mirror of https://github.com/F-Stack/f-stack.git
1258 lines
36 KiB
C
1258 lines
36 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_memory.h> /* for definition of RTE_CACHE_LINE_SIZE */
|
|
#include <rte_log.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_prefetch.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_cpuflags.h>
|
|
#include <rte_log.h>
|
|
#include <rte_rwlock.h>
|
|
#include <rte_spinlock.h>
|
|
#include <rte_ring.h>
|
|
#include <rte_compat.h>
|
|
|
|
#include "rte_hash.h"
|
|
#include "rte_cuckoo_hash.h"
|
|
|
|
#if defined(RTE_ARCH_X86)
|
|
#include "rte_cuckoo_hash_x86.h"
|
|
#endif
|
|
|
|
TAILQ_HEAD(rte_hash_list, rte_tailq_entry);
|
|
|
|
static struct rte_tailq_elem rte_hash_tailq = {
|
|
.name = "RTE_HASH",
|
|
};
|
|
EAL_REGISTER_TAILQ(rte_hash_tailq)
|
|
|
|
struct rte_hash *
|
|
rte_hash_find_existing(const char *name)
|
|
{
|
|
struct rte_hash *h = NULL;
|
|
struct rte_tailq_entry *te;
|
|
struct rte_hash_list *hash_list;
|
|
|
|
hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
|
|
|
|
rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
|
|
TAILQ_FOREACH(te, hash_list, next) {
|
|
h = (struct rte_hash *) te->data;
|
|
if (strncmp(name, h->name, RTE_HASH_NAMESIZE) == 0)
|
|
break;
|
|
}
|
|
rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
if (te == NULL) {
|
|
rte_errno = ENOENT;
|
|
return NULL;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
void rte_hash_set_cmp_func(struct rte_hash *h, rte_hash_cmp_eq_t func)
|
|
{
|
|
h->rte_hash_custom_cmp_eq = func;
|
|
}
|
|
|
|
static inline int
|
|
rte_hash_cmp_eq(const void *key1, const void *key2, const struct rte_hash *h)
|
|
{
|
|
if (h->cmp_jump_table_idx == KEY_CUSTOM)
|
|
return h->rte_hash_custom_cmp_eq(key1, key2, h->key_len);
|
|
else
|
|
return cmp_jump_table[h->cmp_jump_table_idx](key1, key2, h->key_len);
|
|
}
|
|
|
|
struct rte_hash *
|
|
rte_hash_create(const struct rte_hash_parameters *params)
|
|
{
|
|
struct rte_hash *h = NULL;
|
|
struct rte_tailq_entry *te = NULL;
|
|
struct rte_hash_list *hash_list;
|
|
struct rte_ring *r = NULL;
|
|
char hash_name[RTE_HASH_NAMESIZE];
|
|
void *k = NULL;
|
|
void *buckets = NULL;
|
|
char ring_name[RTE_RING_NAMESIZE];
|
|
unsigned num_key_slots;
|
|
unsigned hw_trans_mem_support = 0;
|
|
unsigned i;
|
|
|
|
hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
|
|
|
|
if (params == NULL) {
|
|
RTE_LOG(ERR, HASH, "rte_hash_create has no parameters\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Check for valid parameters */
|
|
if ((params->entries > RTE_HASH_ENTRIES_MAX) ||
|
|
(params->entries < RTE_HASH_BUCKET_ENTRIES) ||
|
|
!rte_is_power_of_2(RTE_HASH_BUCKET_ENTRIES) ||
|
|
(params->key_len == 0)) {
|
|
rte_errno = EINVAL;
|
|
RTE_LOG(ERR, HASH, "rte_hash_create has invalid parameters\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Check extra flags field to check extra options. */
|
|
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT)
|
|
hw_trans_mem_support = 1;
|
|
|
|
/* Store all keys and leave the first entry as a dummy entry for lookup_bulk */
|
|
if (hw_trans_mem_support)
|
|
/*
|
|
* Increase number of slots by total number of indices
|
|
* that can be stored in the lcore caches
|
|
* except for the first cache
|
|
*/
|
|
num_key_slots = params->entries + (RTE_MAX_LCORE - 1) *
|
|
LCORE_CACHE_SIZE + 1;
|
|
else
|
|
num_key_slots = params->entries + 1;
|
|
|
|
snprintf(ring_name, sizeof(ring_name), "HT_%s", params->name);
|
|
/* Create ring (Dummy slot index is not enqueued) */
|
|
r = rte_ring_create(ring_name, rte_align32pow2(num_key_slots - 1),
|
|
params->socket_id, 0);
|
|
if (r == NULL) {
|
|
RTE_LOG(ERR, HASH, "memory allocation failed\n");
|
|
goto err;
|
|
}
|
|
|
|
snprintf(hash_name, sizeof(hash_name), "HT_%s", params->name);
|
|
|
|
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
/* guarantee there's no existing: this is normally already checked
|
|
* by ring creation above */
|
|
TAILQ_FOREACH(te, hash_list, next) {
|
|
h = (struct rte_hash *) te->data;
|
|
if (strncmp(params->name, h->name, RTE_HASH_NAMESIZE) == 0)
|
|
break;
|
|
}
|
|
h = NULL;
|
|
if (te != NULL) {
|
|
rte_errno = EEXIST;
|
|
te = NULL;
|
|
goto err_unlock;
|
|
}
|
|
|
|
te = rte_zmalloc("HASH_TAILQ_ENTRY", sizeof(*te), 0);
|
|
if (te == NULL) {
|
|
RTE_LOG(ERR, HASH, "tailq entry allocation failed\n");
|
|
goto err_unlock;
|
|
}
|
|
|
|
h = (struct rte_hash *)rte_zmalloc_socket(hash_name, sizeof(struct rte_hash),
|
|
RTE_CACHE_LINE_SIZE, params->socket_id);
|
|
|
|
if (h == NULL) {
|
|
RTE_LOG(ERR, HASH, "memory allocation failed\n");
|
|
goto err_unlock;
|
|
}
|
|
|
|
const uint32_t num_buckets = rte_align32pow2(params->entries)
|
|
/ RTE_HASH_BUCKET_ENTRIES;
|
|
|
|
buckets = rte_zmalloc_socket(NULL,
|
|
num_buckets * sizeof(struct rte_hash_bucket),
|
|
RTE_CACHE_LINE_SIZE, params->socket_id);
|
|
|
|
if (buckets == NULL) {
|
|
RTE_LOG(ERR, HASH, "memory allocation failed\n");
|
|
goto err_unlock;
|
|
}
|
|
|
|
const uint32_t key_entry_size = sizeof(struct rte_hash_key) + params->key_len;
|
|
const uint64_t key_tbl_size = (uint64_t) key_entry_size * num_key_slots;
|
|
|
|
k = rte_zmalloc_socket(NULL, key_tbl_size,
|
|
RTE_CACHE_LINE_SIZE, params->socket_id);
|
|
|
|
if (k == NULL) {
|
|
RTE_LOG(ERR, HASH, "memory allocation failed\n");
|
|
goto err_unlock;
|
|
}
|
|
|
|
/*
|
|
* If x86 architecture is used, select appropriate compare function,
|
|
* which may use x86 intrinsics, otherwise use memcmp
|
|
*/
|
|
#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
|
|
/* Select function to compare keys */
|
|
switch (params->key_len) {
|
|
case 16:
|
|
h->cmp_jump_table_idx = KEY_16_BYTES;
|
|
break;
|
|
case 32:
|
|
h->cmp_jump_table_idx = KEY_32_BYTES;
|
|
break;
|
|
case 48:
|
|
h->cmp_jump_table_idx = KEY_48_BYTES;
|
|
break;
|
|
case 64:
|
|
h->cmp_jump_table_idx = KEY_64_BYTES;
|
|
break;
|
|
case 80:
|
|
h->cmp_jump_table_idx = KEY_80_BYTES;
|
|
break;
|
|
case 96:
|
|
h->cmp_jump_table_idx = KEY_96_BYTES;
|
|
break;
|
|
case 112:
|
|
h->cmp_jump_table_idx = KEY_112_BYTES;
|
|
break;
|
|
case 128:
|
|
h->cmp_jump_table_idx = KEY_128_BYTES;
|
|
break;
|
|
default:
|
|
/* If key is not multiple of 16, use generic memcmp */
|
|
h->cmp_jump_table_idx = KEY_OTHER_BYTES;
|
|
}
|
|
#else
|
|
h->cmp_jump_table_idx = KEY_OTHER_BYTES;
|
|
#endif
|
|
|
|
if (hw_trans_mem_support) {
|
|
h->local_free_slots = rte_zmalloc_socket(NULL,
|
|
sizeof(struct lcore_cache) * RTE_MAX_LCORE,
|
|
RTE_CACHE_LINE_SIZE, params->socket_id);
|
|
}
|
|
|
|
/* Setup hash context */
|
|
snprintf(h->name, sizeof(h->name), "%s", params->name);
|
|
h->entries = params->entries;
|
|
h->key_len = params->key_len;
|
|
h->key_entry_size = key_entry_size;
|
|
h->hash_func_init_val = params->hash_func_init_val;
|
|
|
|
h->num_buckets = num_buckets;
|
|
h->bucket_bitmask = h->num_buckets - 1;
|
|
h->buckets = buckets;
|
|
h->hash_func = (params->hash_func == NULL) ?
|
|
DEFAULT_HASH_FUNC : params->hash_func;
|
|
h->key_store = k;
|
|
h->free_slots = r;
|
|
h->hw_trans_mem_support = hw_trans_mem_support;
|
|
|
|
/* Turn on multi-writer only with explicit flat from user and TM
|
|
* support.
|
|
*/
|
|
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD) {
|
|
if (h->hw_trans_mem_support) {
|
|
h->add_key = ADD_KEY_MULTIWRITER_TM;
|
|
} else {
|
|
h->add_key = ADD_KEY_MULTIWRITER;
|
|
h->multiwriter_lock = rte_malloc(NULL,
|
|
sizeof(rte_spinlock_t),
|
|
LCORE_CACHE_SIZE);
|
|
rte_spinlock_init(h->multiwriter_lock);
|
|
}
|
|
} else
|
|
h->add_key = ADD_KEY_SINGLEWRITER;
|
|
|
|
/* Populate free slots ring. Entry zero is reserved for key misses. */
|
|
for (i = 1; i < params->entries + 1; i++)
|
|
rte_ring_sp_enqueue(r, (void *)((uintptr_t) i));
|
|
|
|
te->data = (void *) h;
|
|
TAILQ_INSERT_TAIL(hash_list, te, next);
|
|
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
return h;
|
|
err_unlock:
|
|
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
err:
|
|
rte_ring_free(r);
|
|
rte_free(te);
|
|
rte_free(h);
|
|
rte_free(buckets);
|
|
rte_free(k);
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
rte_hash_free(struct rte_hash *h)
|
|
{
|
|
struct rte_tailq_entry *te;
|
|
struct rte_hash_list *hash_list;
|
|
|
|
if (h == NULL)
|
|
return;
|
|
|
|
hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
|
|
|
|
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
/* find out tailq entry */
|
|
TAILQ_FOREACH(te, hash_list, next) {
|
|
if (te->data == (void *) h)
|
|
break;
|
|
}
|
|
|
|
if (te == NULL) {
|
|
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
return;
|
|
}
|
|
|
|
TAILQ_REMOVE(hash_list, te, next);
|
|
|
|
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
if (h->hw_trans_mem_support)
|
|
rte_free(h->local_free_slots);
|
|
|
|
if (h->add_key == ADD_KEY_MULTIWRITER)
|
|
rte_free(h->multiwriter_lock);
|
|
rte_ring_free(h->free_slots);
|
|
rte_free(h->key_store);
|
|
rte_free(h->buckets);
|
|
rte_free(h);
|
|
rte_free(te);
|
|
}
|
|
|
|
hash_sig_t
|
|
rte_hash_hash(const struct rte_hash *h, const void *key)
|
|
{
|
|
/* calc hash result by key */
|
|
return h->hash_func(key, h->key_len, h->hash_func_init_val);
|
|
}
|
|
|
|
/* Calc the secondary hash value from the primary hash value of a given key */
|
|
static inline hash_sig_t
|
|
rte_hash_secondary_hash(const hash_sig_t primary_hash)
|
|
{
|
|
static const unsigned all_bits_shift = 12;
|
|
static const unsigned alt_bits_xor = 0x5bd1e995;
|
|
|
|
uint32_t tag = primary_hash >> all_bits_shift;
|
|
|
|
return primary_hash ^ ((tag + 1) * alt_bits_xor);
|
|
}
|
|
|
|
void
|
|
rte_hash_reset(struct rte_hash *h)
|
|
{
|
|
void *ptr;
|
|
unsigned i;
|
|
|
|
if (h == NULL)
|
|
return;
|
|
|
|
memset(h->buckets, 0, h->num_buckets * sizeof(struct rte_hash_bucket));
|
|
memset(h->key_store, 0, h->key_entry_size * (h->entries + 1));
|
|
|
|
/* clear the free ring */
|
|
while (rte_ring_dequeue(h->free_slots, &ptr) == 0)
|
|
rte_pause();
|
|
|
|
/* Repopulate the free slots ring. Entry zero is reserved for key misses */
|
|
for (i = 1; i < h->entries + 1; i++)
|
|
rte_ring_sp_enqueue(h->free_slots, (void *)((uintptr_t) i));
|
|
|
|
if (h->hw_trans_mem_support) {
|
|
/* Reset local caches per lcore */
|
|
for (i = 0; i < RTE_MAX_LCORE; i++)
|
|
h->local_free_slots[i].len = 0;
|
|
}
|
|
}
|
|
|
|
/* Search for an entry that can be pushed to its alternative location */
|
|
static inline int
|
|
make_space_bucket(const struct rte_hash *h, struct rte_hash_bucket *bkt)
|
|
{
|
|
static unsigned int nr_pushes;
|
|
unsigned i, j;
|
|
int ret;
|
|
uint32_t next_bucket_idx;
|
|
struct rte_hash_bucket *next_bkt[RTE_HASH_BUCKET_ENTRIES];
|
|
|
|
/*
|
|
* Push existing item (search for bucket with space in
|
|
* alternative locations) to its alternative location
|
|
*/
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
/* Search for space in alternative locations */
|
|
next_bucket_idx = bkt->signatures[i].alt & h->bucket_bitmask;
|
|
next_bkt[i] = &h->buckets[next_bucket_idx];
|
|
for (j = 0; j < RTE_HASH_BUCKET_ENTRIES; j++) {
|
|
if (next_bkt[i]->signatures[j].sig == NULL_SIGNATURE)
|
|
break;
|
|
}
|
|
|
|
if (j != RTE_HASH_BUCKET_ENTRIES)
|
|
break;
|
|
}
|
|
|
|
/* Alternative location has spare room (end of recursive function) */
|
|
if (i != RTE_HASH_BUCKET_ENTRIES) {
|
|
next_bkt[i]->signatures[j].alt = bkt->signatures[i].current;
|
|
next_bkt[i]->signatures[j].current = bkt->signatures[i].alt;
|
|
next_bkt[i]->key_idx[j] = bkt->key_idx[i];
|
|
return i;
|
|
}
|
|
|
|
/* Pick entry that has not been pushed yet */
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++)
|
|
if (bkt->flag[i] == 0)
|
|
break;
|
|
|
|
/* All entries have been pushed, so entry cannot be added */
|
|
if (i == RTE_HASH_BUCKET_ENTRIES || nr_pushes > RTE_HASH_MAX_PUSHES)
|
|
return -ENOSPC;
|
|
|
|
/* Set flag to indicate that this entry is going to be pushed */
|
|
bkt->flag[i] = 1;
|
|
|
|
nr_pushes++;
|
|
/* Need room in alternative bucket to insert the pushed entry */
|
|
ret = make_space_bucket(h, next_bkt[i]);
|
|
/*
|
|
* After recursive function.
|
|
* Clear flags and insert the pushed entry
|
|
* in its alternative location if successful,
|
|
* or return error
|
|
*/
|
|
bkt->flag[i] = 0;
|
|
nr_pushes = 0;
|
|
if (ret >= 0) {
|
|
next_bkt[i]->signatures[ret].alt = bkt->signatures[i].current;
|
|
next_bkt[i]->signatures[ret].current = bkt->signatures[i].alt;
|
|
next_bkt[i]->key_idx[ret] = bkt->key_idx[i];
|
|
return i;
|
|
} else
|
|
return ret;
|
|
|
|
}
|
|
|
|
/*
|
|
* Function called to enqueue back an index in the cache/ring,
|
|
* as slot has not being used and it can be used in the
|
|
* next addition attempt.
|
|
*/
|
|
static inline void
|
|
enqueue_slot_back(const struct rte_hash *h,
|
|
struct lcore_cache *cached_free_slots,
|
|
void *slot_id)
|
|
{
|
|
if (h->hw_trans_mem_support) {
|
|
cached_free_slots->objs[cached_free_slots->len] = slot_id;
|
|
cached_free_slots->len++;
|
|
} else
|
|
rte_ring_sp_enqueue(h->free_slots, slot_id);
|
|
}
|
|
|
|
static inline int32_t
|
|
__rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key,
|
|
hash_sig_t sig, void *data)
|
|
{
|
|
hash_sig_t alt_hash;
|
|
uint32_t prim_bucket_idx, sec_bucket_idx;
|
|
unsigned i;
|
|
struct rte_hash_bucket *prim_bkt, *sec_bkt;
|
|
struct rte_hash_key *new_k, *k, *keys = h->key_store;
|
|
void *slot_id = NULL;
|
|
uint32_t new_idx;
|
|
int ret;
|
|
unsigned n_slots;
|
|
unsigned lcore_id;
|
|
struct lcore_cache *cached_free_slots = NULL;
|
|
|
|
if (h->add_key == ADD_KEY_MULTIWRITER)
|
|
rte_spinlock_lock(h->multiwriter_lock);
|
|
|
|
prim_bucket_idx = sig & h->bucket_bitmask;
|
|
prim_bkt = &h->buckets[prim_bucket_idx];
|
|
rte_prefetch0(prim_bkt);
|
|
|
|
alt_hash = rte_hash_secondary_hash(sig);
|
|
sec_bucket_idx = alt_hash & h->bucket_bitmask;
|
|
sec_bkt = &h->buckets[sec_bucket_idx];
|
|
rte_prefetch0(sec_bkt);
|
|
|
|
/* Get a new slot for storing the new key */
|
|
if (h->hw_trans_mem_support) {
|
|
lcore_id = rte_lcore_id();
|
|
cached_free_slots = &h->local_free_slots[lcore_id];
|
|
/* Try to get a free slot from the local cache */
|
|
if (cached_free_slots->len == 0) {
|
|
/* Need to get another burst of free slots from global ring */
|
|
n_slots = rte_ring_mc_dequeue_burst(h->free_slots,
|
|
cached_free_slots->objs, LCORE_CACHE_SIZE);
|
|
if (n_slots == 0)
|
|
return -ENOSPC;
|
|
|
|
cached_free_slots->len += n_slots;
|
|
}
|
|
|
|
/* Get a free slot from the local cache */
|
|
cached_free_slots->len--;
|
|
slot_id = cached_free_slots->objs[cached_free_slots->len];
|
|
} else {
|
|
if (rte_ring_sc_dequeue(h->free_slots, &slot_id) != 0)
|
|
return -ENOSPC;
|
|
}
|
|
|
|
new_k = RTE_PTR_ADD(keys, (uintptr_t)slot_id * h->key_entry_size);
|
|
rte_prefetch0(new_k);
|
|
new_idx = (uint32_t)((uintptr_t) slot_id);
|
|
|
|
/* Check if key is already inserted in primary location */
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
if (prim_bkt->signatures[i].current == sig &&
|
|
prim_bkt->signatures[i].alt == alt_hash) {
|
|
k = (struct rte_hash_key *) ((char *)keys +
|
|
prim_bkt->key_idx[i] * h->key_entry_size);
|
|
if (rte_hash_cmp_eq(key, k->key, h) == 0) {
|
|
/* Enqueue index of free slot back in the ring. */
|
|
enqueue_slot_back(h, cached_free_slots, slot_id);
|
|
/* Update data */
|
|
k->pdata = data;
|
|
/*
|
|
* Return index where key is stored,
|
|
* substracting the first dummy index
|
|
*/
|
|
return prim_bkt->key_idx[i] - 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check if key is already inserted in secondary location */
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
if (sec_bkt->signatures[i].alt == sig &&
|
|
sec_bkt->signatures[i].current == alt_hash) {
|
|
k = (struct rte_hash_key *) ((char *)keys +
|
|
sec_bkt->key_idx[i] * h->key_entry_size);
|
|
if (rte_hash_cmp_eq(key, k->key, h) == 0) {
|
|
/* Enqueue index of free slot back in the ring. */
|
|
enqueue_slot_back(h, cached_free_slots, slot_id);
|
|
/* Update data */
|
|
k->pdata = data;
|
|
/*
|
|
* Return index where key is stored,
|
|
* substracting the first dummy index
|
|
*/
|
|
return sec_bkt->key_idx[i] - 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Copy key */
|
|
rte_memcpy(new_k->key, key, h->key_len);
|
|
new_k->pdata = data;
|
|
|
|
#if defined(RTE_ARCH_X86) /* currently only x86 support HTM */
|
|
if (h->add_key == ADD_KEY_MULTIWRITER_TM) {
|
|
ret = rte_hash_cuckoo_insert_mw_tm(prim_bkt,
|
|
sig, alt_hash, new_idx);
|
|
if (ret >= 0)
|
|
return new_idx - 1;
|
|
|
|
/* Primary bucket full, need to make space for new entry */
|
|
ret = rte_hash_cuckoo_make_space_mw_tm(h, prim_bkt, sig,
|
|
alt_hash, new_idx);
|
|
|
|
if (ret >= 0)
|
|
return new_idx - 1;
|
|
|
|
/* Also search secondary bucket to get better occupancy */
|
|
ret = rte_hash_cuckoo_make_space_mw_tm(h, sec_bkt, sig,
|
|
alt_hash, new_idx);
|
|
|
|
if (ret >= 0)
|
|
return new_idx - 1;
|
|
} else {
|
|
#endif
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
/* Check if slot is available */
|
|
if (likely(prim_bkt->signatures[i].sig == NULL_SIGNATURE)) {
|
|
prim_bkt->signatures[i].current = sig;
|
|
prim_bkt->signatures[i].alt = alt_hash;
|
|
prim_bkt->key_idx[i] = new_idx;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i != RTE_HASH_BUCKET_ENTRIES) {
|
|
if (h->add_key == ADD_KEY_MULTIWRITER)
|
|
rte_spinlock_unlock(h->multiwriter_lock);
|
|
return new_idx - 1;
|
|
}
|
|
|
|
/* Primary bucket full, need to make space for new entry
|
|
* After recursive function.
|
|
* Insert the new entry in the position of the pushed entry
|
|
* if successful or return error and
|
|
* store the new slot back in the ring
|
|
*/
|
|
ret = make_space_bucket(h, prim_bkt);
|
|
if (ret >= 0) {
|
|
prim_bkt->signatures[ret].current = sig;
|
|
prim_bkt->signatures[ret].alt = alt_hash;
|
|
prim_bkt->key_idx[ret] = new_idx;
|
|
if (h->add_key == ADD_KEY_MULTIWRITER)
|
|
rte_spinlock_unlock(h->multiwriter_lock);
|
|
return new_idx - 1;
|
|
}
|
|
#if defined(RTE_ARCH_X86)
|
|
}
|
|
#endif
|
|
/* Error in addition, store new slot back in the ring and return error */
|
|
enqueue_slot_back(h, cached_free_slots, (void *)((uintptr_t) new_idx));
|
|
|
|
if (h->add_key == ADD_KEY_MULTIWRITER)
|
|
rte_spinlock_unlock(h->multiwriter_lock);
|
|
return ret;
|
|
}
|
|
|
|
int32_t
|
|
rte_hash_add_key_with_hash(const struct rte_hash *h,
|
|
const void *key, hash_sig_t sig)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
return __rte_hash_add_key_with_hash(h, key, sig, 0);
|
|
}
|
|
|
|
int32_t
|
|
rte_hash_add_key(const struct rte_hash *h, const void *key)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
return __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), 0);
|
|
}
|
|
|
|
int
|
|
rte_hash_add_key_with_hash_data(const struct rte_hash *h,
|
|
const void *key, hash_sig_t sig, void *data)
|
|
{
|
|
int ret;
|
|
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
ret = __rte_hash_add_key_with_hash(h, key, sig, data);
|
|
if (ret >= 0)
|
|
return 0;
|
|
else
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
rte_hash_add_key_data(const struct rte_hash *h, const void *key, void *data)
|
|
{
|
|
int ret;
|
|
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
|
|
ret = __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), data);
|
|
if (ret >= 0)
|
|
return 0;
|
|
else
|
|
return ret;
|
|
}
|
|
static inline int32_t
|
|
__rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key,
|
|
hash_sig_t sig, void **data)
|
|
{
|
|
uint32_t bucket_idx;
|
|
hash_sig_t alt_hash;
|
|
unsigned i;
|
|
struct rte_hash_bucket *bkt;
|
|
struct rte_hash_key *k, *keys = h->key_store;
|
|
|
|
bucket_idx = sig & h->bucket_bitmask;
|
|
bkt = &h->buckets[bucket_idx];
|
|
|
|
/* Check if key is in primary location */
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
if (bkt->signatures[i].current == sig &&
|
|
bkt->signatures[i].sig != NULL_SIGNATURE) {
|
|
k = (struct rte_hash_key *) ((char *)keys +
|
|
bkt->key_idx[i] * h->key_entry_size);
|
|
if (rte_hash_cmp_eq(key, k->key, h) == 0) {
|
|
if (data != NULL)
|
|
*data = k->pdata;
|
|
/*
|
|
* Return index where key is stored,
|
|
* substracting the first dummy index
|
|
*/
|
|
return bkt->key_idx[i] - 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Calculate secondary hash */
|
|
alt_hash = rte_hash_secondary_hash(sig);
|
|
bucket_idx = alt_hash & h->bucket_bitmask;
|
|
bkt = &h->buckets[bucket_idx];
|
|
|
|
/* Check if key is in secondary location */
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
if (bkt->signatures[i].current == alt_hash &&
|
|
bkt->signatures[i].alt == sig) {
|
|
k = (struct rte_hash_key *) ((char *)keys +
|
|
bkt->key_idx[i] * h->key_entry_size);
|
|
if (rte_hash_cmp_eq(key, k->key, h) == 0) {
|
|
if (data != NULL)
|
|
*data = k->pdata;
|
|
/*
|
|
* Return index where key is stored,
|
|
* substracting the first dummy index
|
|
*/
|
|
return bkt->key_idx[i] - 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
int32_t
|
|
rte_hash_lookup_with_hash(const struct rte_hash *h,
|
|
const void *key, hash_sig_t sig)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
return __rte_hash_lookup_with_hash(h, key, sig, NULL);
|
|
}
|
|
|
|
int32_t
|
|
rte_hash_lookup(const struct rte_hash *h, const void *key)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), NULL);
|
|
}
|
|
|
|
int
|
|
rte_hash_lookup_with_hash_data(const struct rte_hash *h,
|
|
const void *key, hash_sig_t sig, void **data)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
return __rte_hash_lookup_with_hash(h, key, sig, data);
|
|
}
|
|
|
|
int
|
|
rte_hash_lookup_data(const struct rte_hash *h, const void *key, void **data)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), data);
|
|
}
|
|
|
|
static inline void
|
|
remove_entry(const struct rte_hash *h, struct rte_hash_bucket *bkt, unsigned i)
|
|
{
|
|
unsigned lcore_id, n_slots;
|
|
struct lcore_cache *cached_free_slots;
|
|
|
|
bkt->signatures[i].sig = NULL_SIGNATURE;
|
|
if (h->hw_trans_mem_support) {
|
|
lcore_id = rte_lcore_id();
|
|
cached_free_slots = &h->local_free_slots[lcore_id];
|
|
/* Cache full, need to free it. */
|
|
if (cached_free_slots->len == LCORE_CACHE_SIZE) {
|
|
/* Need to enqueue the free slots in global ring. */
|
|
n_slots = rte_ring_mp_enqueue_burst(h->free_slots,
|
|
cached_free_slots->objs,
|
|
LCORE_CACHE_SIZE);
|
|
cached_free_slots->len -= n_slots;
|
|
}
|
|
/* Put index of new free slot in cache. */
|
|
cached_free_slots->objs[cached_free_slots->len] =
|
|
(void *)((uintptr_t)bkt->key_idx[i]);
|
|
cached_free_slots->len++;
|
|
} else {
|
|
rte_ring_sp_enqueue(h->free_slots,
|
|
(void *)((uintptr_t)bkt->key_idx[i]));
|
|
}
|
|
}
|
|
|
|
static inline int32_t
|
|
__rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key,
|
|
hash_sig_t sig)
|
|
{
|
|
uint32_t bucket_idx;
|
|
hash_sig_t alt_hash;
|
|
unsigned i;
|
|
struct rte_hash_bucket *bkt;
|
|
struct rte_hash_key *k, *keys = h->key_store;
|
|
int32_t ret;
|
|
|
|
bucket_idx = sig & h->bucket_bitmask;
|
|
bkt = &h->buckets[bucket_idx];
|
|
|
|
/* Check if key is in primary location */
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
if (bkt->signatures[i].current == sig &&
|
|
bkt->signatures[i].sig != NULL_SIGNATURE) {
|
|
k = (struct rte_hash_key *) ((char *)keys +
|
|
bkt->key_idx[i] * h->key_entry_size);
|
|
if (rte_hash_cmp_eq(key, k->key, h) == 0) {
|
|
remove_entry(h, bkt, i);
|
|
|
|
/*
|
|
* Return index where key is stored,
|
|
* substracting the first dummy index
|
|
*/
|
|
ret = bkt->key_idx[i] - 1;
|
|
bkt->key_idx[i] = 0;
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Calculate secondary hash */
|
|
alt_hash = rte_hash_secondary_hash(sig);
|
|
bucket_idx = alt_hash & h->bucket_bitmask;
|
|
bkt = &h->buckets[bucket_idx];
|
|
|
|
/* Check if key is in secondary location */
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
if (bkt->signatures[i].current == alt_hash &&
|
|
bkt->signatures[i].sig != NULL_SIGNATURE) {
|
|
k = (struct rte_hash_key *) ((char *)keys +
|
|
bkt->key_idx[i] * h->key_entry_size);
|
|
if (rte_hash_cmp_eq(key, k->key, h) == 0) {
|
|
remove_entry(h, bkt, i);
|
|
|
|
/*
|
|
* Return index where key is stored,
|
|
* substracting the first dummy index
|
|
*/
|
|
ret = bkt->key_idx[i] - 1;
|
|
bkt->key_idx[i] = 0;
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
int32_t
|
|
rte_hash_del_key_with_hash(const struct rte_hash *h,
|
|
const void *key, hash_sig_t sig)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
return __rte_hash_del_key_with_hash(h, key, sig);
|
|
}
|
|
|
|
int32_t
|
|
rte_hash_del_key(const struct rte_hash *h, const void *key)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
return __rte_hash_del_key_with_hash(h, key, rte_hash_hash(h, key));
|
|
}
|
|
|
|
int
|
|
rte_hash_get_key_with_position(const struct rte_hash *h, const int32_t position,
|
|
void **key)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
|
|
struct rte_hash_key *k, *keys = h->key_store;
|
|
k = (struct rte_hash_key *) ((char *) keys + (position + 1) *
|
|
h->key_entry_size);
|
|
*key = k->key;
|
|
|
|
if (position !=
|
|
__rte_hash_lookup_with_hash(h, *key, rte_hash_hash(h, *key),
|
|
NULL)) {
|
|
return -ENOENT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Lookup bulk stage 0: Prefetch input key */
|
|
static inline void
|
|
lookup_stage0(unsigned *idx, uint64_t *lookup_mask,
|
|
const void * const *keys)
|
|
{
|
|
*idx = __builtin_ctzl(*lookup_mask);
|
|
if (*lookup_mask == 0)
|
|
*idx = 0;
|
|
|
|
rte_prefetch0(keys[*idx]);
|
|
*lookup_mask &= ~(1llu << *idx);
|
|
}
|
|
|
|
/*
|
|
* Lookup bulk stage 1: Calculate primary/secondary hashes
|
|
* and prefetch primary/secondary buckets
|
|
*/
|
|
static inline void
|
|
lookup_stage1(unsigned idx, hash_sig_t *prim_hash, hash_sig_t *sec_hash,
|
|
const struct rte_hash_bucket **primary_bkt,
|
|
const struct rte_hash_bucket **secondary_bkt,
|
|
hash_sig_t *hash_vals, const void * const *keys,
|
|
const struct rte_hash *h)
|
|
{
|
|
*prim_hash = rte_hash_hash(h, keys[idx]);
|
|
hash_vals[idx] = *prim_hash;
|
|
*sec_hash = rte_hash_secondary_hash(*prim_hash);
|
|
|
|
*primary_bkt = &h->buckets[*prim_hash & h->bucket_bitmask];
|
|
*secondary_bkt = &h->buckets[*sec_hash & h->bucket_bitmask];
|
|
|
|
rte_prefetch0(*primary_bkt);
|
|
rte_prefetch0(*secondary_bkt);
|
|
}
|
|
|
|
/*
|
|
* Lookup bulk stage 2: Search for match hashes in primary/secondary locations
|
|
* and prefetch first key slot
|
|
*/
|
|
static inline void
|
|
lookup_stage2(unsigned idx, hash_sig_t prim_hash, hash_sig_t sec_hash,
|
|
const struct rte_hash_bucket *prim_bkt,
|
|
const struct rte_hash_bucket *sec_bkt,
|
|
const struct rte_hash_key **key_slot, int32_t *positions,
|
|
uint64_t *extra_hits_mask, const void *keys,
|
|
const struct rte_hash *h)
|
|
{
|
|
unsigned prim_hash_matches, sec_hash_matches, key_idx, i;
|
|
unsigned total_hash_matches;
|
|
|
|
prim_hash_matches = 1 << RTE_HASH_BUCKET_ENTRIES;
|
|
sec_hash_matches = 1 << RTE_HASH_BUCKET_ENTRIES;
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
prim_hash_matches |= ((prim_hash == prim_bkt->signatures[i].current) << i);
|
|
sec_hash_matches |= ((sec_hash == sec_bkt->signatures[i].current) << i);
|
|
}
|
|
|
|
key_idx = prim_bkt->key_idx[__builtin_ctzl(prim_hash_matches)];
|
|
if (key_idx == 0)
|
|
key_idx = sec_bkt->key_idx[__builtin_ctzl(sec_hash_matches)];
|
|
|
|
total_hash_matches = (prim_hash_matches |
|
|
(sec_hash_matches << (RTE_HASH_BUCKET_ENTRIES + 1)));
|
|
*key_slot = (const struct rte_hash_key *) ((const char *)keys +
|
|
key_idx * h->key_entry_size);
|
|
|
|
rte_prefetch0(*key_slot);
|
|
/*
|
|
* Return index where key is stored,
|
|
* substracting the first dummy index
|
|
*/
|
|
positions[idx] = (key_idx - 1);
|
|
|
|
*extra_hits_mask |= (uint64_t)(__builtin_popcount(total_hash_matches) > 3) << idx;
|
|
|
|
}
|
|
|
|
|
|
/* Lookup bulk stage 3: Check if key matches, update hit mask and return data */
|
|
static inline void
|
|
lookup_stage3(unsigned idx, const struct rte_hash_key *key_slot, const void * const *keys,
|
|
const int32_t *positions, void *data[], uint64_t *hits,
|
|
const struct rte_hash *h)
|
|
{
|
|
unsigned hit;
|
|
unsigned key_idx;
|
|
|
|
hit = !rte_hash_cmp_eq(key_slot->key, keys[idx], h);
|
|
if (data != NULL)
|
|
data[idx] = key_slot->pdata;
|
|
|
|
key_idx = positions[idx] + 1;
|
|
/*
|
|
* If key index is 0, force hit to be 0, in case key to be looked up
|
|
* is all zero (as in the dummy slot), which would result in a wrong hit
|
|
*/
|
|
*hits |= (uint64_t)(hit && !!key_idx) << idx;
|
|
}
|
|
|
|
static inline void
|
|
__rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
|
|
uint32_t num_keys, int32_t *positions,
|
|
uint64_t *hit_mask, void *data[])
|
|
{
|
|
uint64_t hits = 0;
|
|
uint64_t extra_hits_mask = 0;
|
|
uint64_t lookup_mask, miss_mask;
|
|
unsigned idx;
|
|
const void *key_store = h->key_store;
|
|
int ret;
|
|
hash_sig_t hash_vals[RTE_HASH_LOOKUP_BULK_MAX];
|
|
|
|
unsigned idx00, idx01, idx10, idx11, idx20, idx21, idx30, idx31;
|
|
const struct rte_hash_bucket *primary_bkt10, *primary_bkt11;
|
|
const struct rte_hash_bucket *secondary_bkt10, *secondary_bkt11;
|
|
const struct rte_hash_bucket *primary_bkt20, *primary_bkt21;
|
|
const struct rte_hash_bucket *secondary_bkt20, *secondary_bkt21;
|
|
const struct rte_hash_key *k_slot20, *k_slot21, *k_slot30, *k_slot31;
|
|
hash_sig_t primary_hash10, primary_hash11;
|
|
hash_sig_t secondary_hash10, secondary_hash11;
|
|
hash_sig_t primary_hash20, primary_hash21;
|
|
hash_sig_t secondary_hash20, secondary_hash21;
|
|
|
|
lookup_mask = (uint64_t) -1 >> (64 - num_keys);
|
|
miss_mask = lookup_mask;
|
|
|
|
lookup_stage0(&idx00, &lookup_mask, keys);
|
|
lookup_stage0(&idx01, &lookup_mask, keys);
|
|
|
|
idx10 = idx00, idx11 = idx01;
|
|
|
|
lookup_stage0(&idx00, &lookup_mask, keys);
|
|
lookup_stage0(&idx01, &lookup_mask, keys);
|
|
lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
|
|
&primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
|
|
lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
|
|
&primary_bkt11, &secondary_bkt11, hash_vals, keys, h);
|
|
|
|
primary_bkt20 = primary_bkt10;
|
|
primary_bkt21 = primary_bkt11;
|
|
secondary_bkt20 = secondary_bkt10;
|
|
secondary_bkt21 = secondary_bkt11;
|
|
primary_hash20 = primary_hash10;
|
|
primary_hash21 = primary_hash11;
|
|
secondary_hash20 = secondary_hash10;
|
|
secondary_hash21 = secondary_hash11;
|
|
idx20 = idx10, idx21 = idx11;
|
|
idx10 = idx00, idx11 = idx01;
|
|
|
|
lookup_stage0(&idx00, &lookup_mask, keys);
|
|
lookup_stage0(&idx01, &lookup_mask, keys);
|
|
lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
|
|
&primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
|
|
lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
|
|
&primary_bkt11, &secondary_bkt11, hash_vals, keys, h);
|
|
lookup_stage2(idx20, primary_hash20, secondary_hash20, primary_bkt20,
|
|
secondary_bkt20, &k_slot20, positions, &extra_hits_mask,
|
|
key_store, h);
|
|
lookup_stage2(idx21, primary_hash21, secondary_hash21, primary_bkt21,
|
|
secondary_bkt21, &k_slot21, positions, &extra_hits_mask,
|
|
key_store, h);
|
|
|
|
while (lookup_mask) {
|
|
k_slot30 = k_slot20, k_slot31 = k_slot21;
|
|
idx30 = idx20, idx31 = idx21;
|
|
primary_bkt20 = primary_bkt10;
|
|
primary_bkt21 = primary_bkt11;
|
|
secondary_bkt20 = secondary_bkt10;
|
|
secondary_bkt21 = secondary_bkt11;
|
|
primary_hash20 = primary_hash10;
|
|
primary_hash21 = primary_hash11;
|
|
secondary_hash20 = secondary_hash10;
|
|
secondary_hash21 = secondary_hash11;
|
|
idx20 = idx10, idx21 = idx11;
|
|
idx10 = idx00, idx11 = idx01;
|
|
|
|
lookup_stage0(&idx00, &lookup_mask, keys);
|
|
lookup_stage0(&idx01, &lookup_mask, keys);
|
|
lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
|
|
&primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
|
|
lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
|
|
&primary_bkt11, &secondary_bkt11, hash_vals, keys, h);
|
|
lookup_stage2(idx20, primary_hash20, secondary_hash20,
|
|
primary_bkt20, secondary_bkt20, &k_slot20, positions,
|
|
&extra_hits_mask, key_store, h);
|
|
lookup_stage2(idx21, primary_hash21, secondary_hash21,
|
|
primary_bkt21, secondary_bkt21, &k_slot21, positions,
|
|
&extra_hits_mask, key_store, h);
|
|
lookup_stage3(idx30, k_slot30, keys, positions, data, &hits, h);
|
|
lookup_stage3(idx31, k_slot31, keys, positions, data, &hits, h);
|
|
}
|
|
|
|
k_slot30 = k_slot20, k_slot31 = k_slot21;
|
|
idx30 = idx20, idx31 = idx21;
|
|
primary_bkt20 = primary_bkt10;
|
|
primary_bkt21 = primary_bkt11;
|
|
secondary_bkt20 = secondary_bkt10;
|
|
secondary_bkt21 = secondary_bkt11;
|
|
primary_hash20 = primary_hash10;
|
|
primary_hash21 = primary_hash11;
|
|
secondary_hash20 = secondary_hash10;
|
|
secondary_hash21 = secondary_hash11;
|
|
idx20 = idx10, idx21 = idx11;
|
|
idx10 = idx00, idx11 = idx01;
|
|
|
|
lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
|
|
&primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
|
|
lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
|
|
&primary_bkt11, &secondary_bkt11, hash_vals, keys, h);
|
|
lookup_stage2(idx20, primary_hash20, secondary_hash20, primary_bkt20,
|
|
secondary_bkt20, &k_slot20, positions, &extra_hits_mask,
|
|
key_store, h);
|
|
lookup_stage2(idx21, primary_hash21, secondary_hash21, primary_bkt21,
|
|
secondary_bkt21, &k_slot21, positions, &extra_hits_mask,
|
|
key_store, h);
|
|
lookup_stage3(idx30, k_slot30, keys, positions, data, &hits, h);
|
|
lookup_stage3(idx31, k_slot31, keys, positions, data, &hits, h);
|
|
|
|
k_slot30 = k_slot20, k_slot31 = k_slot21;
|
|
idx30 = idx20, idx31 = idx21;
|
|
primary_bkt20 = primary_bkt10;
|
|
primary_bkt21 = primary_bkt11;
|
|
secondary_bkt20 = secondary_bkt10;
|
|
secondary_bkt21 = secondary_bkt11;
|
|
primary_hash20 = primary_hash10;
|
|
primary_hash21 = primary_hash11;
|
|
secondary_hash20 = secondary_hash10;
|
|
secondary_hash21 = secondary_hash11;
|
|
idx20 = idx10, idx21 = idx11;
|
|
|
|
lookup_stage2(idx20, primary_hash20, secondary_hash20, primary_bkt20,
|
|
secondary_bkt20, &k_slot20, positions, &extra_hits_mask,
|
|
key_store, h);
|
|
lookup_stage2(idx21, primary_hash21, secondary_hash21, primary_bkt21,
|
|
secondary_bkt21, &k_slot21, positions, &extra_hits_mask,
|
|
key_store, h);
|
|
lookup_stage3(idx30, k_slot30, keys, positions, data, &hits, h);
|
|
lookup_stage3(idx31, k_slot31, keys, positions, data, &hits, h);
|
|
|
|
k_slot30 = k_slot20, k_slot31 = k_slot21;
|
|
idx30 = idx20, idx31 = idx21;
|
|
|
|
lookup_stage3(idx30, k_slot30, keys, positions, data, &hits, h);
|
|
lookup_stage3(idx31, k_slot31, keys, positions, data, &hits, h);
|
|
|
|
/* ignore any items we have already found */
|
|
extra_hits_mask &= ~hits;
|
|
|
|
if (unlikely(extra_hits_mask)) {
|
|
/* run a single search for each remaining item */
|
|
do {
|
|
idx = __builtin_ctzl(extra_hits_mask);
|
|
if (data != NULL) {
|
|
ret = rte_hash_lookup_with_hash_data(h,
|
|
keys[idx], hash_vals[idx], &data[idx]);
|
|
if (ret >= 0)
|
|
hits |= 1ULL << idx;
|
|
} else {
|
|
positions[idx] = rte_hash_lookup_with_hash(h,
|
|
keys[idx], hash_vals[idx]);
|
|
if (positions[idx] >= 0)
|
|
hits |= 1llu << idx;
|
|
}
|
|
extra_hits_mask &= ~(1llu << idx);
|
|
} while (extra_hits_mask);
|
|
}
|
|
|
|
miss_mask &= ~hits;
|
|
if (unlikely(miss_mask)) {
|
|
do {
|
|
idx = __builtin_ctzl(miss_mask);
|
|
positions[idx] = -ENOENT;
|
|
miss_mask &= ~(1llu << idx);
|
|
} while (miss_mask);
|
|
}
|
|
|
|
if (hit_mask != NULL)
|
|
*hit_mask = hits;
|
|
}
|
|
|
|
int
|
|
rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
|
|
uint32_t num_keys, int32_t *positions)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
|
|
(num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
|
|
(positions == NULL)), -EINVAL);
|
|
|
|
__rte_hash_lookup_bulk(h, keys, num_keys, positions, NULL, NULL);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_hash_lookup_bulk_data(const struct rte_hash *h, const void **keys,
|
|
uint32_t num_keys, uint64_t *hit_mask, void *data[])
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
|
|
(num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
|
|
(hit_mask == NULL)), -EINVAL);
|
|
|
|
int32_t positions[num_keys];
|
|
|
|
__rte_hash_lookup_bulk(h, keys, num_keys, positions, hit_mask, data);
|
|
|
|
/* Return number of hits */
|
|
return __builtin_popcountl(*hit_mask);
|
|
}
|
|
|
|
int32_t
|
|
rte_hash_iterate(const struct rte_hash *h, const void **key, void **data, uint32_t *next)
|
|
{
|
|
uint32_t bucket_idx, idx, position;
|
|
struct rte_hash_key *next_key;
|
|
|
|
RETURN_IF_TRUE(((h == NULL) || (next == NULL)), -EINVAL);
|
|
|
|
const uint32_t total_entries = h->num_buckets * RTE_HASH_BUCKET_ENTRIES;
|
|
/* Out of bounds */
|
|
if (*next >= total_entries)
|
|
return -ENOENT;
|
|
|
|
/* Calculate bucket and index of current iterator */
|
|
bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
|
|
idx = *next % RTE_HASH_BUCKET_ENTRIES;
|
|
|
|
/* If current position is empty, go to the next one */
|
|
while (h->buckets[bucket_idx].signatures[idx].sig == NULL_SIGNATURE) {
|
|
(*next)++;
|
|
/* End of table */
|
|
if (*next == total_entries)
|
|
return -ENOENT;
|
|
bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
|
|
idx = *next % RTE_HASH_BUCKET_ENTRIES;
|
|
}
|
|
|
|
/* Get position of entry in key table */
|
|
position = h->buckets[bucket_idx].key_idx[idx];
|
|
next_key = (struct rte_hash_key *) ((char *)h->key_store +
|
|
position * h->key_entry_size);
|
|
/* Return key and data */
|
|
*key = next_key->key;
|
|
*data = next_key->pdata;
|
|
|
|
/* Increment iterator */
|
|
(*next)++;
|
|
|
|
return position - 1;
|
|
}
|