
|
* Copyright(c) 2015-2016 Intel Corporation. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef _RTE_CRYPTODEV_H_
|
|
#define _RTE_CRYPTODEV_H_
|
|
|
|
/**
|
|
* @file rte_cryptodev.h
|
|
*
|
|
* RTE Cryptographic Device APIs
|
|
*
|
|
* Defines RTE Crypto Device APIs for the provisioning of cipher and
|
|
* authentication operations.
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#include "rte_kvargs.h"
|
|
#include "rte_crypto.h"
|
|
#include "rte_dev.h"
|
|
|
|
#define CRYPTODEV_NAME_NULL_PMD cryptodev_null_pmd
|
|
/**< Null crypto PMD device name */
|
|
#define CRYPTODEV_NAME_AESNI_MB_PMD cryptodev_aesni_mb_pmd
|
|
/**< AES-NI Multi buffer PMD device name */
|
|
#define CRYPTODEV_NAME_AESNI_GCM_PMD cryptodev_aesni_gcm_pmd
|
|
/**< AES-NI GCM PMD device name */
|
|
#define CRYPTODEV_NAME_QAT_SYM_PMD cryptodev_qat_sym_pmd
|
|
/**< Intel QAT Symmetric Crypto PMD device name */
|
|
#define CRYPTODEV_NAME_SNOW3G_PMD cryptodev_snow3g_pmd
|
|
/**< SNOW 3G PMD device name */
|
|
#define CRYPTODEV_NAME_KASUMI_PMD cryptodev_kasumi_pmd
|
|
/**< KASUMI PMD device name */
|
|
|
|
/** Crypto device type */
|
|
enum rte_cryptodev_type {
|
|
RTE_CRYPTODEV_NULL_PMD = 1, /**< Null crypto PMD */
|
|
RTE_CRYPTODEV_AESNI_GCM_PMD, /**< AES-NI GCM PMD */
|
|
RTE_CRYPTODEV_AESNI_MB_PMD, /**< AES-NI multi buffer PMD */
|
|
RTE_CRYPTODEV_QAT_SYM_PMD, /**< QAT PMD Symmetric Crypto */
|
|
RTE_CRYPTODEV_SNOW3G_PMD, /**< SNOW 3G PMD */
|
|
RTE_CRYPTODEV_KASUMI_PMD, /**< KASUMI PMD */
|
|
};
|
|
|
|
extern const char **rte_cyptodev_names;
|
|
|
|
/* Logging Macros */
|
|
|
|
#define CDEV_LOG_ERR(fmt, args...) \
|
|
RTE_LOG(ERR, CRYPTODEV, "%s() line %u: " fmt "\n", \
|
|
__func__, __LINE__, ## args)
|
|
|
|
#define CDEV_PMD_LOG_ERR(dev, fmt, args...) \
|
|
RTE_LOG(ERR, CRYPTODEV, "[%s] %s() line %u: " fmt "\n", \
|
|
dev, __func__, __LINE__, ## args)
|
|
|
|
#ifdef RTE_LIBRTE_CRYPTODEV_DEBUG
|
|
#define CDEV_LOG_DEBUG(fmt, args...) \
|
|
RTE_LOG(DEBUG, CRYPTODEV, "%s() line %u: " fmt "\n", \
|
|
__func__, __LINE__, ## args) \
|
|
|
|
#define CDEV_PMD_TRACE(fmt, args...) \
|
|
RTE_LOG(DEBUG, CRYPTODEV, "[%s] %s: " fmt "\n", \
|
|
dev, __func__, ## args)
|
|
|
|
#else
|
|
#define CDEV_LOG_DEBUG(fmt, args...)
|
|
#define CDEV_PMD_TRACE(fmt, args...)
|
|
#endif
|
|
|
|
/**
|
|
* Symmetric Crypto Capability
|
|
*/
|
|
struct rte_cryptodev_symmetric_capability {
|
|
enum rte_crypto_sym_xform_type xform_type;
|
|
/**< Transform type : Authentication / Cipher */
|
|
union {
|
|
struct {
|
|
enum rte_crypto_auth_algorithm algo;
|
|
/**< authentication algorithm */
|
|
uint16_t block_size;
|
|
/**< algorithm block size */
|
|
struct {
|
|
uint16_t min; /**< minimum key size */
|
|
uint16_t max; /**< maximum key size */
|
|
uint16_t increment;
|
|
/**< if a range of sizes are supported,
|
|
* this parameter is used to indicate
|
|
* increments in byte size that are supported
|
|
* between the minimum and maximum */
|
|
} key_size;
|
|
/**< auth key size range */
|
|
struct {
|
|
uint16_t min; /**< minimum digest size */
|
|
uint16_t max; /**< maximum digest size */
|
|
uint16_t increment;
|
|
/**< if a range of sizes are supported,
|
|
* this parameter is used to indicate
|
|
* increments in byte size that are supported
|
|
* between the minimum and maximum */
|
|
} digest_size;
|
|
/**< digest size range */
|
|
struct {
|
|
uint16_t min; /**< minimum aad size */
|
|
uint16_t max; /**< maximum aad size */
|
|
uint16_t increment;
|
|
/**< if a range of sizes are supported,
|
|
* this parameter is used to indicate
|
|
* increments in byte size that are supported
|
|
* between the minimum and maximum */
|
|
} aad_size;
|
|
/**< Additional authentication data size range */
|
|
} auth;
|
|
/**< Symmetric Authentication transform capabilities */
|
|
struct {
|
|
enum rte_crypto_cipher_algorithm algo;
|
|
/**< cipher algorithm */
|
|
uint16_t block_size;
|
|
/**< algorithm block size */
|
|
struct {
|
|
uint16_t min; /**< minimum key size */
|
|
uint16_t max; /**< maximum key size */
|
|
uint16_t increment;
|
|
/**< if a range of sizes are supported,
|
|
* this parameter is used to indicate
|
|
* increments in byte size that are supported
|
|
* between the minimum and maximum */
|
|
} key_size;
|
|
/**< cipher key size range */
|
|
struct {
|
|
uint16_t min; /**< minimum iv size */
|
|
uint16_t max; /**< maximum iv size */
|
|
uint16_t increment;
|
|
/**< if a range of sizes are supported,
|
|
* this parameter is used to indicate
|
|
* increments in byte size that are supported
|
|
* between the minimum and maximum */
|
|
} iv_size;
|
|
/**< Initialisation vector data size range */
|
|
} cipher;
|
|
/**< Symmetric Cipher transform capabilities */
|
|
};
|
|
};
|
|
|
|
/** Structure used to capture a capability of a crypto device */
|
|
struct rte_cryptodev_capabilities {
|
|
enum rte_crypto_op_type op;
|
|
/**< Operation type */
|
|
|
|
union {
|
|
struct rte_cryptodev_symmetric_capability sym;
|
|
/**< Symmetric operation capability parameters */
|
|
};
|
|
};
|
|
|
|
/** Macro used at end of crypto PMD list */
|
|
#define RTE_CRYPTODEV_END_OF_CAPABILITIES_LIST() \
|
|
{ RTE_CRYPTO_OP_TYPE_UNDEFINED }
|
|
|
|
|
|
/**
|
|
* Crypto device supported feature flags
|
|
*
|
|
* Note:
|
|
* New features flags should be added to the end of the list
|
|
*
|
|
* Keep these flags synchronised with rte_cryptodev_get_feature_name()
|
|
*/
|
|
#define RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO (1ULL << 0)
|
|
/**< Symmetric crypto operations are supported */
|
|
#define RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO (1ULL << 1)
|
|
/**< Asymmetric crypto operations are supported */
|
|
#define RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING (1ULL << 2)
|
|
/**< Chaining symmetric crypto operations are supported */
|
|
#define RTE_CRYPTODEV_FF_CPU_SSE (1ULL << 3)
|
|
/**< Utilises CPU SIMD SSE instructions */
|
|
#define RTE_CRYPTODEV_FF_CPU_AVX (1ULL << 4)
|
|
/**< Utilises CPU SIMD AVX instructions */
|
|
#define RTE_CRYPTODEV_FF_CPU_AVX2 (1ULL << 5)
|
|
/**< Utilises CPU SIMD AVX2 instructions */
|
|
#define RTE_CRYPTODEV_FF_CPU_AESNI (1ULL << 6)
|
|
/**< Utilises CPU AES-NI instructions */
|
|
#define RTE_CRYPTODEV_FF_HW_ACCELERATED (1ULL << 7)
|
|
/**< Operations are off-loaded to an external hardware accelerator */
|
|
|
|
|
|
/**
|
|
* Get the name of a crypto device feature flag
|
|
*
|
|
* @param flag The mask describing the flag.
|
|
*
|
|
* @return
|
|
* The name of this flag, or NULL if it's not a valid feature flag.
|
|
*/
|
|
|
|
extern const char *
|
|
rte_cryptodev_get_feature_name(uint64_t flag);
|
|
|
|
/** Crypto device information */
|
|
struct rte_cryptodev_info {
|
|
const char *driver_name; /**< Driver name. */
|
|
enum rte_cryptodev_type dev_type; /**< Device type */
|
|
struct rte_pci_device *pci_dev; /**< PCI information. */
|
|
|
|
uint64_t feature_flags; /**< Feature flags */
|
|
|
|
const struct rte_cryptodev_capabilities *capabilities;
|
|
/**< Array of devices supported capabilities */
|
|
|
|
unsigned max_nb_queue_pairs;
|
|
/**< Maximum number of queues pairs supported by device. */
|
|
|
|
struct {
|
|
unsigned max_nb_sessions;
|
|
/**< Maximum number of sessions supported by device. */
|
|
} sym;
|
|
};
|
|
|
|
#define RTE_CRYPTODEV_DETACHED (0)
|
|
#define RTE_CRYPTODEV_ATTACHED (1)
|
|
|
|
/** Definitions of Crypto device event types */
|
|
enum rte_cryptodev_event_type {
|
|
RTE_CRYPTODEV_EVENT_UNKNOWN, /**< unknown event type */
|
|
RTE_CRYPTODEV_EVENT_ERROR, /**< error interrupt event */
|
|
RTE_CRYPTODEV_EVENT_MAX /**< max value of this enum */
|
|
};
|
|
|
|
/** Crypto device queue pair configuration structure. */
|
|
struct rte_cryptodev_qp_conf {
|
|
uint32_t nb_descriptors; /**< Number of descriptors per queue pair */
|
|
};
|
|
|
|
/**
|
|
* Typedef for application callback function to be registered by application
|
|
* software for notification of device events
|
|
*
|
|
* @param dev_id Crypto device identifier
|
|
* @param event Crypto device event to register for notification of.
|
|
* @param cb_arg User specified parameter to be passed as to passed to
|
|
* users callback function.
|
|
*/
|
|
typedef void (*rte_cryptodev_cb_fn)(uint8_t dev_id,
|
|
enum rte_cryptodev_event_type event, void *cb_arg);
|
|
|
|
|
|
/** Crypto Device statistics */
|
|
struct rte_cryptodev_stats {
|
|
uint64_t enqueued_count;
|
|
/**< Count of all operations enqueued */
|
|
uint64_t dequeued_count;
|
|
/**< Count of all operations dequeued */
|
|
|
|
uint64_t enqueue_err_count;
|
|
/**< Total error count on operations enqueued */
|
|
uint64_t dequeue_err_count;
|
|
/**< Total error count on operations dequeued */
|
|
};
|
|
|
|
#define RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_QUEUE_PAIRS 8
|
|
#define RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_SESSIONS 2048
|
|
|
|
/**
|
|
* @internal
|
|
* Initialisation parameters for virtual crypto devices
|
|
*/
|
|
struct rte_crypto_vdev_init_params {
|
|
unsigned max_nb_queue_pairs;
|
|
unsigned max_nb_sessions;
|
|
uint8_t socket_id;
|
|
};
|
|
|
|
/**
|
|
* Parse virtual device initialisation parameters input arguments
|
|
* @internal
|
|
*
|
|
* @params params Initialisation parameters with defaults set.
|
|
* @params input_args Command line arguments
|
|
*
|
|
* @return
|
|
* 0 on successful parse
|
|
* <0 on failure to parse
|
|
*/
|
|
int
|
|
rte_cryptodev_parse_vdev_init_params(
|
|
struct rte_crypto_vdev_init_params *params,
|
|
const char *input_args);
|
|
|
|
/**
|
|
* Create a virtual crypto device
|
|
*
|
|
* @param name Cryptodev PMD name of device to be created.
|
|
* @param args Options arguments for device.
|
|
*
|
|
* @return
|
|
* - On successful creation of the cryptodev the device index is returned,
|
|
* which will be between 0 and rte_cryptodev_count().
|
|
* - In the case of a failure, returns -1.
|
|
*/
|
|
extern int
|
|
rte_cryptodev_create_vdev(const char *name, const char *args);
|
|
|
|
/**
|
|
* Get the device identifier for the named crypto device.
|
|
*
|
|
* @param name device name to select the device structure.
|
|
*
|
|
* @return
|
|
* - Returns crypto device identifier on success.
|
|
* - Return -1 on failure to find named crypto device.
|
|
*/
|
|
extern int
|
|
rte_cryptodev_get_dev_id(const char *name);
|
|
|
|
/**
|
|
* Get the total number of crypto devices that have been successfully
|
|
* initialised.
|
|
*
|
|
* @return
|
|
* - The total number of usable crypto devices.
|
|
*/
|
|
extern uint8_t
|
|
rte_cryptodev_count(void);
|
|
|
|
extern uint8_t
|
|
rte_cryptodev_count_devtype(enum rte_cryptodev_type type);
|
|
/*
|
|
* Return the NUMA socket to which a device is connected
|
|
*
|
|
* @param dev_id
|
|
* The identifier of the device
|
|
* @return
|
|
* The NUMA socket id to which the device is connected or
|
|
* a default of zero if the socket could not be determined.
|
|
* -1 if returned is the dev_id value is out of range.
|
|
*/
|
|
extern int
|
|
rte_cryptodev_socket_id(uint8_t dev_id);
|
|
|
|
/** Crypto device configuration structure */
|
|
struct rte_cryptodev_config {
|
|
int socket_id; /**< Socket to allocate resources on */
|
|
uint16_t nb_queue_pairs;
|
|
/**< Number of queue pairs to configure on device */
|
|
|
|
struct {
|
|
uint32_t nb_objs; /**< Number of objects in mempool */
|
|
uint32_t cache_size; /**< l-core object cache size */
|
|
} session_mp; /**< Session mempool configuration */
|
|
};
|
|
|
|
/**
|
|
* Configure a device.
|
|
*
|
|
* This function must be invoked first before any other function in the
|
|
* API. This function can also be re-invoked when a device is in the
|
|
* stopped state.
|
|
*
|
|
* @param dev_id The identifier of the device to configure.
|
|
* @param config The crypto device configuration structure.
|
|
*
|
|
* @return
|
|
* - 0: Success, device configured.
|
|
* - <0: Error code returned by the driver configuration function.
|
|
*/
|
|
extern int
|
|
rte_cryptodev_configure(uint8_t dev_id, struct rte_cryptodev_config *config);
|
|
|
|
/**
|
|
* Start an device.
|
|
*
|
|
* The device start step is the last one and consists of setting the configured
|
|
* offload features and in starting the transmit and the receive units of the
|
|
* device.
|
|
* On success, all basic functions exported by the API (link status,
|
|
* receive/transmit, and so on) can be invoked.
|
|
*
|
|
* @param dev_id
|
|
* The identifier of the device.
|
|
* @return
|
|
* - 0: Success, device started.
|
|
* - <0: Error code of the driver device start function.
|
|
*/
|
|
extern int
|
|
rte_cryptodev_start(uint8_t dev_id);
|
|
|
|
/**
|
|
* Stop an device. The device can be restarted with a call to
|
|
* rte_cryptodev_start()
|
|
*
|
|
* @param dev_id The identifier of the device.
|
|
*/
|
|
extern void
|
|
rte_cryptodev_stop(uint8_t dev_id);
|
|
|
|
/**
|
|
* Close an device. The device cannot be restarted!
|
|
*
|
|
* @param dev_id The identifier of the device.
|
|
*
|
|
* @return
|
|
* - 0 on successfully closing device
|
|
* - <0 on failure to close device
|
|
*/
|
|
extern int
|
|
rte_cryptodev_close(uint8_t dev_id);
|
|
|
|
/**
|
|
* Allocate and set up a receive queue pair for a device.
|
|
*
|
|
*
|
|
* @param dev_id The identifier of the device.
|
|
* @param queue_pair_id The index of the queue pairs to set up. The
|
|
* value must be in the range [0, nb_queue_pair
|
|
* - 1] previously supplied to
|
|
* rte_cryptodev_configure().
|
|
* @param qp_conf The pointer to the configuration data to be
|
|
* used for the queue pair. NULL value is
|
|
* allowed, in which case default configuration
|
|
* will be used.
|
|
* @param socket_id The *socket_id* argument is the socket
|
|
* identifier in case of NUMA. The value can be
|
|
* *SOCKET_ID_ANY* if there is no NUMA constraint
|
|
* for the DMA memory allocated for the receive
|
|
* queue pair.
|
|
*
|
|
* @return
|
|
* - 0: Success, queue pair correctly set up.
|
|
* - <0: Queue pair configuration failed
|
|
*/
|
|
extern int
|
|
rte_cryptodev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
|
|
const struct rte_cryptodev_qp_conf *qp_conf, int socket_id);
|
|
|
|
/**
|
|
* Start a specified queue pair of a device. It is used
|
|
* when deferred_start flag of the specified queue is true.
|
|
*
|
|
* @param dev_id The identifier of the device
|
|
* @param queue_pair_id The index of the queue pair to start. The value
|
|
* must be in the range [0, nb_queue_pair - 1]
|
|
* previously supplied to
|
|
* rte_crypto_dev_configure().
|
|
* @return
|
|
* - 0: Success, the transmit queue is correctly set up.
|
|
* - -EINVAL: The dev_id or the queue_id out of range.
|
|
* - -ENOTSUP: The function not supported in PMD driver.
|
|
*/
|
|
extern int
|
|
rte_cryptodev_queue_pair_start(uint8_t dev_id, uint16_t queue_pair_id);
|
|
|
|
/**
|
|
* Stop specified queue pair of a device
|
|
*
|
|
* @param dev_id The identifier of the device
|
|
* @param queue_pair_id The index of the queue pair to stop. The value
|
|
* must be in the range [0, nb_queue_pair - 1]
|
|
* previously supplied to
|
|
* rte_cryptodev_configure().
|
|
* @return
|
|
* - 0: Success, the transmit queue is correctly set up.
|
|
* - -EINVAL: The dev_id or the queue_id out of range.
|
|
* - -ENOTSUP: The function not supported in PMD driver.
|
|
*/
|
|
extern int
|
|
rte_cryptodev_queue_pair_stop(uint8_t dev_id, uint16_t queue_pair_id);
|
|
|
|
/**
|
|
* Get the number of queue pairs on a specific crypto device
|
|
*
|
|
* @param dev_id Crypto device identifier.
|
|
* @return
|
|
* - The number of configured queue pairs.
|
|
*/
|
|
extern uint16_t
|
|
rte_cryptodev_queue_pair_count(uint8_t dev_id);
|
|
|
|
|
|
/**
|
|
* Retrieve the general I/O statistics of a device.
|
|
*
|
|
* @param dev_id The identifier of the device.
|
|
* @param stats A pointer to a structure of type
|
|
* *rte_cryptodev_stats* to be filled with the
|
|
* values of device counters.
|
|
* @return
|
|
* - Zero if successful.
|
|
* - Non-zero otherwise.
|
|
*/
|
|
extern int
|
|
rte_cryptodev_stats_get(uint8_t dev_id, struct rte_cryptodev_stats *stats);
|
|
|
|
/**
|
|
* Reset the general I/O statistics of a device.
|
|
*
|
|
* @param dev_id The identifier of the device.
|
|
*/
|
|
extern void
|
|
rte_cryptodev_stats_reset(uint8_t dev_id);
|
|
|
|
/**
|
|
* Retrieve the contextual information of a device.
|
|
*
|
|
* @param dev_id The identifier of the device.
|
|
* @param dev_info A pointer to a structure of type
|
|
* *rte_cryptodev_info* to be filled with the
|
|
* contextual information of the device.
|
|
*/
|
|
extern void
|
|
rte_cryptodev_info_get(uint8_t dev_id, struct rte_cryptodev_info *dev_info);
|
|
|
|
|
|
/**
|
|
* Register a callback function for specific device id.
|
|
*
|
|
* @param dev_id Device id.
|
|
* @param event Event interested.
|
|
* @param cb_fn User supplied callback function to be called.
|
|
* @param cb_arg Pointer to the parameters for the registered
|
|
* callback.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
extern int
|
|
rte_cryptodev_callback_register(uint8_t dev_id,
|
|
enum rte_cryptodev_event_type event,
|
|
rte_cryptodev_cb_fn cb_fn, void *cb_arg);
|
|
|
|
/**
|
|
* Unregister a callback function for specific device id.
|
|
*
|
|
* @param dev_id The device identifier.
|
|
* @param event Event interested.
|
|
* @param cb_fn User supplied callback function to be called.
|
|
* @param cb_arg Pointer to the parameters for the registered
|
|
* callback.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
extern int
|
|
rte_cryptodev_callback_unregister(uint8_t dev_id,
|
|
enum rte_cryptodev_event_type event,
|
|
rte_cryptodev_cb_fn cb_fn, void *cb_arg);
|
|
|
|
|
|
typedef uint16_t (*dequeue_pkt_burst_t)(void *qp,
|
|
struct rte_crypto_op **ops, uint16_t nb_ops);
|
|
/**< Dequeue processed packets from queue pair of a device. */
|
|
|
|
typedef uint16_t (*enqueue_pkt_burst_t)(void *qp,
|
|
struct rte_crypto_op **ops, uint16_t nb_ops);
|
|
/**< Enqueue packets for processing on queue pair of a device. */
|
|
|
|
|
|
|
|
|
|
struct rte_cryptodev_callback;
|
|
|
|
/** Structure to keep track of registered callbacks */
|
|
TAILQ_HEAD(rte_cryptodev_cb_list, rte_cryptodev_callback);
|
|
|
|
/** The data structure associated with each crypto device. */
|
|
struct rte_cryptodev {
|
|
dequeue_pkt_burst_t dequeue_burst;
|
|
/**< Pointer to PMD receive function. */
|
|
enqueue_pkt_burst_t enqueue_burst;
|
|
/**< Pointer to PMD transmit function. */
|
|
|
|
const struct rte_cryptodev_driver *driver;
|
|
/**< Driver for this device */
|
|
struct rte_cryptodev_data *data;
|
|
/**< Pointer to device data */
|
|
struct rte_cryptodev_ops *dev_ops;
|
|
/**< Functions exported by PMD */
|
|
uint64_t feature_flags;
|
|
/**< Supported features */
|
|
struct rte_pci_device *pci_dev;
|
|
/**< PCI info. supplied by probing */
|
|
|
|
enum rte_cryptodev_type dev_type;
|
|
/**< Crypto device type */
|
|
enum pmd_type pmd_type;
|
|
/**< PMD type - PDEV / VDEV */
|
|
|
|
struct rte_cryptodev_cb_list link_intr_cbs;
|
|
/**< User application callback for interrupts if present */
|
|
|
|
uint8_t attached : 1;
|
|
/**< Flag indicating the device is attached */
|
|
} __rte_cache_aligned;
|
|
|
|
|
|
#define RTE_CRYPTODEV_NAME_MAX_LEN (64)
|
|
/**< Max length of name of crypto PMD */
|
|
|
|
/**
|
|
*
|
|
* The data part, with no function pointers, associated with each device.
|
|
*
|
|
* This structure is safe to place in shared memory to be common among
|
|
* different processes in a multi-process configuration.
|
|
*/
|
|
struct rte_cryptodev_data {
|
|
uint8_t dev_id;
|
|
/**< Device ID for this instance */
|
|
uint8_t socket_id;
|
|
/**< Socket ID where memory is allocated */
|
|
char name[RTE_CRYPTODEV_NAME_MAX_LEN];
|
|
/**< Unique identifier name */
|
|
|
|
uint8_t dev_started : 1;
|
|
/**< Device state: STARTED(1)/STOPPED(0) */
|
|
|
|
struct rte_mempool *session_pool;
|
|
/**< Session memory pool */
|
|
void **queue_pairs;
|
|
/**< Array of pointers to queue pairs. */
|
|
uint16_t nb_queue_pairs;
|
|
/**< Number of device queue pairs. */
|
|
|
|
void *dev_private;
|
|
/**< PMD-specific private data */
|
|
} __rte_cache_aligned;
|
|
|
|
extern struct rte_cryptodev *rte_cryptodevs;
|
|
/**
|
|
*
|
|
* Dequeue a burst of processed crypto operations from a queue on the crypto
|
|
* device. The dequeued operation are stored in *rte_crypto_op* structures
|
|
* whose pointers are supplied in the *ops* array.
|
|
*
|
|
* The rte_cryptodev_dequeue_burst() function returns the number of ops
|
|
* actually dequeued, which is the number of *rte_crypto_op* data structures
|
|
* effectively supplied into the *ops* array.
|
|
*
|
|
* A return value equal to *nb_ops* indicates that the queue contained
|
|
* at least *nb_ops* operations, and this is likely to signify that other
|
|
* processed operations remain in the devices output queue. Applications
|
|
* implementing a "retrieve as many processed operations as possible" policy
|
|
* can check this specific case and keep invoking the
|
|
* rte_cryptodev_dequeue_burst() function until a value less than
|
|
* *nb_ops* is returned.
|
|
*
|
|
* The rte_cryptodev_dequeue_burst() function does not provide any error
|
|
* notification to avoid the corresponding overhead.
|
|
*
|
|
* @param dev_id The symmetric crypto device identifier
|
|
* @param qp_id The index of the queue pair from which to
|
|
* retrieve processed packets. The value must be
|
|
* in the range [0, nb_queue_pair - 1] previously
|
|
* supplied to rte_cryptodev_configure().
|
|
* @param ops The address of an array of pointers to
|
|
* *rte_crypto_op* structures that must be
|
|
* large enough to store *nb_ops* pointers in it.
|
|
* @param nb_ops The maximum number of operations to dequeue.
|
|
*
|
|
* @return
|
|
* - The number of operations actually dequeued, which is the number
|
|
* of pointers to *rte_crypto_op* structures effectively supplied to the
|
|
* *ops* array.
|
|
*/
|
|
static inline uint16_t
|
|
rte_cryptodev_dequeue_burst(uint8_t dev_id, uint16_t qp_id,
|
|
struct rte_crypto_op **ops, uint16_t nb_ops)
|
|
{
|
|
struct rte_cryptodev *dev = &rte_cryptodevs[dev_id];
|
|
|
|
nb_ops = (*dev->dequeue_burst)
|
|
(dev->data->queue_pairs[qp_id], ops, nb_ops);
|
|
|
|
return nb_ops;
|
|
}
|
|
|
|
/**
|
|
* Enqueue a burst of operations for processing on a crypto device.
|
|
*
|
|
* The rte_cryptodev_enqueue_burst() function is invoked to place
|
|
* crypto operations on the queue *qp_id* of the device designated by
|
|
* its *dev_id*.
|
|
*
|
|
* The *nb_ops* parameter is the number of operations to process which are
|
|
* supplied in the *ops* array of *rte_crypto_op* structures.
|
|
*
|
|
* The rte_cryptodev_enqueue_burst() function returns the number of
|
|
* operations it actually enqueued for processing. A return value equal to
|
|
* *nb_ops* means that all packets have been enqueued.
|
|
*
|
|
* @param dev_id The identifier of the device.
|
|
* @param qp_id The index of the queue pair which packets are
|
|
* to be enqueued for processing. The value
|
|
* must be in the range [0, nb_queue_pairs - 1]
|
|
* previously supplied to
|
|
* *rte_cryptodev_configure*.
|
|
* @param ops The address of an array of *nb_ops* pointers
|
|
* to *rte_crypto_op* structures which contain
|
|
* the crypto operations to be processed.
|
|
* @param nb_ops The number of operations to process.
|
|
*
|
|
* @return
|
|
* The number of operations actually enqueued on the crypto device. The return
|
|
* value can be less than the value of the *nb_ops* parameter when the
|
|
* crypto devices queue is full or if invalid parameters are specified in
|
|
* a *rte_crypto_op*.
|
|
*/
|
|
static inline uint16_t
|
|
rte_cryptodev_enqueue_burst(uint8_t dev_id, uint16_t qp_id,
|
|
struct rte_crypto_op **ops, uint16_t nb_ops)
|
|
{
|
|
struct rte_cryptodev *dev = &rte_cryptodevs[dev_id];
|
|
|
|
return (*dev->enqueue_burst)(
|
|
dev->data->queue_pairs[qp_id], ops, nb_ops);
|
|
}
|
|
|
|
|
|
/** Cryptodev symmetric crypto session */
|
|
struct rte_cryptodev_sym_session {
|
|
struct {
|
|
uint8_t dev_id;
|
|
/**< Device Id */
|
|
enum rte_cryptodev_type dev_type;
|
|
/** Crypto Device type session created on */
|
|
struct rte_mempool *mp;
|
|
/**< Mempool session allocated from */
|
|
} __rte_aligned(8);
|
|
/**< Public symmetric session details */
|
|
|
|
char _private[0];
|
|
/**< Private session material */
|
|
};
|
|
|
|
|
|
/**
|
|
* Initialise a session for symmetric cryptographic operations.
|
|
*
|
|
* This function is used by the client to initialize immutable
|
|
* parameters of symmetric cryptographic operation.
|
|
* To perform the operation the rte_cryptodev_enqueue_burst function is
|
|
* used. Each mbuf should contain a reference to the session
|
|
* pointer returned from this function contained within it's crypto_op if a
|
|
* session-based operation is being provisioned. Memory to contain the session
|
|
* information is allocated from within mempool managed by the cryptodev.
|
|
*
|
|
* The rte_cryptodev_session_free must be called to free allocated
|
|
* memory when the session is no longer required.
|
|
*
|
|
* @param dev_id The device identifier.
|
|
* @param xform Crypto transform chain.
|
|
|
|
*
|
|
* @return
|
|
* Pointer to the created session or NULL
|
|
*/
|
|
extern struct rte_cryptodev_sym_session *
|
|
rte_cryptodev_sym_session_create(uint8_t dev_id,
|
|
struct rte_crypto_sym_xform *xform);
|
|
|
|
/**
|
|
* Free the memory associated with a previously allocated session.
|
|
*
|
|
* @param dev_id The device identifier.
|
|
* @param session Session pointer previously allocated by
|
|
* *rte_cryptodev_sym_session_create*.
|
|
*
|
|
* @return
|
|
* NULL on successful freeing of session.
|
|
* Session pointer on failure to free session.
|
|
*/
|
|
extern struct rte_cryptodev_sym_session *
|
|
rte_cryptodev_sym_session_free(uint8_t dev_id,
|
|
struct rte_cryptodev_sym_session *session);
|
|
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* _RTE_CRYPTODEV_H_ */
|