f-stack/freebsd/i386/i386/machdep.c

3403 lines
89 KiB
C

/*-
* Copyright (c) 1992 Terrence R. Lambert.
* Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_apic.h"
#include "opt_atpic.h"
#include "opt_compat.h"
#include "opt_cpu.h"
#include "opt_ddb.h"
#include "opt_inet.h"
#include "opt_isa.h"
#include "opt_kstack_pages.h"
#include "opt_maxmem.h"
#include "opt_mp_watchdog.h"
#include "opt_npx.h"
#include "opt_perfmon.h"
#include "opt_platform.h"
#include "opt_xbox.h"
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/callout.h>
#include <sys/cons.h>
#include <sys/cpu.h>
#include <sys/eventhandler.h>
#include <sys/exec.h>
#include <sys/imgact.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/memrange.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/ptrace.h>
#include <sys/reboot.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/signalvar.h>
#ifdef SMP
#include <sys/smp.h>
#endif
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/sysent.h>
#include <sys/sysproto.h>
#include <sys/ucontext.h>
#include <sys/vmmeter.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_pager.h>
#include <vm/vm_param.h>
#ifdef DDB
#ifndef KDB
#error KDB must be enabled in order for DDB to work!
#endif
#include <ddb/ddb.h>
#include <ddb/db_sym.h>
#endif
#ifdef PC98
#include <pc98/pc98/pc98_machdep.h>
#else
#include <isa/rtc.h>
#endif
#include <net/netisr.h>
#include <machine/bootinfo.h>
#include <machine/clock.h>
#include <machine/cpu.h>
#include <machine/cputypes.h>
#include <machine/intr_machdep.h>
#include <x86/mca.h>
#include <machine/md_var.h>
#include <machine/metadata.h>
#include <machine/mp_watchdog.h>
#include <machine/pc/bios.h>
#include <machine/pcb.h>
#include <machine/pcb_ext.h>
#include <machine/proc.h>
#include <machine/reg.h>
#include <machine/sigframe.h>
#include <machine/specialreg.h>
#include <machine/vm86.h>
#include <x86/init.h>
#ifdef PERFMON
#include <machine/perfmon.h>
#endif
#ifdef SMP
#include <machine/smp.h>
#endif
#ifdef FDT
#include <x86/fdt.h>
#endif
#ifdef DEV_APIC
#include <x86/apicvar.h>
#endif
#ifdef DEV_ISA
#include <x86/isa/icu.h>
#endif
#ifdef XBOX
#include <machine/xbox.h>
int arch_i386_is_xbox = 0;
uint32_t arch_i386_xbox_memsize = 0;
#endif
/* Sanity check for __curthread() */
CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
extern register_t init386(int first);
extern void dblfault_handler(void);
#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
#define CPU_ENABLE_SSE
#endif
static void cpu_startup(void *);
static void fpstate_drop(struct thread *td);
static void get_fpcontext(struct thread *td, mcontext_t *mcp,
char *xfpusave, size_t xfpusave_len);
static int set_fpcontext(struct thread *td, mcontext_t *mcp,
char *xfpustate, size_t xfpustate_len);
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
/* Intel ICH registers */
#define ICH_PMBASE 0x400
#define ICH_SMI_EN ICH_PMBASE + 0x30
int _udatasel, _ucodesel;
u_int basemem;
#ifdef PC98
int need_pre_dma_flush; /* If 1, use wbinvd befor DMA transfer. */
int need_post_dma_flush; /* If 1, use invd after DMA transfer. */
static int ispc98 = 1;
SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
#endif
int cold = 1;
#ifdef COMPAT_43
static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
#endif
#ifdef COMPAT_FREEBSD4
static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
#endif
long Maxmem = 0;
long realmem = 0;
#ifdef PAE
FEATURE(pae, "Physical Address Extensions");
#endif
/*
* The number of PHYSMAP entries must be one less than the number of
* PHYSSEG entries because the PHYSMAP entry that spans the largest
* physical address that is accessible by ISA DMA is split into two
* PHYSSEG entries.
*/
#define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1))
vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
/* must be 2 less so 0 0 can signal end of chunks */
#define PHYS_AVAIL_ARRAY_END (nitems(phys_avail) - 2)
#define DUMP_AVAIL_ARRAY_END (nitems(dump_avail) - 2)
struct kva_md_info kmi;
static struct trapframe proc0_tf;
struct pcpu __pcpu[MAXCPU];
struct mtx icu_lock;
struct mem_range_softc mem_range_softc;
/* Default init_ops implementation. */
struct init_ops init_ops = {
.early_clock_source_init = i8254_init,
.early_delay = i8254_delay,
#ifdef DEV_APIC
.msi_init = msi_init,
#endif
};
static void
cpu_startup(dummy)
void *dummy;
{
uintmax_t memsize;
char *sysenv;
#ifndef PC98
/*
* On MacBooks, we need to disallow the legacy USB circuit to
* generate an SMI# because this can cause several problems,
* namely: incorrect CPU frequency detection and failure to
* start the APs.
* We do this by disabling a bit in the SMI_EN (SMI Control and
* Enable register) of the Intel ICH LPC Interface Bridge.
*/
sysenv = kern_getenv("smbios.system.product");
if (sysenv != NULL) {
if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
strncmp(sysenv, "MacBook3,1", 10) == 0 ||
strncmp(sysenv, "MacBook4,1", 10) == 0 ||
strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
strncmp(sysenv, "Macmini1,1", 10) == 0) {
if (bootverbose)
printf("Disabling LEGACY_USB_EN bit on "
"Intel ICH.\n");
outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
}
freeenv(sysenv);
}
#endif /* !PC98 */
/*
* Good {morning,afternoon,evening,night}.
*/
startrtclock();
printcpuinfo();
panicifcpuunsupported();
#ifdef PERFMON
perfmon_init();
#endif
/*
* Display physical memory if SMBIOS reports reasonable amount.
*/
memsize = 0;
sysenv = kern_getenv("smbios.memory.enabled");
if (sysenv != NULL) {
memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
freeenv(sysenv);
}
if (memsize < ptoa((uintmax_t)vm_cnt.v_free_count))
memsize = ptoa((uintmax_t)Maxmem);
printf("real memory = %ju (%ju MB)\n", memsize, memsize >> 20);
realmem = atop(memsize);
/*
* Display any holes after the first chunk of extended memory.
*/
if (bootverbose) {
int indx;
printf("Physical memory chunk(s):\n");
for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
vm_paddr_t size;
size = phys_avail[indx + 1] - phys_avail[indx];
printf(
"0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
(uintmax_t)phys_avail[indx],
(uintmax_t)phys_avail[indx + 1] - 1,
(uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
}
}
vm_ksubmap_init(&kmi);
printf("avail memory = %ju (%ju MB)\n",
ptoa((uintmax_t)vm_cnt.v_free_count),
ptoa((uintmax_t)vm_cnt.v_free_count) / 1048576);
/*
* Set up buffers, so they can be used to read disk labels.
*/
bufinit();
vm_pager_bufferinit();
cpu_setregs();
}
/*
* Send an interrupt to process.
*
* Stack is set up to allow sigcode stored
* at top to call routine, followed by call
* to sigreturn routine below. After sigreturn
* resets the signal mask, the stack, and the
* frame pointer, it returns to the user
* specified pc, psl.
*/
#ifdef COMPAT_43
static void
osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
{
struct osigframe sf, *fp;
struct proc *p;
struct thread *td;
struct sigacts *psp;
struct trapframe *regs;
int sig;
int oonstack;
td = curthread;
p = td->td_proc;
PROC_LOCK_ASSERT(p, MA_OWNED);
sig = ksi->ksi_signo;
psp = p->p_sigacts;
mtx_assert(&psp->ps_mtx, MA_OWNED);
regs = td->td_frame;
oonstack = sigonstack(regs->tf_esp);
/* Allocate space for the signal handler context. */
if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
SIGISMEMBER(psp->ps_sigonstack, sig)) {
fp = (struct osigframe *)((uintptr_t)td->td_sigstk.ss_sp +
td->td_sigstk.ss_size - sizeof(struct osigframe));
#if defined(COMPAT_43)
td->td_sigstk.ss_flags |= SS_ONSTACK;
#endif
} else
fp = (struct osigframe *)regs->tf_esp - 1;
/* Build the argument list for the signal handler. */
sf.sf_signum = sig;
sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
if (SIGISMEMBER(psp->ps_siginfo, sig)) {
/* Signal handler installed with SA_SIGINFO. */
sf.sf_arg2 = (register_t)&fp->sf_siginfo;
sf.sf_siginfo.si_signo = sig;
sf.sf_siginfo.si_code = ksi->ksi_code;
sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
sf.sf_addr = 0;
} else {
/* Old FreeBSD-style arguments. */
sf.sf_arg2 = ksi->ksi_code;
sf.sf_addr = (register_t)ksi->ksi_addr;
sf.sf_ahu.sf_handler = catcher;
}
mtx_unlock(&psp->ps_mtx);
PROC_UNLOCK(p);
/* Save most if not all of trap frame. */
sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
sf.sf_siginfo.si_sc.sc_gs = rgs();
sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
/* Build the signal context to be used by osigreturn(). */
sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
/*
* If we're a vm86 process, we want to save the segment registers.
* We also change eflags to be our emulated eflags, not the actual
* eflags.
*/
if (regs->tf_eflags & PSL_VM) {
/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
if (vm86->vm86_has_vme == 0)
sf.sf_siginfo.si_sc.sc_ps =
(tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
(vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
/* See sendsig() for comments. */
tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
}
/*
* Copy the sigframe out to the user's stack.
*/
if (copyout(&sf, fp, sizeof(*fp)) != 0) {
#ifdef DEBUG
printf("process %ld has trashed its stack\n", (long)p->p_pid);
#endif
PROC_LOCK(p);
sigexit(td, SIGILL);
}
regs->tf_esp = (int)fp;
if (p->p_sysent->sv_sigcode_base != 0) {
regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
szosigcode;
} else {
/* a.out sysentvec does not use shared page */
regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode;
}
regs->tf_eflags &= ~(PSL_T | PSL_D);
regs->tf_cs = _ucodesel;
regs->tf_ds = _udatasel;
regs->tf_es = _udatasel;
regs->tf_fs = _udatasel;
load_gs(_udatasel);
regs->tf_ss = _udatasel;
PROC_LOCK(p);
mtx_lock(&psp->ps_mtx);
}
#endif /* COMPAT_43 */
#ifdef COMPAT_FREEBSD4
static void
freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
{
struct sigframe4 sf, *sfp;
struct proc *p;
struct thread *td;
struct sigacts *psp;
struct trapframe *regs;
int sig;
int oonstack;
td = curthread;
p = td->td_proc;
PROC_LOCK_ASSERT(p, MA_OWNED);
sig = ksi->ksi_signo;
psp = p->p_sigacts;
mtx_assert(&psp->ps_mtx, MA_OWNED);
regs = td->td_frame;
oonstack = sigonstack(regs->tf_esp);
/* Save user context. */
bzero(&sf, sizeof(sf));
sf.sf_uc.uc_sigmask = *mask;
sf.sf_uc.uc_stack = td->td_sigstk;
sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
sf.sf_uc.uc_mcontext.mc_gs = rgs();
bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
bzero(sf.sf_uc.uc_mcontext.__spare__,
sizeof(sf.sf_uc.uc_mcontext.__spare__));
bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
/* Allocate space for the signal handler context. */
if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
SIGISMEMBER(psp->ps_sigonstack, sig)) {
sfp = (struct sigframe4 *)((uintptr_t)td->td_sigstk.ss_sp +
td->td_sigstk.ss_size - sizeof(struct sigframe4));
#if defined(COMPAT_43)
td->td_sigstk.ss_flags |= SS_ONSTACK;
#endif
} else
sfp = (struct sigframe4 *)regs->tf_esp - 1;
/* Build the argument list for the signal handler. */
sf.sf_signum = sig;
sf.sf_ucontext = (register_t)&sfp->sf_uc;
bzero(&sf.sf_si, sizeof(sf.sf_si));
if (SIGISMEMBER(psp->ps_siginfo, sig)) {
/* Signal handler installed with SA_SIGINFO. */
sf.sf_siginfo = (register_t)&sfp->sf_si;
sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
/* Fill in POSIX parts */
sf.sf_si.si_signo = sig;
sf.sf_si.si_code = ksi->ksi_code;
sf.sf_si.si_addr = ksi->ksi_addr;
} else {
/* Old FreeBSD-style arguments. */
sf.sf_siginfo = ksi->ksi_code;
sf.sf_addr = (register_t)ksi->ksi_addr;
sf.sf_ahu.sf_handler = catcher;
}
mtx_unlock(&psp->ps_mtx);
PROC_UNLOCK(p);
/*
* If we're a vm86 process, we want to save the segment registers.
* We also change eflags to be our emulated eflags, not the actual
* eflags.
*/
if (regs->tf_eflags & PSL_VM) {
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
if (vm86->vm86_has_vme == 0)
sf.sf_uc.uc_mcontext.mc_eflags =
(tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
(vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
/*
* Clear PSL_NT to inhibit T_TSSFLT faults on return from
* syscalls made by the signal handler. This just avoids
* wasting time for our lazy fixup of such faults. PSL_NT
* does nothing in vm86 mode, but vm86 programs can set it
* almost legitimately in probes for old cpu types.
*/
tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
}
/*
* Copy the sigframe out to the user's stack.
*/
if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
#ifdef DEBUG
printf("process %ld has trashed its stack\n", (long)p->p_pid);
#endif
PROC_LOCK(p);
sigexit(td, SIGILL);
}
regs->tf_esp = (int)sfp;
regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
szfreebsd4_sigcode;
regs->tf_eflags &= ~(PSL_T | PSL_D);
regs->tf_cs = _ucodesel;
regs->tf_ds = _udatasel;
regs->tf_es = _udatasel;
regs->tf_fs = _udatasel;
regs->tf_ss = _udatasel;
PROC_LOCK(p);
mtx_lock(&psp->ps_mtx);
}
#endif /* COMPAT_FREEBSD4 */
void
sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
{
struct sigframe sf, *sfp;
struct proc *p;
struct thread *td;
struct sigacts *psp;
char *sp;
struct trapframe *regs;
struct segment_descriptor *sdp;
char *xfpusave;
size_t xfpusave_len;
int sig;
int oonstack;
td = curthread;
p = td->td_proc;
PROC_LOCK_ASSERT(p, MA_OWNED);
sig = ksi->ksi_signo;
psp = p->p_sigacts;
mtx_assert(&psp->ps_mtx, MA_OWNED);
#ifdef COMPAT_FREEBSD4
if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
freebsd4_sendsig(catcher, ksi, mask);
return;
}
#endif
#ifdef COMPAT_43
if (SIGISMEMBER(psp->ps_osigset, sig)) {
osendsig(catcher, ksi, mask);
return;
}
#endif
regs = td->td_frame;
oonstack = sigonstack(regs->tf_esp);
#ifdef CPU_ENABLE_SSE
if (cpu_max_ext_state_size > sizeof(union savefpu) && use_xsave) {
xfpusave_len = cpu_max_ext_state_size - sizeof(union savefpu);
xfpusave = __builtin_alloca(xfpusave_len);
} else {
#else
{
#endif
xfpusave_len = 0;
xfpusave = NULL;
}
/* Save user context. */
bzero(&sf, sizeof(sf));
sf.sf_uc.uc_sigmask = *mask;
sf.sf_uc.uc_stack = td->td_sigstk;
sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
sf.sf_uc.uc_mcontext.mc_gs = rgs();
bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
fpstate_drop(td);
/*
* Unconditionally fill the fsbase and gsbase into the mcontext.
*/
sdp = &td->td_pcb->pcb_fsd;
sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
sdp->sd_lobase;
sdp = &td->td_pcb->pcb_gsd;
sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
sdp->sd_lobase;
bzero(sf.sf_uc.uc_mcontext.mc_spare2,
sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
/* Allocate space for the signal handler context. */
if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
SIGISMEMBER(psp->ps_sigonstack, sig)) {
sp = (char *)td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
#if defined(COMPAT_43)
td->td_sigstk.ss_flags |= SS_ONSTACK;
#endif
} else
sp = (char *)regs->tf_esp - 128;
if (xfpusave != NULL) {
sp -= xfpusave_len;
sp = (char *)((unsigned int)sp & ~0x3F);
sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
}
sp -= sizeof(struct sigframe);
/* Align to 16 bytes. */
sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
/* Build the argument list for the signal handler. */
sf.sf_signum = sig;
sf.sf_ucontext = (register_t)&sfp->sf_uc;
bzero(&sf.sf_si, sizeof(sf.sf_si));
if (SIGISMEMBER(psp->ps_siginfo, sig)) {
/* Signal handler installed with SA_SIGINFO. */
sf.sf_siginfo = (register_t)&sfp->sf_si;
sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
/* Fill in POSIX parts */
sf.sf_si = ksi->ksi_info;
sf.sf_si.si_signo = sig; /* maybe a translated signal */
} else {
/* Old FreeBSD-style arguments. */
sf.sf_siginfo = ksi->ksi_code;
sf.sf_addr = (register_t)ksi->ksi_addr;
sf.sf_ahu.sf_handler = catcher;
}
mtx_unlock(&psp->ps_mtx);
PROC_UNLOCK(p);
/*
* If we're a vm86 process, we want to save the segment registers.
* We also change eflags to be our emulated eflags, not the actual
* eflags.
*/
if (regs->tf_eflags & PSL_VM) {
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
if (vm86->vm86_has_vme == 0)
sf.sf_uc.uc_mcontext.mc_eflags =
(tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
(vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
/*
* Clear PSL_NT to inhibit T_TSSFLT faults on return from
* syscalls made by the signal handler. This just avoids
* wasting time for our lazy fixup of such faults. PSL_NT
* does nothing in vm86 mode, but vm86 programs can set it
* almost legitimately in probes for old cpu types.
*/
tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
}
/*
* Copy the sigframe out to the user's stack.
*/
if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
(xfpusave != NULL && copyout(xfpusave,
(void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
!= 0)) {
#ifdef DEBUG
printf("process %ld has trashed its stack\n", (long)p->p_pid);
#endif
PROC_LOCK(p);
sigexit(td, SIGILL);
}
regs->tf_esp = (int)sfp;
regs->tf_eip = p->p_sysent->sv_sigcode_base;
if (regs->tf_eip == 0)
regs->tf_eip = p->p_sysent->sv_psstrings - szsigcode;
regs->tf_eflags &= ~(PSL_T | PSL_D);
regs->tf_cs = _ucodesel;
regs->tf_ds = _udatasel;
regs->tf_es = _udatasel;
regs->tf_fs = _udatasel;
regs->tf_ss = _udatasel;
PROC_LOCK(p);
mtx_lock(&psp->ps_mtx);
}
/*
* System call to cleanup state after a signal
* has been taken. Reset signal mask and
* stack state from context left by sendsig (above).
* Return to previous pc and psl as specified by
* context left by sendsig. Check carefully to
* make sure that the user has not modified the
* state to gain improper privileges.
*
* MPSAFE
*/
#ifdef COMPAT_43
int
osigreturn(td, uap)
struct thread *td;
struct osigreturn_args /* {
struct osigcontext *sigcntxp;
} */ *uap;
{
struct osigcontext sc;
struct trapframe *regs;
struct osigcontext *scp;
int eflags, error;
ksiginfo_t ksi;
regs = td->td_frame;
error = copyin(uap->sigcntxp, &sc, sizeof(sc));
if (error != 0)
return (error);
scp = &sc;
eflags = scp->sc_ps;
if (eflags & PSL_VM) {
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
struct vm86_kernel *vm86;
/*
* if pcb_ext == 0 or vm86_inited == 0, the user hasn't
* set up the vm86 area, and we can't enter vm86 mode.
*/
if (td->td_pcb->pcb_ext == 0)
return (EINVAL);
vm86 = &td->td_pcb->pcb_ext->ext_vm86;
if (vm86->vm86_inited == 0)
return (EINVAL);
/* Go back to user mode if both flags are set. */
if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
ksiginfo_init_trap(&ksi);
ksi.ksi_signo = SIGBUS;
ksi.ksi_code = BUS_OBJERR;
ksi.ksi_addr = (void *)regs->tf_eip;
trapsignal(td, &ksi);
}
if (vm86->vm86_has_vme) {
eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
(eflags & VME_USERCHANGE) | PSL_VM;
} else {
vm86->vm86_eflags = eflags; /* save VIF, VIP */
eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
(eflags & VM_USERCHANGE) | PSL_VM;
}
tf->tf_vm86_ds = scp->sc_ds;
tf->tf_vm86_es = scp->sc_es;
tf->tf_vm86_fs = scp->sc_fs;
tf->tf_vm86_gs = scp->sc_gs;
tf->tf_ds = _udatasel;
tf->tf_es = _udatasel;
tf->tf_fs = _udatasel;
} else {
/*
* Don't allow users to change privileged or reserved flags.
*/
if (!EFL_SECURE(eflags, regs->tf_eflags)) {
return (EINVAL);
}
/*
* Don't allow users to load a valid privileged %cs. Let the
* hardware check for invalid selectors, excess privilege in
* other selectors, invalid %eip's and invalid %esp's.
*/
if (!CS_SECURE(scp->sc_cs)) {
ksiginfo_init_trap(&ksi);
ksi.ksi_signo = SIGBUS;
ksi.ksi_code = BUS_OBJERR;
ksi.ksi_trapno = T_PROTFLT;
ksi.ksi_addr = (void *)regs->tf_eip;
trapsignal(td, &ksi);
return (EINVAL);
}
regs->tf_ds = scp->sc_ds;
regs->tf_es = scp->sc_es;
regs->tf_fs = scp->sc_fs;
}
/* Restore remaining registers. */
regs->tf_eax = scp->sc_eax;
regs->tf_ebx = scp->sc_ebx;
regs->tf_ecx = scp->sc_ecx;
regs->tf_edx = scp->sc_edx;
regs->tf_esi = scp->sc_esi;
regs->tf_edi = scp->sc_edi;
regs->tf_cs = scp->sc_cs;
regs->tf_ss = scp->sc_ss;
regs->tf_isp = scp->sc_isp;
regs->tf_ebp = scp->sc_fp;
regs->tf_esp = scp->sc_sp;
regs->tf_eip = scp->sc_pc;
regs->tf_eflags = eflags;
#if defined(COMPAT_43)
if (scp->sc_onstack & 1)
td->td_sigstk.ss_flags |= SS_ONSTACK;
else
td->td_sigstk.ss_flags &= ~SS_ONSTACK;
#endif
kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
SIGPROCMASK_OLD);
return (EJUSTRETURN);
}
#endif /* COMPAT_43 */
#ifdef COMPAT_FREEBSD4
/*
* MPSAFE
*/
int
freebsd4_sigreturn(td, uap)
struct thread *td;
struct freebsd4_sigreturn_args /* {
const ucontext4 *sigcntxp;
} */ *uap;
{
struct ucontext4 uc;
struct trapframe *regs;
struct ucontext4 *ucp;
int cs, eflags, error;
ksiginfo_t ksi;
error = copyin(uap->sigcntxp, &uc, sizeof(uc));
if (error != 0)
return (error);
ucp = &uc;
regs = td->td_frame;
eflags = ucp->uc_mcontext.mc_eflags;
if (eflags & PSL_VM) {
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
struct vm86_kernel *vm86;
/*
* if pcb_ext == 0 or vm86_inited == 0, the user hasn't
* set up the vm86 area, and we can't enter vm86 mode.
*/
if (td->td_pcb->pcb_ext == 0)
return (EINVAL);
vm86 = &td->td_pcb->pcb_ext->ext_vm86;
if (vm86->vm86_inited == 0)
return (EINVAL);
/* Go back to user mode if both flags are set. */
if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
ksiginfo_init_trap(&ksi);
ksi.ksi_signo = SIGBUS;
ksi.ksi_code = BUS_OBJERR;
ksi.ksi_addr = (void *)regs->tf_eip;
trapsignal(td, &ksi);
}
if (vm86->vm86_has_vme) {
eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
(eflags & VME_USERCHANGE) | PSL_VM;
} else {
vm86->vm86_eflags = eflags; /* save VIF, VIP */
eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
(eflags & VM_USERCHANGE) | PSL_VM;
}
bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
tf->tf_eflags = eflags;
tf->tf_vm86_ds = tf->tf_ds;
tf->tf_vm86_es = tf->tf_es;
tf->tf_vm86_fs = tf->tf_fs;
tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
tf->tf_ds = _udatasel;
tf->tf_es = _udatasel;
tf->tf_fs = _udatasel;
} else {
/*
* Don't allow users to change privileged or reserved flags.
*/
if (!EFL_SECURE(eflags, regs->tf_eflags)) {
uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
td->td_proc->p_pid, td->td_name, eflags);
return (EINVAL);
}
/*
* Don't allow users to load a valid privileged %cs. Let the
* hardware check for invalid selectors, excess privilege in
* other selectors, invalid %eip's and invalid %esp's.
*/
cs = ucp->uc_mcontext.mc_cs;
if (!CS_SECURE(cs)) {
uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
td->td_proc->p_pid, td->td_name, cs);
ksiginfo_init_trap(&ksi);
ksi.ksi_signo = SIGBUS;
ksi.ksi_code = BUS_OBJERR;
ksi.ksi_trapno = T_PROTFLT;
ksi.ksi_addr = (void *)regs->tf_eip;
trapsignal(td, &ksi);
return (EINVAL);
}
bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
}
#if defined(COMPAT_43)
if (ucp->uc_mcontext.mc_onstack & 1)
td->td_sigstk.ss_flags |= SS_ONSTACK;
else
td->td_sigstk.ss_flags &= ~SS_ONSTACK;
#endif
kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
return (EJUSTRETURN);
}
#endif /* COMPAT_FREEBSD4 */
/*
* MPSAFE
*/
int
sys_sigreturn(td, uap)
struct thread *td;
struct sigreturn_args /* {
const struct __ucontext *sigcntxp;
} */ *uap;
{
ucontext_t uc;
struct proc *p;
struct trapframe *regs;
ucontext_t *ucp;
char *xfpustate;
size_t xfpustate_len;
int cs, eflags, error, ret;
ksiginfo_t ksi;
p = td->td_proc;
error = copyin(uap->sigcntxp, &uc, sizeof(uc));
if (error != 0)
return (error);
ucp = &uc;
if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
td->td_name, ucp->uc_mcontext.mc_flags);
return (EINVAL);
}
regs = td->td_frame;
eflags = ucp->uc_mcontext.mc_eflags;
if (eflags & PSL_VM) {
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
struct vm86_kernel *vm86;
/*
* if pcb_ext == 0 or vm86_inited == 0, the user hasn't
* set up the vm86 area, and we can't enter vm86 mode.
*/
if (td->td_pcb->pcb_ext == 0)
return (EINVAL);
vm86 = &td->td_pcb->pcb_ext->ext_vm86;
if (vm86->vm86_inited == 0)
return (EINVAL);
/* Go back to user mode if both flags are set. */
if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
ksiginfo_init_trap(&ksi);
ksi.ksi_signo = SIGBUS;
ksi.ksi_code = BUS_OBJERR;
ksi.ksi_addr = (void *)regs->tf_eip;
trapsignal(td, &ksi);
}
if (vm86->vm86_has_vme) {
eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
(eflags & VME_USERCHANGE) | PSL_VM;
} else {
vm86->vm86_eflags = eflags; /* save VIF, VIP */
eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
(eflags & VM_USERCHANGE) | PSL_VM;
}
bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
tf->tf_eflags = eflags;
tf->tf_vm86_ds = tf->tf_ds;
tf->tf_vm86_es = tf->tf_es;
tf->tf_vm86_fs = tf->tf_fs;
tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
tf->tf_ds = _udatasel;
tf->tf_es = _udatasel;
tf->tf_fs = _udatasel;
} else {
/*
* Don't allow users to change privileged or reserved flags.
*/
if (!EFL_SECURE(eflags, regs->tf_eflags)) {
uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
td->td_proc->p_pid, td->td_name, eflags);
return (EINVAL);
}
/*
* Don't allow users to load a valid privileged %cs. Let the
* hardware check for invalid selectors, excess privilege in
* other selectors, invalid %eip's and invalid %esp's.
*/
cs = ucp->uc_mcontext.mc_cs;
if (!CS_SECURE(cs)) {
uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
td->td_proc->p_pid, td->td_name, cs);
ksiginfo_init_trap(&ksi);
ksi.ksi_signo = SIGBUS;
ksi.ksi_code = BUS_OBJERR;
ksi.ksi_trapno = T_PROTFLT;
ksi.ksi_addr = (void *)regs->tf_eip;
trapsignal(td, &ksi);
return (EINVAL);
}
if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
if (xfpustate_len > cpu_max_ext_state_size -
sizeof(union savefpu)) {
uprintf(
"pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
p->p_pid, td->td_name, xfpustate_len);
return (EINVAL);
}
xfpustate = __builtin_alloca(xfpustate_len);
error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
xfpustate, xfpustate_len);
if (error != 0) {
uprintf(
"pid %d (%s): sigreturn copying xfpustate failed\n",
p->p_pid, td->td_name);
return (error);
}
} else {
xfpustate = NULL;
xfpustate_len = 0;
}
ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate,
xfpustate_len);
if (ret != 0)
return (ret);
bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
}
#if defined(COMPAT_43)
if (ucp->uc_mcontext.mc_onstack & 1)
td->td_sigstk.ss_flags |= SS_ONSTACK;
else
td->td_sigstk.ss_flags &= ~SS_ONSTACK;
#endif
kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
return (EJUSTRETURN);
}
/*
* Reset registers to default values on exec.
*/
void
exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
{
struct trapframe *regs = td->td_frame;
struct pcb *pcb = td->td_pcb;
/* Reset pc->pcb_gs and %gs before possibly invalidating it. */
pcb->pcb_gs = _udatasel;
load_gs(_udatasel);
mtx_lock_spin(&dt_lock);
if (td->td_proc->p_md.md_ldt)
user_ldt_free(td);
else
mtx_unlock_spin(&dt_lock);
bzero((char *)regs, sizeof(struct trapframe));
regs->tf_eip = imgp->entry_addr;
regs->tf_esp = stack;
regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
regs->tf_ss = _udatasel;
regs->tf_ds = _udatasel;
regs->tf_es = _udatasel;
regs->tf_fs = _udatasel;
regs->tf_cs = _ucodesel;
/* PS_STRINGS value for BSD/OS binaries. It is 0 for non-BSD/OS. */
regs->tf_ebx = imgp->ps_strings;
/*
* Reset the hardware debug registers if they were in use.
* They won't have any meaning for the newly exec'd process.
*/
if (pcb->pcb_flags & PCB_DBREGS) {
pcb->pcb_dr0 = 0;
pcb->pcb_dr1 = 0;
pcb->pcb_dr2 = 0;
pcb->pcb_dr3 = 0;
pcb->pcb_dr6 = 0;
pcb->pcb_dr7 = 0;
if (pcb == curpcb) {
/*
* Clear the debug registers on the running
* CPU, otherwise they will end up affecting
* the next process we switch to.
*/
reset_dbregs();
}
pcb->pcb_flags &= ~PCB_DBREGS;
}
pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
/*
* Drop the FP state if we hold it, so that the process gets a
* clean FP state if it uses the FPU again.
*/
fpstate_drop(td);
/*
* XXX - Linux emulator
* Make sure sure edx is 0x0 on entry. Linux binaries depend
* on it.
*/
td->td_retval[1] = 0;
}
void
cpu_setregs(void)
{
unsigned int cr0;
cr0 = rcr0();
/*
* CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
*
* Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
* instructions. We must set the CR0_MP bit and use the CR0_TS
* bit to control the trap, because setting the CR0_EM bit does
* not cause WAIT instructions to trap. It's important to trap
* WAIT instructions - otherwise the "wait" variants of no-wait
* control instructions would degenerate to the "no-wait" variants
* after FP context switches but work correctly otherwise. It's
* particularly important to trap WAITs when there is no NPX -
* otherwise the "wait" variants would always degenerate.
*
* Try setting CR0_NE to get correct error reporting on 486DX's.
* Setting it should fail or do nothing on lesser processors.
*/
cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
load_cr0(cr0);
load_gs(_udatasel);
}
u_long bootdev; /* not a struct cdev *- encoding is different */
SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
static char bootmethod[16] = "BIOS";
SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
"System firmware boot method");
/*
* Initialize 386 and configure to run kernel
*/
/*
* Initialize segments & interrupt table
*/
int _default_ldt;
union descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
union descriptor ldt[NLDT]; /* local descriptor table */
static struct gate_descriptor idt0[NIDT];
struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
struct region_descriptor r_gdt, r_idt; /* table descriptors */
struct mtx dt_lock; /* lock for GDT and LDT */
static struct i386tss dblfault_tss;
static char dblfault_stack[PAGE_SIZE];
extern vm_offset_t proc0kstack;
/*
* software prototypes -- in more palatable form.
*
* GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
* GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
*/
struct soft_segment_descriptor gdt_segs[] = {
/* GNULL_SEL 0 Null Descriptor */
{ .ssd_base = 0x0,
.ssd_limit = 0x0,
.ssd_type = 0,
.ssd_dpl = SEL_KPL,
.ssd_p = 0,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 0,
.ssd_gran = 0 },
/* GPRIV_SEL 1 SMP Per-Processor Private Data Descriptor */
{ .ssd_base = 0x0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMRWA,
.ssd_dpl = SEL_KPL,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 1,
.ssd_gran = 1 },
/* GUFS_SEL 2 %fs Descriptor for user */
{ .ssd_base = 0x0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMRWA,
.ssd_dpl = SEL_UPL,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 1,
.ssd_gran = 1 },
/* GUGS_SEL 3 %gs Descriptor for user */
{ .ssd_base = 0x0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMRWA,
.ssd_dpl = SEL_UPL,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 1,
.ssd_gran = 1 },
/* GCODE_SEL 4 Code Descriptor for kernel */
{ .ssd_base = 0x0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMERA,
.ssd_dpl = SEL_KPL,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 1,
.ssd_gran = 1 },
/* GDATA_SEL 5 Data Descriptor for kernel */
{ .ssd_base = 0x0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMRWA,
.ssd_dpl = SEL_KPL,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 1,
.ssd_gran = 1 },
/* GUCODE_SEL 6 Code Descriptor for user */
{ .ssd_base = 0x0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMERA,
.ssd_dpl = SEL_UPL,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 1,
.ssd_gran = 1 },
/* GUDATA_SEL 7 Data Descriptor for user */
{ .ssd_base = 0x0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMRWA,
.ssd_dpl = SEL_UPL,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 1,
.ssd_gran = 1 },
/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
{ .ssd_base = 0x400,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMRWA,
.ssd_dpl = SEL_KPL,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 1,
.ssd_gran = 1 },
/* GPROC0_SEL 9 Proc 0 Tss Descriptor */
{
.ssd_base = 0x0,
.ssd_limit = sizeof(struct i386tss)-1,
.ssd_type = SDT_SYS386TSS,
.ssd_dpl = 0,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 0,
.ssd_gran = 0 },
/* GLDT_SEL 10 LDT Descriptor */
{ .ssd_base = (int) ldt,
.ssd_limit = sizeof(ldt)-1,
.ssd_type = SDT_SYSLDT,
.ssd_dpl = SEL_UPL,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 0,
.ssd_gran = 0 },
/* GUSERLDT_SEL 11 User LDT Descriptor per process */
{ .ssd_base = (int) ldt,
.ssd_limit = (512 * sizeof(union descriptor)-1),
.ssd_type = SDT_SYSLDT,
.ssd_dpl = 0,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 0,
.ssd_gran = 0 },
/* GPANIC_SEL 12 Panic Tss Descriptor */
{ .ssd_base = (int) &dblfault_tss,
.ssd_limit = sizeof(struct i386tss)-1,
.ssd_type = SDT_SYS386TSS,
.ssd_dpl = 0,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 0,
.ssd_gran = 0 },
/* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
{ .ssd_base = 0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMERA,
.ssd_dpl = 0,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 0,
.ssd_gran = 1 },
/* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
{ .ssd_base = 0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMERA,
.ssd_dpl = 0,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 0,
.ssd_gran = 1 },
/* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
{ .ssd_base = 0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMRWA,
.ssd_dpl = 0,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 1,
.ssd_gran = 1 },
/* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
{ .ssd_base = 0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMRWA,
.ssd_dpl = 0,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 0,
.ssd_gran = 1 },
/* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
{ .ssd_base = 0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMRWA,
.ssd_dpl = 0,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 0,
.ssd_gran = 1 },
/* GNDIS_SEL 18 NDIS Descriptor */
{ .ssd_base = 0x0,
.ssd_limit = 0x0,
.ssd_type = 0,
.ssd_dpl = 0,
.ssd_p = 0,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 0,
.ssd_gran = 0 },
};
static struct soft_segment_descriptor ldt_segs[] = {
/* Null Descriptor - overwritten by call gate */
{ .ssd_base = 0x0,
.ssd_limit = 0x0,
.ssd_type = 0,
.ssd_dpl = 0,
.ssd_p = 0,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 0,
.ssd_gran = 0 },
/* Null Descriptor - overwritten by call gate */
{ .ssd_base = 0x0,
.ssd_limit = 0x0,
.ssd_type = 0,
.ssd_dpl = 0,
.ssd_p = 0,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 0,
.ssd_gran = 0 },
/* Null Descriptor - overwritten by call gate */
{ .ssd_base = 0x0,
.ssd_limit = 0x0,
.ssd_type = 0,
.ssd_dpl = 0,
.ssd_p = 0,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 0,
.ssd_gran = 0 },
/* Code Descriptor for user */
{ .ssd_base = 0x0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMERA,
.ssd_dpl = SEL_UPL,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 1,
.ssd_gran = 1 },
/* Null Descriptor - overwritten by call gate */
{ .ssd_base = 0x0,
.ssd_limit = 0x0,
.ssd_type = 0,
.ssd_dpl = 0,
.ssd_p = 0,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 0,
.ssd_gran = 0 },
/* Data Descriptor for user */
{ .ssd_base = 0x0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMRWA,
.ssd_dpl = SEL_UPL,
.ssd_p = 1,
.ssd_xx = 0, .ssd_xx1 = 0,
.ssd_def32 = 1,
.ssd_gran = 1 },
};
void
setidt(idx, func, typ, dpl, selec)
int idx;
inthand_t *func;
int typ;
int dpl;
int selec;
{
struct gate_descriptor *ip;
ip = idt + idx;
ip->gd_looffset = (int)func;
ip->gd_selector = selec;
ip->gd_stkcpy = 0;
ip->gd_xx = 0;
ip->gd_type = typ;
ip->gd_dpl = dpl;
ip->gd_p = 1;
ip->gd_hioffset = ((int)func)>>16 ;
}
extern inthand_t
IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
IDTVEC(xmm),
#ifdef KDTRACE_HOOKS
IDTVEC(dtrace_ret),
#endif
#ifdef XENHVM
IDTVEC(xen_intr_upcall),
#endif
IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
#ifdef DDB
/*
* Display the index and function name of any IDT entries that don't use
* the default 'rsvd' entry point.
*/
DB_SHOW_COMMAND(idt, db_show_idt)
{
struct gate_descriptor *ip;
int idx;
uintptr_t func;
ip = idt;
for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
func = (ip->gd_hioffset << 16 | ip->gd_looffset);
if (func != (uintptr_t)&IDTVEC(rsvd)) {
db_printf("%3d\t", idx);
db_printsym(func, DB_STGY_PROC);
db_printf("\n");
}
ip++;
}
}
/* Show privileged registers. */
DB_SHOW_COMMAND(sysregs, db_show_sysregs)
{
uint64_t idtr, gdtr;
idtr = ridt();
db_printf("idtr\t0x%08x/%04x\n",
(u_int)(idtr >> 16), (u_int)idtr & 0xffff);
gdtr = rgdt();
db_printf("gdtr\t0x%08x/%04x\n",
(u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
db_printf("ldtr\t0x%04x\n", rldt());
db_printf("tr\t0x%04x\n", rtr());
db_printf("cr0\t0x%08x\n", rcr0());
db_printf("cr2\t0x%08x\n", rcr2());
db_printf("cr3\t0x%08x\n", rcr3());
db_printf("cr4\t0x%08x\n", rcr4());
if (rcr4() & CR4_XSAVE)
db_printf("xcr0\t0x%016llx\n", rxcr(0));
if (amd_feature & (AMDID_NX | AMDID_LM))
db_printf("EFER\t0x%016llx\n", rdmsr(MSR_EFER));
if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX))
db_printf("FEATURES_CTL\t0x%016llx\n",
rdmsr(MSR_IA32_FEATURE_CONTROL));
if ((cpu_vendor_id == CPU_VENDOR_INTEL ||
cpu_vendor_id == CPU_VENDOR_AMD) && CPUID_TO_FAMILY(cpu_id) >= 6)
db_printf("DEBUG_CTL\t0x%016llx\n", rdmsr(MSR_DEBUGCTLMSR));
if (cpu_feature & CPUID_PAT)
db_printf("PAT\t0x%016llx\n", rdmsr(MSR_PAT));
}
DB_SHOW_COMMAND(dbregs, db_show_dbregs)
{
db_printf("dr0\t0x%08x\n", rdr0());
db_printf("dr1\t0x%08x\n", rdr1());
db_printf("dr2\t0x%08x\n", rdr2());
db_printf("dr3\t0x%08x\n", rdr3());
db_printf("dr6\t0x%08x\n", rdr6());
db_printf("dr7\t0x%08x\n", rdr7());
}
#endif
void
sdtossd(sd, ssd)
struct segment_descriptor *sd;
struct soft_segment_descriptor *ssd;
{
ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
ssd->ssd_type = sd->sd_type;
ssd->ssd_dpl = sd->sd_dpl;
ssd->ssd_p = sd->sd_p;
ssd->ssd_def32 = sd->sd_def32;
ssd->ssd_gran = sd->sd_gran;
}
#if !defined(PC98)
static int
add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
int *physmap_idxp)
{
int i, insert_idx, physmap_idx;
physmap_idx = *physmap_idxp;
if (length == 0)
return (1);
#ifndef PAE
if (base > 0xffffffff) {
printf("%uK of memory above 4GB ignored\n",
(u_int)(length / 1024));
return (1);
}
#endif
/*
* Find insertion point while checking for overlap. Start off by
* assuming the new entry will be added to the end.
*/
insert_idx = physmap_idx + 2;
for (i = 0; i <= physmap_idx; i += 2) {
if (base < physmap[i + 1]) {
if (base + length <= physmap[i]) {
insert_idx = i;
break;
}
if (boothowto & RB_VERBOSE)
printf(
"Overlapping memory regions, ignoring second region\n");
return (1);
}
}
/* See if we can prepend to the next entry. */
if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
physmap[insert_idx] = base;
return (1);
}
/* See if we can append to the previous entry. */
if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
physmap[insert_idx - 1] += length;
return (1);
}
physmap_idx += 2;
*physmap_idxp = physmap_idx;
if (physmap_idx == PHYSMAP_SIZE) {
printf(
"Too many segments in the physical address map, giving up\n");
return (0);
}
/*
* Move the last 'N' entries down to make room for the new
* entry if needed.
*/
for (i = physmap_idx; i > insert_idx; i -= 2) {
physmap[i] = physmap[i - 2];
physmap[i + 1] = physmap[i - 1];
}
/* Insert the new entry. */
physmap[insert_idx] = base;
physmap[insert_idx + 1] = base + length;
return (1);
}
static int
add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
{
if (boothowto & RB_VERBOSE)
printf("SMAP type=%02x base=%016llx len=%016llx\n",
smap->type, smap->base, smap->length);
if (smap->type != SMAP_TYPE_MEMORY)
return (1);
return (add_physmap_entry(smap->base, smap->length, physmap,
physmap_idxp));
}
static void
add_smap_entries(struct bios_smap *smapbase, vm_paddr_t *physmap,
int *physmap_idxp)
{
struct bios_smap *smap, *smapend;
u_int32_t smapsize;
/*
* Memory map from INT 15:E820.
*
* subr_module.c says:
* "Consumer may safely assume that size value precedes data."
* ie: an int32_t immediately precedes SMAP.
*/
smapsize = *((u_int32_t *)smapbase - 1);
smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
for (smap = smapbase; smap < smapend; smap++)
if (!add_smap_entry(smap, physmap, physmap_idxp))
break;
}
#endif /* !PC98 */
static void
basemem_setup(void)
{
vm_paddr_t pa;
pt_entry_t *pte;
int i;
if (basemem > 640) {
printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
basemem);
basemem = 640;
}
/*
* XXX if biosbasemem is now < 640, there is a `hole'
* between the end of base memory and the start of
* ISA memory. The hole may be empty or it may
* contain BIOS code or data. Map it read/write so
* that the BIOS can write to it. (Memory from 0 to
* the physical end of the kernel is mapped read-only
* to begin with and then parts of it are remapped.
* The parts that aren't remapped form holes that
* remain read-only and are unused by the kernel.
* The base memory area is below the physical end of
* the kernel and right now forms a read-only hole.
* The part of it from PAGE_SIZE to
* (trunc_page(biosbasemem * 1024) - 1) will be
* remapped and used by the kernel later.)
*
* This code is similar to the code used in
* pmap_mapdev, but since no memory needs to be
* allocated we simply change the mapping.
*/
for (pa = trunc_page(basemem * 1024);
pa < ISA_HOLE_START; pa += PAGE_SIZE)
pmap_kenter(KERNBASE + pa, pa);
/*
* Map pages between basemem and ISA_HOLE_START, if any, r/w into
* the vm86 page table so that vm86 can scribble on them using
* the vm86 map too. XXX: why 2 ways for this and only 1 way for
* page 0, at least as initialized here?
*/
pte = (pt_entry_t *)vm86paddr;
for (i = basemem / 4; i < 160; i++)
pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
}
/*
* Populate the (physmap) array with base/bound pairs describing the
* available physical memory in the system, then test this memory and
* build the phys_avail array describing the actually-available memory.
*
* If we cannot accurately determine the physical memory map, then use
* value from the 0xE801 call, and failing that, the RTC.
*
* Total memory size may be set by the kernel environment variable
* hw.physmem or the compile-time define MAXMEM.
*
* XXX first should be vm_paddr_t.
*/
#ifdef PC98
static void
getmemsize(int first)
{
int off, physmap_idx, pa_indx, da_indx;
u_long physmem_tunable, memtest;
vm_paddr_t physmap[PHYSMAP_SIZE];
pt_entry_t *pte;
quad_t dcons_addr, dcons_size;
int i;
int pg_n;
u_int extmem;
u_int under16;
vm_paddr_t pa;
bzero(physmap, sizeof(physmap));
/* XXX - some of EPSON machines can't use PG_N */
pg_n = PG_N;
if (pc98_machine_type & M_EPSON_PC98) {
switch (epson_machine_id) {
#ifdef WB_CACHE
default:
#endif
case EPSON_PC486_HX:
case EPSON_PC486_HG:
case EPSON_PC486_HA:
pg_n = 0;
break;
}
}
under16 = pc98_getmemsize(&basemem, &extmem);
basemem_setup();
physmap[0] = 0;
physmap[1] = basemem * 1024;
physmap_idx = 2;
physmap[physmap_idx] = 0x100000;
physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
/*
* Now, physmap contains a map of physical memory.
*/
#ifdef SMP
/* make hole for AP bootstrap code */
physmap[1] = mp_bootaddress(physmap[1]);
#endif
/*
* Maxmem isn't the "maximum memory", it's one larger than the
* highest page of the physical address space. It should be
* called something like "Maxphyspage". We may adjust this
* based on ``hw.physmem'' and the results of the memory test.
*/
Maxmem = atop(physmap[physmap_idx + 1]);
#ifdef MAXMEM
Maxmem = MAXMEM / 4;
#endif
if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
Maxmem = atop(physmem_tunable);
/*
* By default keep the memtest enabled. Use a general name so that
* one could eventually do more with the code than just disable it.
*/
memtest = 1;
TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
if (atop(physmap[physmap_idx + 1]) != Maxmem &&
(boothowto & RB_VERBOSE))
printf("Physical memory use set to %ldK\n", Maxmem * 4);
/*
* If Maxmem has been increased beyond what the system has detected,
* extend the last memory segment to the new limit.
*/
if (atop(physmap[physmap_idx + 1]) < Maxmem)
physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
/*
* We need to divide chunk if Maxmem is larger than 16MB and
* under 16MB area is not full of memory.
* (1) system area (15-16MB region) is cut off
* (2) extended memory is only over 16MB area (ex. Melco "HYPERMEMORY")
*/
if ((under16 != 16 * 1024) && (extmem > 15 * 1024)) {
/* 15M - 16M region is cut off, so need to divide chunk */
physmap[physmap_idx + 1] = under16 * 1024;
physmap_idx += 2;
physmap[physmap_idx] = 0x1000000;
physmap[physmap_idx + 1] = physmap[2] + extmem * 1024;
}
/* call pmap initialization to make new kernel address space */
pmap_bootstrap(first);
/*
* Size up each available chunk of physical memory.
*/
physmap[0] = PAGE_SIZE; /* mask off page 0 */
pa_indx = 0;
da_indx = 1;
phys_avail[pa_indx++] = physmap[0];
phys_avail[pa_indx] = physmap[0];
dump_avail[da_indx] = physmap[0];
pte = CMAP3;
/*
* Get dcons buffer address
*/
if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
getenv_quad("dcons.size", &dcons_size) == 0)
dcons_addr = 0;
/*
* physmap is in bytes, so when converting to page boundaries,
* round up the start address and round down the end address.
*/
for (i = 0; i <= physmap_idx; i += 2) {
vm_paddr_t end;
end = ptoa((vm_paddr_t)Maxmem);
if (physmap[i + 1] < end)
end = trunc_page(physmap[i + 1]);
for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
int tmp, page_bad, full;
int *ptr = (int *)CADDR3;
full = FALSE;
/*
* block out kernel memory as not available.
*/
if (pa >= KERNLOAD && pa < first)
goto do_dump_avail;
/*
* block out dcons buffer
*/
if (dcons_addr > 0
&& pa >= trunc_page(dcons_addr)
&& pa < dcons_addr + dcons_size)
goto do_dump_avail;
page_bad = FALSE;
if (memtest == 0)
goto skip_memtest;
/*
* map page into kernel: valid, read/write,non-cacheable
*/
*pte = pa | PG_V | PG_RW | pg_n;
invltlb();
tmp = *(int *)ptr;
/*
* Test for alternating 1's and 0's
*/
*(volatile int *)ptr = 0xaaaaaaaa;
if (*(volatile int *)ptr != 0xaaaaaaaa)
page_bad = TRUE;
/*
* Test for alternating 0's and 1's
*/
*(volatile int *)ptr = 0x55555555;
if (*(volatile int *)ptr != 0x55555555)
page_bad = TRUE;
/*
* Test for all 1's
*/
*(volatile int *)ptr = 0xffffffff;
if (*(volatile int *)ptr != 0xffffffff)
page_bad = TRUE;
/*
* Test for all 0's
*/
*(volatile int *)ptr = 0x0;
if (*(volatile int *)ptr != 0x0)
page_bad = TRUE;
/*
* Restore original value.
*/
*(int *)ptr = tmp;
skip_memtest:
/*
* Adjust array of valid/good pages.
*/
if (page_bad == TRUE)
continue;
/*
* If this good page is a continuation of the
* previous set of good pages, then just increase
* the end pointer. Otherwise start a new chunk.
* Note that "end" points one higher than end,
* making the range >= start and < end.
* If we're also doing a speculative memory
* test and we at or past the end, bump up Maxmem
* so that we keep going. The first bad page
* will terminate the loop.
*/
if (phys_avail[pa_indx] == pa) {
phys_avail[pa_indx] += PAGE_SIZE;
} else {
pa_indx++;
if (pa_indx == PHYS_AVAIL_ARRAY_END) {
printf(
"Too many holes in the physical address space, giving up\n");
pa_indx--;
full = TRUE;
goto do_dump_avail;
}
phys_avail[pa_indx++] = pa; /* start */
phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
}
physmem++;
do_dump_avail:
if (dump_avail[da_indx] == pa) {
dump_avail[da_indx] += PAGE_SIZE;
} else {
da_indx++;
if (da_indx == DUMP_AVAIL_ARRAY_END) {
da_indx--;
goto do_next;
}
dump_avail[da_indx++] = pa; /* start */
dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
}
do_next:
if (full)
break;
}
}
*pte = 0;
invltlb();
/*
* XXX
* The last chunk must contain at least one page plus the message
* buffer to avoid complicating other code (message buffer address
* calculation, etc.).
*/
while (phys_avail[pa_indx - 1] + PAGE_SIZE +
round_page(msgbufsize) >= phys_avail[pa_indx]) {
physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
phys_avail[pa_indx--] = 0;
phys_avail[pa_indx--] = 0;
}
Maxmem = atop(phys_avail[pa_indx]);
/* Trim off space for the message buffer. */
phys_avail[pa_indx] -= round_page(msgbufsize);
/* Map the message buffer. */
for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
off);
}
#else /* PC98 */
static void
getmemsize(int first)
{
int has_smap, off, physmap_idx, pa_indx, da_indx;
u_long memtest;
vm_paddr_t physmap[PHYSMAP_SIZE];
pt_entry_t *pte;
quad_t dcons_addr, dcons_size, physmem_tunable;
int hasbrokenint12, i, res;
u_int extmem;
struct vm86frame vmf;
struct vm86context vmc;
vm_paddr_t pa;
struct bios_smap *smap, *smapbase;
caddr_t kmdp;
has_smap = 0;
#ifdef XBOX
if (arch_i386_is_xbox) {
/*
* We queried the memory size before, so chop off 4MB for
* the framebuffer and inform the OS of this.
*/
physmap[0] = 0;
physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
physmap_idx = 0;
goto physmap_done;
}
#endif
bzero(&vmf, sizeof(vmf));
bzero(physmap, sizeof(physmap));
basemem = 0;
/*
* Check if the loader supplied an SMAP memory map. If so,
* use that and do not make any VM86 calls.
*/
physmap_idx = 0;
smapbase = NULL;
kmdp = preload_search_by_type("elf kernel");
if (kmdp == NULL)
kmdp = preload_search_by_type("elf32 kernel");
smapbase = (struct bios_smap *)preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_SMAP);
if (smapbase != NULL) {
add_smap_entries(smapbase, physmap, &physmap_idx);
has_smap = 1;
goto have_smap;
}
/*
* Some newer BIOSes have a broken INT 12H implementation
* which causes a kernel panic immediately. In this case, we
* need use the SMAP to determine the base memory size.
*/
hasbrokenint12 = 0;
TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
if (hasbrokenint12 == 0) {
/* Use INT12 to determine base memory size. */
vm86_intcall(0x12, &vmf);
basemem = vmf.vmf_ax;
basemem_setup();
}
/*
* Fetch the memory map with INT 15:E820. Map page 1 R/W into
* the kernel page table so we can use it as a buffer. The
* kernel will unmap this page later.
*/
pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
vmc.npages = 0;
smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
res = vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
KASSERT(res != 0, ("vm86_getptr() failed: address not found"));
vmf.vmf_ebx = 0;
do {
vmf.vmf_eax = 0xE820;
vmf.vmf_edx = SMAP_SIG;
vmf.vmf_ecx = sizeof(struct bios_smap);
i = vm86_datacall(0x15, &vmf, &vmc);
if (i || vmf.vmf_eax != SMAP_SIG)
break;
has_smap = 1;
if (!add_smap_entry(smap, physmap, &physmap_idx))
break;
} while (vmf.vmf_ebx != 0);
have_smap:
/*
* If we didn't fetch the "base memory" size from INT12,
* figure it out from the SMAP (or just guess).
*/
if (basemem == 0) {
for (i = 0; i <= physmap_idx; i += 2) {
if (physmap[i] == 0x00000000) {
basemem = physmap[i + 1] / 1024;
break;
}
}
/* XXX: If we couldn't find basemem from SMAP, just guess. */
if (basemem == 0)
basemem = 640;
basemem_setup();
}
if (physmap[1] != 0)
goto physmap_done;
/*
* If we failed to find an SMAP, figure out the extended
* memory size. We will then build a simple memory map with
* two segments, one for "base memory" and the second for
* "extended memory". Note that "extended memory" starts at a
* physical address of 1MB and that both basemem and extmem
* are in units of 1KB.
*
* First, try to fetch the extended memory size via INT 15:E801.
*/
vmf.vmf_ax = 0xE801;
if (vm86_intcall(0x15, &vmf) == 0) {
extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
} else {
/*
* If INT15:E801 fails, this is our last ditch effort
* to determine the extended memory size. Currently
* we prefer the RTC value over INT15:88.
*/
#if 0
vmf.vmf_ah = 0x88;
vm86_intcall(0x15, &vmf);
extmem = vmf.vmf_ax;
#else
extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
#endif
}
/*
* Special hack for chipsets that still remap the 384k hole when
* there's 16MB of memory - this really confuses people that
* are trying to use bus mastering ISA controllers with the
* "16MB limit"; they only have 16MB, but the remapping puts
* them beyond the limit.
*
* If extended memory is between 15-16MB (16-17MB phys address range),
* chop it to 15MB.
*/
if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
extmem = 15 * 1024;
physmap[0] = 0;
physmap[1] = basemem * 1024;
physmap_idx = 2;
physmap[physmap_idx] = 0x100000;
physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
physmap_done:
/*
* Now, physmap contains a map of physical memory.
*/
#ifdef SMP
/* make hole for AP bootstrap code */
physmap[1] = mp_bootaddress(physmap[1]);
#endif
/*
* Maxmem isn't the "maximum memory", it's one larger than the
* highest page of the physical address space. It should be
* called something like "Maxphyspage". We may adjust this
* based on ``hw.physmem'' and the results of the memory test.
*/
Maxmem = atop(physmap[physmap_idx + 1]);
#ifdef MAXMEM
Maxmem = MAXMEM / 4;
#endif
if (TUNABLE_QUAD_FETCH("hw.physmem", &physmem_tunable))
Maxmem = atop(physmem_tunable);
/*
* If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
* the amount of memory in the system.
*/
if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
Maxmem = atop(physmap[physmap_idx + 1]);
/*
* By default enable the memory test on real hardware, and disable
* it if we appear to be running in a VM. This avoids touching all
* pages unnecessarily, which doesn't matter on real hardware but is
* bad for shared VM hosts. Use a general name so that
* one could eventually do more with the code than just disable it.
*/
memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
if (atop(physmap[physmap_idx + 1]) != Maxmem &&
(boothowto & RB_VERBOSE))
printf("Physical memory use set to %ldK\n", Maxmem * 4);
/*
* If Maxmem has been increased beyond what the system has detected,
* extend the last memory segment to the new limit.
*/
if (atop(physmap[physmap_idx + 1]) < Maxmem)
physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
/* call pmap initialization to make new kernel address space */
pmap_bootstrap(first);
/*
* Size up each available chunk of physical memory.
*/
physmap[0] = PAGE_SIZE; /* mask off page 0 */
pa_indx = 0;
da_indx = 1;
phys_avail[pa_indx++] = physmap[0];
phys_avail[pa_indx] = physmap[0];
dump_avail[da_indx] = physmap[0];
pte = CMAP3;
/*
* Get dcons buffer address
*/
if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
getenv_quad("dcons.size", &dcons_size) == 0)
dcons_addr = 0;
/*
* physmap is in bytes, so when converting to page boundaries,
* round up the start address and round down the end address.
*/
for (i = 0; i <= physmap_idx; i += 2) {
vm_paddr_t end;
end = ptoa((vm_paddr_t)Maxmem);
if (physmap[i + 1] < end)
end = trunc_page(physmap[i + 1]);
for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
int tmp, page_bad, full;
int *ptr = (int *)CADDR3;
full = FALSE;
/*
* block out kernel memory as not available.
*/
if (pa >= KERNLOAD && pa < first)
goto do_dump_avail;
/*
* block out dcons buffer
*/
if (dcons_addr > 0
&& pa >= trunc_page(dcons_addr)
&& pa < dcons_addr + dcons_size)
goto do_dump_avail;
page_bad = FALSE;
if (memtest == 0)
goto skip_memtest;
/*
* map page into kernel: valid, read/write,non-cacheable
*/
*pte = pa | PG_V | PG_RW | PG_N;
invltlb();
tmp = *(int *)ptr;
/*
* Test for alternating 1's and 0's
*/
*(volatile int *)ptr = 0xaaaaaaaa;
if (*(volatile int *)ptr != 0xaaaaaaaa)
page_bad = TRUE;
/*
* Test for alternating 0's and 1's
*/
*(volatile int *)ptr = 0x55555555;
if (*(volatile int *)ptr != 0x55555555)
page_bad = TRUE;
/*
* Test for all 1's
*/
*(volatile int *)ptr = 0xffffffff;
if (*(volatile int *)ptr != 0xffffffff)
page_bad = TRUE;
/*
* Test for all 0's
*/
*(volatile int *)ptr = 0x0;
if (*(volatile int *)ptr != 0x0)
page_bad = TRUE;
/*
* Restore original value.
*/
*(int *)ptr = tmp;
skip_memtest:
/*
* Adjust array of valid/good pages.
*/
if (page_bad == TRUE)
continue;
/*
* If this good page is a continuation of the
* previous set of good pages, then just increase
* the end pointer. Otherwise start a new chunk.
* Note that "end" points one higher than end,
* making the range >= start and < end.
* If we're also doing a speculative memory
* test and we at or past the end, bump up Maxmem
* so that we keep going. The first bad page
* will terminate the loop.
*/
if (phys_avail[pa_indx] == pa) {
phys_avail[pa_indx] += PAGE_SIZE;
} else {
pa_indx++;
if (pa_indx == PHYS_AVAIL_ARRAY_END) {
printf(
"Too many holes in the physical address space, giving up\n");
pa_indx--;
full = TRUE;
goto do_dump_avail;
}
phys_avail[pa_indx++] = pa; /* start */
phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
}
physmem++;
do_dump_avail:
if (dump_avail[da_indx] == pa) {
dump_avail[da_indx] += PAGE_SIZE;
} else {
da_indx++;
if (da_indx == DUMP_AVAIL_ARRAY_END) {
da_indx--;
goto do_next;
}
dump_avail[da_indx++] = pa; /* start */
dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
}
do_next:
if (full)
break;
}
}
*pte = 0;
invltlb();
/*
* XXX
* The last chunk must contain at least one page plus the message
* buffer to avoid complicating other code (message buffer address
* calculation, etc.).
*/
while (phys_avail[pa_indx - 1] + PAGE_SIZE +
round_page(msgbufsize) >= phys_avail[pa_indx]) {
physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
phys_avail[pa_indx--] = 0;
phys_avail[pa_indx--] = 0;
}
Maxmem = atop(phys_avail[pa_indx]);
/* Trim off space for the message buffer. */
phys_avail[pa_indx] -= round_page(msgbufsize);
/* Map the message buffer. */
for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
off);
}
#endif /* PC98 */
register_t
init386(first)
int first;
{
struct gate_descriptor *gdp;
int gsel_tss, metadata_missing, x, pa;
struct pcpu *pc;
#ifdef CPU_ENABLE_SSE
struct xstate_hdr *xhdr;
#endif
thread0.td_kstack = proc0kstack;
thread0.td_kstack_pages = TD0_KSTACK_PAGES;
/*
* This may be done better later if it gets more high level
* components in it. If so just link td->td_proc here.
*/
proc_linkup0(&proc0, &thread0);
#ifdef PC98
/*
* Initialize DMAC
*/
pc98_init_dmac();
#endif
metadata_missing = 0;
if (bootinfo.bi_modulep) {
preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
preload_bootstrap_relocate(KERNBASE);
} else {
metadata_missing = 1;
}
if (bootinfo.bi_envp != 0)
init_static_kenv((char *)bootinfo.bi_envp + KERNBASE, 0);
else
init_static_kenv(NULL, 0);
/* Init basic tunables, hz etc */
init_param1();
/*
* Make gdt memory segments. All segments cover the full 4GB
* of address space and permissions are enforced at page level.
*/
gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
pc = &__pcpu[0];
gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
for (x = 0; x < NGDT; x++)
ssdtosd(&gdt_segs[x], &gdt[x].sd);
r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
r_gdt.rd_base = (int) gdt;
mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
lgdt(&r_gdt);
pcpu_init(pc, 0, sizeof(struct pcpu));
for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
pmap_kenter(pa + KERNBASE, pa);
dpcpu_init((void *)(first + KERNBASE), 0);
first += DPCPU_SIZE;
PCPU_SET(prvspace, pc);
PCPU_SET(curthread, &thread0);
/*
* Initialize mutexes.
*
* icu_lock: in order to allow an interrupt to occur in a critical
* section, to set pcpu->ipending (etc...) properly, we
* must be able to get the icu lock, so it can't be
* under witness.
*/
mutex_init();
mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
/* make ldt memory segments */
ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
for (x = 0; x < nitems(ldt_segs); x++)
ssdtosd(&ldt_segs[x], &ldt[x].sd);
_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
lldt(_default_ldt);
PCPU_SET(currentldt, _default_ldt);
/* exceptions */
for (x = 0; x < NIDT; x++)
setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_DE, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_DB, &IDTVEC(dbg), SDT_SYS386IGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYS386IGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_BP, &IDTVEC(bpt), SDT_SYS386IGT, SEL_UPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_OF, &IDTVEC(ofl), SDT_SYS386TGT, SEL_UPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_BR, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_NM, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL
, GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_DF, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
setidt(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_TS, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_NP, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_SS, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_PF, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_MF, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_MC, &IDTVEC(mchk), SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
GSEL(GCODE_SEL, SEL_KPL));
#ifdef KDTRACE_HOOKS
setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386TGT, SEL_UPL,
GSEL(GCODE_SEL, SEL_KPL));
#endif
#ifdef XENHVM
setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYS386IGT, SEL_UPL,
GSEL(GCODE_SEL, SEL_KPL));
#endif
r_idt.rd_limit = sizeof(idt0) - 1;
r_idt.rd_base = (int) idt;
lidt(&r_idt);
#ifdef XBOX
/*
* The following code queries the PCI ID of 0:0:0. For the XBOX,
* This should be 0x10de / 0x02a5.
*
* This is exactly what Linux does.
*/
outl(0xcf8, 0x80000000);
if (inl(0xcfc) == 0x02a510de) {
arch_i386_is_xbox = 1;
pic16l_setled(XBOX_LED_GREEN);
/*
* We are an XBOX, but we may have either 64MB or 128MB of
* memory. The PCI host bridge should be programmed for this,
* so we just query it.
*/
outl(0xcf8, 0x80000084);
arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
}
#endif /* XBOX */
/*
* Initialize the clock before the console so that console
* initialization can use DELAY().
*/
clock_init();
finishidentcpu(); /* Final stage of CPU initialization */
setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
initializecpu(); /* Initialize CPU registers */
initializecpucache();
/* pointer to selector slot for %fs/%gs */
PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
#if defined(PAE) || defined(PAE_TABLES)
dblfault_tss.tss_cr3 = (int)IdlePDPT;
#else
dblfault_tss.tss_cr3 = (int)IdlePTD;
#endif
dblfault_tss.tss_eip = (int)dblfault_handler;
dblfault_tss.tss_eflags = PSL_KERNEL;
dblfault_tss.tss_ds = dblfault_tss.tss_es =
dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
vm86_initialize();
getmemsize(first);
init_param2(physmem);
/* now running on new page tables, configured,and u/iom is accessible */
/*
* Initialize the console before we print anything out.
*/
cninit();
if (metadata_missing)
printf("WARNING: loader(8) metadata is missing!\n");
#ifdef DEV_ISA
#ifdef DEV_ATPIC
#ifndef PC98
elcr_probe();
#endif
atpic_startup();
#else
/* Reset and mask the atpics and leave them shut down. */
atpic_reset();
/*
* Point the ICU spurious interrupt vectors at the APIC spurious
* interrupt handler.
*/
setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
#endif
#endif
#ifdef DDB
db_fetch_ksymtab(bootinfo.bi_symtab, bootinfo.bi_esymtab);
#endif
kdb_init();
#ifdef KDB
if (boothowto & RB_KDB)
kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
#endif
msgbufinit(msgbufp, msgbufsize);
#ifdef DEV_NPX
npxinit(true);
#endif
/*
* Set up thread0 pcb after npxinit calculated pcb + fpu save
* area size. Zero out the extended state header in fpu save
* area.
*/
thread0.td_pcb = get_pcb_td(&thread0);
bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
#ifdef CPU_ENABLE_SSE
if (use_xsave) {
xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1);
xhdr->xstate_bv = xsave_mask;
}
#endif
PCPU_SET(curpcb, thread0.td_pcb);
/* make an initial tss so cpu can get interrupt stack on syscall! */
/* Note: -16 is so we can grow the trapframe if we came from vm86 */
PCPU_SET(common_tss.tss_esp0, (vm_offset_t)thread0.td_pcb - 16);
PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
ltr(gsel_tss);
/* make a call gate to reenter kernel with */
gdp = &ldt[LSYS5CALLS_SEL].gd;
x = (int) &IDTVEC(lcall_syscall);
gdp->gd_looffset = x;
gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
gdp->gd_stkcpy = 1;
gdp->gd_type = SDT_SYS386CGT;
gdp->gd_dpl = SEL_UPL;
gdp->gd_p = 1;
gdp->gd_hioffset = x >> 16;
/* XXX does this work? */
/* XXX yes! */
ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
/* transfer to user mode */
_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
/* setup proc 0's pcb */
thread0.td_pcb->pcb_flags = 0;
#if defined(PAE) || defined(PAE_TABLES)
thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
#else
thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
#endif
thread0.td_pcb->pcb_ext = 0;
thread0.td_frame = &proc0_tf;
cpu_probe_amdc1e();
#ifdef FDT
x86_init_fdt();
#endif
/* Location of kernel stack for locore */
return ((register_t)thread0.td_pcb);
}
void
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
{
pcpu->pc_acpi_id = 0xffffffff;
}
#ifndef PC98
static int
smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
{
struct bios_smap *smapbase;
struct bios_smap_xattr smap;
caddr_t kmdp;
uint32_t *smapattr;
int count, error, i;
/* Retrieve the system memory map from the loader. */
kmdp = preload_search_by_type("elf kernel");
if (kmdp == NULL)
kmdp = preload_search_by_type("elf32 kernel");
smapbase = (struct bios_smap *)preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_SMAP);
if (smapbase == NULL)
return (0);
smapattr = (uint32_t *)preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
count = *((u_int32_t *)smapbase - 1) / sizeof(*smapbase);
error = 0;
for (i = 0; i < count; i++) {
smap.base = smapbase[i].base;
smap.length = smapbase[i].length;
smap.type = smapbase[i].type;
if (smapattr != NULL)
smap.xattr = smapattr[i];
else
smap.xattr = 0;
error = SYSCTL_OUT(req, &smap, sizeof(smap));
}
return (error);
}
SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
#endif /* !PC98 */
void
spinlock_enter(void)
{
struct thread *td;
register_t flags;
td = curthread;
if (td->td_md.md_spinlock_count == 0) {
flags = intr_disable();
td->td_md.md_spinlock_count = 1;
td->td_md.md_saved_flags = flags;
} else
td->td_md.md_spinlock_count++;
critical_enter();
}
void
spinlock_exit(void)
{
struct thread *td;
register_t flags;
td = curthread;
critical_exit();
flags = td->td_md.md_saved_flags;
td->td_md.md_spinlock_count--;
if (td->td_md.md_spinlock_count == 0)
intr_restore(flags);
}
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
static void f00f_hack(void *unused);
SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
static void
f00f_hack(void *unused)
{
struct gate_descriptor *new_idt;
vm_offset_t tmp;
if (!has_f00f_bug)
return;
GIANT_REQUIRED;
printf("Intel Pentium detected, installing workaround for F00F bug\n");
tmp = kmem_malloc(kernel_arena, PAGE_SIZE * 2, M_WAITOK | M_ZERO);
if (tmp == 0)
panic("kmem_malloc returned 0");
/* Put the problematic entry (#6) at the end of the lower page. */
new_idt = (struct gate_descriptor*)
(tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
bcopy(idt, new_idt, sizeof(idt0));
r_idt.rd_base = (u_int)new_idt;
lidt(&r_idt);
idt = new_idt;
pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ);
}
#endif /* defined(I586_CPU) && !NO_F00F_HACK */
/*
* Construct a PCB from a trapframe. This is called from kdb_trap() where
* we want to start a backtrace from the function that caused us to enter
* the debugger. We have the context in the trapframe, but base the trace
* on the PCB. The PCB doesn't have to be perfect, as long as it contains
* enough for a backtrace.
*/
void
makectx(struct trapframe *tf, struct pcb *pcb)
{
pcb->pcb_edi = tf->tf_edi;
pcb->pcb_esi = tf->tf_esi;
pcb->pcb_ebp = tf->tf_ebp;
pcb->pcb_ebx = tf->tf_ebx;
pcb->pcb_eip = tf->tf_eip;
pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
pcb->pcb_gs = rgs();
}
int
ptrace_set_pc(struct thread *td, u_long addr)
{
td->td_frame->tf_eip = addr;
return (0);
}
int
ptrace_single_step(struct thread *td)
{
td->td_frame->tf_eflags |= PSL_T;
return (0);
}
int
ptrace_clear_single_step(struct thread *td)
{
td->td_frame->tf_eflags &= ~PSL_T;
return (0);
}
int
fill_regs(struct thread *td, struct reg *regs)
{
struct pcb *pcb;
struct trapframe *tp;
tp = td->td_frame;
pcb = td->td_pcb;
regs->r_gs = pcb->pcb_gs;
return (fill_frame_regs(tp, regs));
}
int
fill_frame_regs(struct trapframe *tp, struct reg *regs)
{
regs->r_fs = tp->tf_fs;
regs->r_es = tp->tf_es;
regs->r_ds = tp->tf_ds;
regs->r_edi = tp->tf_edi;
regs->r_esi = tp->tf_esi;
regs->r_ebp = tp->tf_ebp;
regs->r_ebx = tp->tf_ebx;
regs->r_edx = tp->tf_edx;
regs->r_ecx = tp->tf_ecx;
regs->r_eax = tp->tf_eax;
regs->r_eip = tp->tf_eip;
regs->r_cs = tp->tf_cs;
regs->r_eflags = tp->tf_eflags;
regs->r_esp = tp->tf_esp;
regs->r_ss = tp->tf_ss;
return (0);
}
int
set_regs(struct thread *td, struct reg *regs)
{
struct pcb *pcb;
struct trapframe *tp;
tp = td->td_frame;
if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
!CS_SECURE(regs->r_cs))
return (EINVAL);
pcb = td->td_pcb;
tp->tf_fs = regs->r_fs;
tp->tf_es = regs->r_es;
tp->tf_ds = regs->r_ds;
tp->tf_edi = regs->r_edi;
tp->tf_esi = regs->r_esi;
tp->tf_ebp = regs->r_ebp;
tp->tf_ebx = regs->r_ebx;
tp->tf_edx = regs->r_edx;
tp->tf_ecx = regs->r_ecx;
tp->tf_eax = regs->r_eax;
tp->tf_eip = regs->r_eip;
tp->tf_cs = regs->r_cs;
tp->tf_eflags = regs->r_eflags;
tp->tf_esp = regs->r_esp;
tp->tf_ss = regs->r_ss;
pcb->pcb_gs = regs->r_gs;
return (0);
}
int
fill_fpregs(struct thread *td, struct fpreg *fpregs)
{
KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
P_SHOULDSTOP(td->td_proc),
("not suspended thread %p", td));
#ifdef DEV_NPX
npxgetregs(td);
#else
bzero(fpregs, sizeof(*fpregs));
#endif
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr)
npx_fill_fpregs_xmm(&get_pcb_user_save_td(td)->sv_xmm,
(struct save87 *)fpregs);
else
#endif /* CPU_ENABLE_SSE */
bcopy(&get_pcb_user_save_td(td)->sv_87, fpregs,
sizeof(*fpregs));
return (0);
}
int
set_fpregs(struct thread *td, struct fpreg *fpregs)
{
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr)
npx_set_fpregs_xmm((struct save87 *)fpregs,
&get_pcb_user_save_td(td)->sv_xmm);
else
#endif /* CPU_ENABLE_SSE */
bcopy(fpregs, &get_pcb_user_save_td(td)->sv_87,
sizeof(*fpregs));
#ifdef DEV_NPX
npxuserinited(td);
#endif
return (0);
}
/*
* Get machine context.
*/
int
get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
{
struct trapframe *tp;
struct segment_descriptor *sdp;
tp = td->td_frame;
PROC_LOCK(curthread->td_proc);
mcp->mc_onstack = sigonstack(tp->tf_esp);
PROC_UNLOCK(curthread->td_proc);
mcp->mc_gs = td->td_pcb->pcb_gs;
mcp->mc_fs = tp->tf_fs;
mcp->mc_es = tp->tf_es;
mcp->mc_ds = tp->tf_ds;
mcp->mc_edi = tp->tf_edi;
mcp->mc_esi = tp->tf_esi;
mcp->mc_ebp = tp->tf_ebp;
mcp->mc_isp = tp->tf_isp;
mcp->mc_eflags = tp->tf_eflags;
if (flags & GET_MC_CLEAR_RET) {
mcp->mc_eax = 0;
mcp->mc_edx = 0;
mcp->mc_eflags &= ~PSL_C;
} else {
mcp->mc_eax = tp->tf_eax;
mcp->mc_edx = tp->tf_edx;
}
mcp->mc_ebx = tp->tf_ebx;
mcp->mc_ecx = tp->tf_ecx;
mcp->mc_eip = tp->tf_eip;
mcp->mc_cs = tp->tf_cs;
mcp->mc_esp = tp->tf_esp;
mcp->mc_ss = tp->tf_ss;
mcp->mc_len = sizeof(*mcp);
get_fpcontext(td, mcp, NULL, 0);
sdp = &td->td_pcb->pcb_fsd;
mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
sdp = &td->td_pcb->pcb_gsd;
mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
mcp->mc_flags = 0;
mcp->mc_xfpustate = 0;
mcp->mc_xfpustate_len = 0;
bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
return (0);
}
/*
* Set machine context.
*
* However, we don't set any but the user modifiable flags, and we won't
* touch the cs selector.
*/
int
set_mcontext(struct thread *td, mcontext_t *mcp)
{
struct trapframe *tp;
char *xfpustate;
int eflags, ret;
tp = td->td_frame;
if (mcp->mc_len != sizeof(*mcp) ||
(mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
return (EINVAL);
eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
(tp->tf_eflags & ~PSL_USERCHANGE);
if (mcp->mc_flags & _MC_HASFPXSTATE) {
if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
sizeof(union savefpu))
return (EINVAL);
xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
mcp->mc_xfpustate_len);
if (ret != 0)
return (ret);
} else
xfpustate = NULL;
ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
if (ret != 0)
return (ret);
tp->tf_fs = mcp->mc_fs;
tp->tf_es = mcp->mc_es;
tp->tf_ds = mcp->mc_ds;
tp->tf_edi = mcp->mc_edi;
tp->tf_esi = mcp->mc_esi;
tp->tf_ebp = mcp->mc_ebp;
tp->tf_ebx = mcp->mc_ebx;
tp->tf_edx = mcp->mc_edx;
tp->tf_ecx = mcp->mc_ecx;
tp->tf_eax = mcp->mc_eax;
tp->tf_eip = mcp->mc_eip;
tp->tf_eflags = eflags;
tp->tf_esp = mcp->mc_esp;
tp->tf_ss = mcp->mc_ss;
td->td_pcb->pcb_gs = mcp->mc_gs;
return (0);
}
static void
get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
size_t xfpusave_len)
{
#ifdef CPU_ENABLE_SSE
size_t max_len, len;
#endif
#ifndef DEV_NPX
mcp->mc_fpformat = _MC_FPFMT_NODEV;
mcp->mc_ownedfp = _MC_FPOWNED_NONE;
bzero(mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
#else
mcp->mc_ownedfp = npxgetregs(td);
bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
sizeof(mcp->mc_fpstate));
mcp->mc_fpformat = npxformat();
#ifdef CPU_ENABLE_SSE
if (!use_xsave || xfpusave_len == 0)
return;
max_len = cpu_max_ext_state_size - sizeof(union savefpu);
len = xfpusave_len;
if (len > max_len) {
len = max_len;
bzero(xfpusave + max_len, len - max_len);
}
mcp->mc_flags |= _MC_HASFPXSTATE;
mcp->mc_xfpustate_len = len;
bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
#endif
#endif
}
static int
set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
size_t xfpustate_len)
{
union savefpu *fpstate;
int error;
if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
return (0);
else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
mcp->mc_fpformat != _MC_FPFMT_XMM)
return (EINVAL);
else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
/* We don't care what state is left in the FPU or PCB. */
fpstate_drop(td);
error = 0;
} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
#ifdef DEV_NPX
fpstate = (union savefpu *)&mcp->mc_fpstate;
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr)
fpstate->sv_xmm.sv_env.en_mxcsr &= cpu_mxcsr_mask;
#endif
error = npxsetregs(td, fpstate, xfpustate, xfpustate_len);
#else
error = EINVAL;
#endif
} else
return (EINVAL);
return (error);
}
static void
fpstate_drop(struct thread *td)
{
KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
critical_enter();
#ifdef DEV_NPX
if (PCPU_GET(fpcurthread) == td)
npxdrop();
#endif
/*
* XXX force a full drop of the npx. The above only drops it if we
* owned it. npxgetregs() has the same bug in the !cpu_fxsr case.
*
* XXX I don't much like npxgetregs()'s semantics of doing a full
* drop. Dropping only to the pcb matches fnsave's behaviour.
* We only need to drop to !PCB_INITDONE in sendsig(). But
* sendsig() is the only caller of npxgetregs()... perhaps we just
* have too many layers.
*/
curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
PCB_NPXUSERINITDONE);
critical_exit();
}
int
fill_dbregs(struct thread *td, struct dbreg *dbregs)
{
struct pcb *pcb;
if (td == NULL) {
dbregs->dr[0] = rdr0();
dbregs->dr[1] = rdr1();
dbregs->dr[2] = rdr2();
dbregs->dr[3] = rdr3();
dbregs->dr[4] = rdr4();
dbregs->dr[5] = rdr5();
dbregs->dr[6] = rdr6();
dbregs->dr[7] = rdr7();
} else {
pcb = td->td_pcb;
dbregs->dr[0] = pcb->pcb_dr0;
dbregs->dr[1] = pcb->pcb_dr1;
dbregs->dr[2] = pcb->pcb_dr2;
dbregs->dr[3] = pcb->pcb_dr3;
dbregs->dr[4] = 0;
dbregs->dr[5] = 0;
dbregs->dr[6] = pcb->pcb_dr6;
dbregs->dr[7] = pcb->pcb_dr7;
}
return (0);
}
int
set_dbregs(struct thread *td, struct dbreg *dbregs)
{
struct pcb *pcb;
int i;
if (td == NULL) {
load_dr0(dbregs->dr[0]);
load_dr1(dbregs->dr[1]);
load_dr2(dbregs->dr[2]);
load_dr3(dbregs->dr[3]);
load_dr4(dbregs->dr[4]);
load_dr5(dbregs->dr[5]);
load_dr6(dbregs->dr[6]);
load_dr7(dbregs->dr[7]);
} else {
/*
* Don't let an illegal value for dr7 get set. Specifically,
* check for undefined settings. Setting these bit patterns
* result in undefined behaviour and can lead to an unexpected
* TRCTRAP.
*/
for (i = 0; i < 4; i++) {
if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
return (EINVAL);
if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
return (EINVAL);
}
pcb = td->td_pcb;
/*
* Don't let a process set a breakpoint that is not within the
* process's address space. If a process could do this, it
* could halt the system by setting a breakpoint in the kernel
* (if ddb was enabled). Thus, we need to check to make sure
* that no breakpoints are being enabled for addresses outside
* process's address space.
*
* XXX - what about when the watched area of the user's
* address space is written into from within the kernel
* ... wouldn't that still cause a breakpoint to be generated
* from within kernel mode?
*/
if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
/* dr0 is enabled */
if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
/* dr1 is enabled */
if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
/* dr2 is enabled */
if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
/* dr3 is enabled */
if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
pcb->pcb_dr0 = dbregs->dr[0];
pcb->pcb_dr1 = dbregs->dr[1];
pcb->pcb_dr2 = dbregs->dr[2];
pcb->pcb_dr3 = dbregs->dr[3];
pcb->pcb_dr6 = dbregs->dr[6];
pcb->pcb_dr7 = dbregs->dr[7];
pcb->pcb_flags |= PCB_DBREGS;
}
return (0);
}
/*
* Return > 0 if a hardware breakpoint has been hit, and the
* breakpoint was in user space. Return 0, otherwise.
*/
int
user_dbreg_trap(void)
{
u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
u_int32_t bp; /* breakpoint bits extracted from dr6 */
int nbp; /* number of breakpoints that triggered */
caddr_t addr[4]; /* breakpoint addresses */
int i;
dr7 = rdr7();
if ((dr7 & 0x000000ff) == 0) {
/*
* all GE and LE bits in the dr7 register are zero,
* thus the trap couldn't have been caused by the
* hardware debug registers
*/
return 0;
}
nbp = 0;
dr6 = rdr6();
bp = dr6 & 0x0000000f;
if (!bp) {
/*
* None of the breakpoint bits are set meaning this
* trap was not caused by any of the debug registers
*/
return 0;
}
/*
* at least one of the breakpoints were hit, check to see
* which ones and if any of them are user space addresses
*/
if (bp & 0x01) {
addr[nbp++] = (caddr_t)rdr0();
}
if (bp & 0x02) {
addr[nbp++] = (caddr_t)rdr1();
}
if (bp & 0x04) {
addr[nbp++] = (caddr_t)rdr2();
}
if (bp & 0x08) {
addr[nbp++] = (caddr_t)rdr3();
}
for (i = 0; i < nbp; i++) {
if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
/*
* addr[i] is in user space
*/
return nbp;
}
}
/*
* None of the breakpoints are in user space.
*/
return 0;
}
#ifdef KDB
/*
* Provide inb() and outb() as functions. They are normally only available as
* inline functions, thus cannot be called from the debugger.
*/
/* silence compiler warnings */
u_char inb_(u_short);
void outb_(u_short, u_char);
u_char
inb_(u_short port)
{
return inb(port);
}
void
outb_(u_short port, u_char data)
{
outb(port, data);
}
#endif /* KDB */