f-stack/dpdk/drivers/net/nfp/nfp_rxtx.c

1011 lines
27 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) 2014-2021 Netronome Systems, Inc.
* All rights reserved.
*
* Small portions derived from code Copyright(c) 2010-2015 Intel Corporation.
*/
/*
* vim:shiftwidth=8:noexpandtab
*
* @file dpdk/pmd/nfp_rxtx.c
*
* Netronome vNIC DPDK Poll-Mode Driver: Rx/Tx functions
*/
#include <ethdev_driver.h>
#include <ethdev_pci.h>
#include "nfp_common.h"
#include "nfp_rxtx.h"
#include "nfp_logs.h"
#include "nfp_ctrl.h"
/* Prototypes */
static int nfp_net_rx_fill_freelist(struct nfp_net_rxq *rxq);
static inline void nfp_net_mbuf_alloc_failed(struct nfp_net_rxq *rxq);
static inline void nfp_net_set_hash(struct nfp_net_rxq *rxq,
struct nfp_net_rx_desc *rxd,
struct rte_mbuf *mbuf);
static inline void nfp_net_rx_cksum(struct nfp_net_rxq *rxq,
struct nfp_net_rx_desc *rxd,
struct rte_mbuf *mb);
static void nfp_net_rx_queue_release_mbufs(struct nfp_net_rxq *rxq);
static int nfp_net_tx_free_bufs(struct nfp_net_txq *txq);
static void nfp_net_tx_queue_release_mbufs(struct nfp_net_txq *txq);
static inline uint32_t nfp_free_tx_desc(struct nfp_net_txq *txq);
static inline uint32_t nfp_net_txq_full(struct nfp_net_txq *txq);
static inline void nfp_net_tx_tso(struct nfp_net_txq *txq,
struct nfp_net_tx_desc *txd,
struct rte_mbuf *mb);
static inline void nfp_net_tx_cksum(struct nfp_net_txq *txq,
struct nfp_net_tx_desc *txd,
struct rte_mbuf *mb);
static int
nfp_net_rx_fill_freelist(struct nfp_net_rxq *rxq)
{
struct nfp_net_rx_buff *rxe = rxq->rxbufs;
uint64_t dma_addr;
unsigned int i;
PMD_RX_LOG(DEBUG, "Fill Rx Freelist for %u descriptors",
rxq->rx_count);
for (i = 0; i < rxq->rx_count; i++) {
struct nfp_net_rx_desc *rxd;
struct rte_mbuf *mbuf = rte_pktmbuf_alloc(rxq->mem_pool);
if (mbuf == NULL) {
PMD_DRV_LOG(ERR, "RX mbuf alloc failed queue_id=%u",
(unsigned int)rxq->qidx);
return -ENOMEM;
}
dma_addr = rte_cpu_to_le_64(RTE_MBUF_DMA_ADDR_DEFAULT(mbuf));
rxd = &rxq->rxds[i];
rxd->fld.dd = 0;
rxd->fld.dma_addr_hi = (dma_addr >> 32) & 0xff;
rxd->fld.dma_addr_lo = dma_addr & 0xffffffff;
rxe[i].mbuf = mbuf;
PMD_RX_LOG(DEBUG, "[%d]: %" PRIx64, i, dma_addr);
}
/* Make sure all writes are flushed before telling the hardware */
rte_wmb();
/* Not advertising the whole ring as the firmware gets confused if so */
PMD_RX_LOG(DEBUG, "Increment FL write pointer in %u",
rxq->rx_count - 1);
nfp_qcp_ptr_add(rxq->qcp_fl, NFP_QCP_WRITE_PTR, rxq->rx_count - 1);
return 0;
}
int
nfp_net_rx_freelist_setup(struct rte_eth_dev *dev)
{
int i;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (nfp_net_rx_fill_freelist(dev->data->rx_queues[i]) < 0)
return -1;
}
return 0;
}
uint32_t
nfp_net_rx_queue_count(void *rx_queue)
{
struct nfp_net_rxq *rxq;
struct nfp_net_rx_desc *rxds;
uint32_t idx;
uint32_t count;
rxq = rx_queue;
idx = rxq->rd_p;
count = 0;
/*
* Other PMDs are just checking the DD bit in intervals of 4
* descriptors and counting all four if the first has the DD
* bit on. Of course, this is not accurate but can be good for
* performance. But ideally that should be done in descriptors
* chunks belonging to the same cache line
*/
while (count < rxq->rx_count) {
rxds = &rxq->rxds[idx];
if ((rxds->rxd.meta_len_dd & PCIE_DESC_RX_DD) == 0)
break;
count++;
idx++;
/* Wrapping? */
if ((idx) == rxq->rx_count)
idx = 0;
}
return count;
}
static inline void
nfp_net_mbuf_alloc_failed(struct nfp_net_rxq *rxq)
{
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
}
/*
* nfp_net_set_hash - Set mbuf hash data
*
* The RSS hash and hash-type are pre-pended to the packet data.
* Extract and decode it and set the mbuf fields.
*/
static inline void
nfp_net_set_hash(struct nfp_net_rxq *rxq, struct nfp_net_rx_desc *rxd,
struct rte_mbuf *mbuf)
{
struct nfp_net_hw *hw = rxq->hw;
uint8_t *meta_offset;
uint32_t meta_info;
uint32_t hash = 0;
uint32_t hash_type = 0;
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS))
return;
/* this is true for new firmwares */
if (likely(((hw->cap & NFP_NET_CFG_CTRL_RSS2) ||
(NFD_CFG_MAJOR_VERSION_of(hw->ver) == 4)) &&
NFP_DESC_META_LEN(rxd))) {
/*
* new metadata api:
* <---- 32 bit ----->
* m field type word
* e data field #2
* t data field #1
* a data field #0
* ====================
* packet data
*
* Field type word contains up to 8 4bit field types
* A 4bit field type refers to a data field word
* A data field word can have several 4bit field types
*/
meta_offset = rte_pktmbuf_mtod(mbuf, uint8_t *);
meta_offset -= NFP_DESC_META_LEN(rxd);
meta_info = rte_be_to_cpu_32(*(uint32_t *)meta_offset);
meta_offset += 4;
/* NFP PMD just supports metadata for hashing */
switch (meta_info & NFP_NET_META_FIELD_MASK) {
case NFP_NET_META_HASH:
/* next field type is about the hash type */
meta_info >>= NFP_NET_META_FIELD_SIZE;
/* hash value is in the data field */
hash = rte_be_to_cpu_32(*(uint32_t *)meta_offset);
hash_type = meta_info & NFP_NET_META_FIELD_MASK;
break;
default:
/* Unsupported metadata can be a performance issue */
return;
}
} else {
if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
return;
hash = rte_be_to_cpu_32(*(uint32_t *)NFP_HASH_OFFSET);
hash_type = rte_be_to_cpu_32(*(uint32_t *)NFP_HASH_TYPE_OFFSET);
}
mbuf->hash.rss = hash;
mbuf->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
switch (hash_type) {
case NFP_NET_RSS_IPV4:
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV4;
break;
case NFP_NET_RSS_IPV6:
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6;
break;
case NFP_NET_RSS_IPV6_EX:
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
break;
case NFP_NET_RSS_IPV4_TCP:
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
break;
case NFP_NET_RSS_IPV6_TCP:
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
break;
case NFP_NET_RSS_IPV4_UDP:
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
break;
case NFP_NET_RSS_IPV6_UDP:
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
break;
default:
mbuf->packet_type |= RTE_PTYPE_INNER_L4_MASK;
}
}
/* nfp_net_rx_cksum - set mbuf checksum flags based on RX descriptor flags */
static inline void
nfp_net_rx_cksum(struct nfp_net_rxq *rxq, struct nfp_net_rx_desc *rxd,
struct rte_mbuf *mb)
{
struct nfp_net_hw *hw = rxq->hw;
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RXCSUM))
return;
/* If IPv4 and IP checksum error, fail */
if (unlikely((rxd->rxd.flags & PCIE_DESC_RX_IP4_CSUM) &&
!(rxd->rxd.flags & PCIE_DESC_RX_IP4_CSUM_OK)))
mb->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
else
mb->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
/* If neither UDP nor TCP return */
if (!(rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM) &&
!(rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM))
return;
if (likely(rxd->rxd.flags & PCIE_DESC_RX_L4_CSUM_OK))
mb->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
else
mb->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
}
/*
* RX path design:
*
* There are some decisions to take:
* 1) How to check DD RX descriptors bit
* 2) How and when to allocate new mbufs
*
* Current implementation checks just one single DD bit each loop. As each
* descriptor is 8 bytes, it is likely a good idea to check descriptors in
* a single cache line instead. Tests with this change have not shown any
* performance improvement but it requires further investigation. For example,
* depending on which descriptor is next, the number of descriptors could be
* less than 8 for just checking those in the same cache line. This implies
* extra work which could be counterproductive by itself. Indeed, last firmware
* changes are just doing this: writing several descriptors with the DD bit
* for saving PCIe bandwidth and DMA operations from the NFP.
*
* Mbuf allocation is done when a new packet is received. Then the descriptor
* is automatically linked with the new mbuf and the old one is given to the
* user. The main drawback with this design is mbuf allocation is heavier than
* using bulk allocations allowed by DPDK with rte_mempool_get_bulk. From the
* cache point of view it does not seem allocating the mbuf early on as we are
* doing now have any benefit at all. Again, tests with this change have not
* shown any improvement. Also, rte_mempool_get_bulk returns all or nothing
* so looking at the implications of this type of allocation should be studied
* deeply
*/
uint16_t
nfp_net_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct nfp_net_rxq *rxq;
struct nfp_net_rx_desc *rxds;
struct nfp_net_rx_buff *rxb;
struct nfp_net_hw *hw;
struct rte_mbuf *mb;
struct rte_mbuf *new_mb;
uint16_t nb_hold;
uint64_t dma_addr;
int avail;
rxq = rx_queue;
if (unlikely(rxq == NULL)) {
/*
* DPDK just checks the queue is lower than max queues
* enabled. But the queue needs to be configured
*/
RTE_LOG_DP(ERR, PMD, "RX Bad queue\n");
return -EINVAL;
}
hw = rxq->hw;
avail = 0;
nb_hold = 0;
while (avail < nb_pkts) {
rxb = &rxq->rxbufs[rxq->rd_p];
if (unlikely(rxb == NULL)) {
RTE_LOG_DP(ERR, PMD, "rxb does not exist!\n");
break;
}
rxds = &rxq->rxds[rxq->rd_p];
if ((rxds->rxd.meta_len_dd & PCIE_DESC_RX_DD) == 0)
break;
/*
* Memory barrier to ensure that we won't do other
* reads before the DD bit.
*/
rte_rmb();
/*
* We got a packet. Let's alloc a new mbuf for refilling the
* free descriptor ring as soon as possible
*/
new_mb = rte_pktmbuf_alloc(rxq->mem_pool);
if (unlikely(new_mb == NULL)) {
RTE_LOG_DP(DEBUG, PMD,
"RX mbuf alloc failed port_id=%u queue_id=%u\n",
rxq->port_id, (unsigned int)rxq->qidx);
nfp_net_mbuf_alloc_failed(rxq);
break;
}
nb_hold++;
/*
* Grab the mbuf and refill the descriptor with the
* previously allocated mbuf
*/
mb = rxb->mbuf;
rxb->mbuf = new_mb;
PMD_RX_LOG(DEBUG, "Packet len: %u, mbuf_size: %u",
rxds->rxd.data_len, rxq->mbuf_size);
/* Size of this segment */
mb->data_len = rxds->rxd.data_len - NFP_DESC_META_LEN(rxds);
/* Size of the whole packet. We just support 1 segment */
mb->pkt_len = rxds->rxd.data_len - NFP_DESC_META_LEN(rxds);
if (unlikely((mb->data_len + hw->rx_offset) >
rxq->mbuf_size)) {
/*
* This should not happen and the user has the
* responsibility of avoiding it. But we have
* to give some info about the error
*/
RTE_LOG_DP(ERR, PMD,
"mbuf overflow likely due to the RX offset.\n"
"\t\tYour mbuf size should have extra space for"
" RX offset=%u bytes.\n"
"\t\tCurrently you just have %u bytes available"
" but the received packet is %u bytes long",
hw->rx_offset,
rxq->mbuf_size - hw->rx_offset,
mb->data_len);
return -EINVAL;
}
/* Filling the received mbuf with packet info */
if (hw->rx_offset)
mb->data_off = RTE_PKTMBUF_HEADROOM + hw->rx_offset;
else
mb->data_off = RTE_PKTMBUF_HEADROOM +
NFP_DESC_META_LEN(rxds);
/* No scatter mode supported */
mb->nb_segs = 1;
mb->next = NULL;
mb->port = rxq->port_id;
/* Checking the RSS flag */
nfp_net_set_hash(rxq, rxds, mb);
/* Checking the checksum flag */
nfp_net_rx_cksum(rxq, rxds, mb);
if ((rxds->rxd.flags & PCIE_DESC_RX_VLAN) &&
(hw->ctrl & NFP_NET_CFG_CTRL_RXVLAN)) {
mb->vlan_tci = rte_cpu_to_le_32(rxds->rxd.vlan);
mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
}
/* Adding the mbuf to the mbuf array passed by the app */
rx_pkts[avail++] = mb;
/* Now resetting and updating the descriptor */
rxds->vals[0] = 0;
rxds->vals[1] = 0;
dma_addr = rte_cpu_to_le_64(RTE_MBUF_DMA_ADDR_DEFAULT(new_mb));
rxds->fld.dd = 0;
rxds->fld.dma_addr_hi = (dma_addr >> 32) & 0xff;
rxds->fld.dma_addr_lo = dma_addr & 0xffffffff;
rxq->rd_p++;
if (unlikely(rxq->rd_p == rxq->rx_count)) /* wrapping?*/
rxq->rd_p = 0;
}
if (nb_hold == 0)
return nb_hold;
PMD_RX_LOG(DEBUG, "RX port_id=%u queue_id=%u, %d packets received",
rxq->port_id, (unsigned int)rxq->qidx, nb_hold);
nb_hold += rxq->nb_rx_hold;
/*
* FL descriptors needs to be written before incrementing the
* FL queue WR pointer
*/
rte_wmb();
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port=%u queue=%u nb_hold=%u avail=%u",
rxq->port_id, (unsigned int)rxq->qidx,
(unsigned int)nb_hold, (unsigned int)avail);
nfp_qcp_ptr_add(rxq->qcp_fl, NFP_QCP_WRITE_PTR, nb_hold);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return avail;
}
static void
nfp_net_rx_queue_release_mbufs(struct nfp_net_rxq *rxq)
{
unsigned int i;
if (rxq->rxbufs == NULL)
return;
for (i = 0; i < rxq->rx_count; i++) {
if (rxq->rxbufs[i].mbuf) {
rte_pktmbuf_free_seg(rxq->rxbufs[i].mbuf);
rxq->rxbufs[i].mbuf = NULL;
}
}
}
void
nfp_net_rx_queue_release(struct rte_eth_dev *dev, uint16_t queue_idx)
{
struct nfp_net_rxq *rxq = dev->data->rx_queues[queue_idx];
if (rxq) {
nfp_net_rx_queue_release_mbufs(rxq);
rte_eth_dma_zone_free(dev, "rx_ring", queue_idx);
rte_free(rxq->rxbufs);
rte_free(rxq);
}
}
void
nfp_net_reset_rx_queue(struct nfp_net_rxq *rxq)
{
nfp_net_rx_queue_release_mbufs(rxq);
rxq->rd_p = 0;
rxq->nb_rx_hold = 0;
}
int
nfp_net_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx, uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
const struct rte_memzone *tz;
struct nfp_net_rxq *rxq;
struct nfp_net_hw *hw;
uint32_t rx_desc_sz;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
/* Validating number of descriptors */
rx_desc_sz = nb_desc * sizeof(struct nfp_net_rx_desc);
if (rx_desc_sz % NFP_ALIGN_RING_DESC != 0 ||
nb_desc > NFP_NET_MAX_RX_DESC ||
nb_desc < NFP_NET_MIN_RX_DESC) {
PMD_DRV_LOG(ERR, "Wrong nb_desc value");
return -EINVAL;
}
/*
* Free memory prior to re-allocation if needed. This is the case after
* calling nfp_net_stop
*/
if (dev->data->rx_queues[queue_idx]) {
nfp_net_rx_queue_release(dev, queue_idx);
dev->data->rx_queues[queue_idx] = NULL;
}
/* Allocating rx queue data structure */
rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct nfp_net_rxq),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq == NULL)
return -ENOMEM;
dev->data->rx_queues[queue_idx] = rxq;
/* Hw queues mapping based on firmware configuration */
rxq->qidx = queue_idx;
rxq->fl_qcidx = queue_idx * hw->stride_rx;
rxq->rx_qcidx = rxq->fl_qcidx + (hw->stride_rx - 1);
rxq->qcp_fl = hw->rx_bar + NFP_QCP_QUEUE_OFF(rxq->fl_qcidx);
rxq->qcp_rx = hw->rx_bar + NFP_QCP_QUEUE_OFF(rxq->rx_qcidx);
/*
* Tracking mbuf size for detecting a potential mbuf overflow due to
* RX offset
*/
rxq->mem_pool = mp;
rxq->mbuf_size = rxq->mem_pool->elt_size;
rxq->mbuf_size -= (sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM);
hw->flbufsz = rxq->mbuf_size;
rxq->rx_count = nb_desc;
rxq->port_id = dev->data->port_id;
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
rxq->drop_en = rx_conf->rx_drop_en;
/*
* Allocate RX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
tz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
sizeof(struct nfp_net_rx_desc) *
NFP_NET_MAX_RX_DESC, NFP_MEMZONE_ALIGN,
socket_id);
if (tz == NULL) {
PMD_DRV_LOG(ERR, "Error allocating rx dma");
nfp_net_rx_queue_release(dev, queue_idx);
dev->data->rx_queues[queue_idx] = NULL;
return -ENOMEM;
}
/* Saving physical and virtual addresses for the RX ring */
rxq->dma = (uint64_t)tz->iova;
rxq->rxds = (struct nfp_net_rx_desc *)tz->addr;
/* mbuf pointers array for referencing mbufs linked to RX descriptors */
rxq->rxbufs = rte_zmalloc_socket("rxq->rxbufs",
sizeof(*rxq->rxbufs) * nb_desc,
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq->rxbufs == NULL) {
nfp_net_rx_queue_release(dev, queue_idx);
dev->data->rx_queues[queue_idx] = NULL;
return -ENOMEM;
}
PMD_RX_LOG(DEBUG, "rxbufs=%p hw_ring=%p dma_addr=0x%" PRIx64,
rxq->rxbufs, rxq->rxds, (unsigned long)rxq->dma);
nfp_net_reset_rx_queue(rxq);
rxq->hw = hw;
/*
* Telling the HW about the physical address of the RX ring and number
* of descriptors in log2 format
*/
nn_cfg_writeq(hw, NFP_NET_CFG_RXR_ADDR(queue_idx), rxq->dma);
nn_cfg_writeb(hw, NFP_NET_CFG_RXR_SZ(queue_idx), rte_log2_u32(nb_desc));
return 0;
}
/*
* nfp_net_tx_free_bufs - Check for descriptors with a complete
* status
* @txq: TX queue to work with
* Returns number of descriptors freed
*/
static int
nfp_net_tx_free_bufs(struct nfp_net_txq *txq)
{
uint32_t qcp_rd_p;
int todo;
PMD_TX_LOG(DEBUG, "queue %u. Check for descriptor with a complete"
" status", txq->qidx);
/* Work out how many packets have been sent */
qcp_rd_p = nfp_qcp_read(txq->qcp_q, NFP_QCP_READ_PTR);
if (qcp_rd_p == txq->rd_p) {
PMD_TX_LOG(DEBUG, "queue %u: It seems harrier is not sending "
"packets (%u, %u)", txq->qidx,
qcp_rd_p, txq->rd_p);
return 0;
}
if (qcp_rd_p > txq->rd_p)
todo = qcp_rd_p - txq->rd_p;
else
todo = qcp_rd_p + txq->tx_count - txq->rd_p;
PMD_TX_LOG(DEBUG, "qcp_rd_p %u, txq->rd_p: %u, qcp->rd_p: %u",
qcp_rd_p, txq->rd_p, txq->rd_p);
if (todo == 0)
return todo;
txq->rd_p += todo;
if (unlikely(txq->rd_p >= txq->tx_count))
txq->rd_p -= txq->tx_count;
return todo;
}
static void
nfp_net_tx_queue_release_mbufs(struct nfp_net_txq *txq)
{
unsigned int i;
if (txq->txbufs == NULL)
return;
for (i = 0; i < txq->tx_count; i++) {
if (txq->txbufs[i].mbuf) {
rte_pktmbuf_free_seg(txq->txbufs[i].mbuf);
txq->txbufs[i].mbuf = NULL;
}
}
}
void
nfp_net_tx_queue_release(struct rte_eth_dev *dev, uint16_t queue_idx)
{
struct nfp_net_txq *txq = dev->data->tx_queues[queue_idx];
if (txq) {
nfp_net_tx_queue_release_mbufs(txq);
rte_eth_dma_zone_free(dev, "tx_ring", queue_idx);
rte_free(txq->txbufs);
rte_free(txq);
}
}
void
nfp_net_reset_tx_queue(struct nfp_net_txq *txq)
{
nfp_net_tx_queue_release_mbufs(txq);
txq->wr_p = 0;
txq->rd_p = 0;
}
int
nfp_net_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
const struct rte_memzone *tz;
struct nfp_net_txq *txq;
uint16_t tx_free_thresh;
struct nfp_net_hw *hw;
uint32_t tx_desc_sz;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
/* Validating number of descriptors */
tx_desc_sz = nb_desc * sizeof(struct nfp_net_tx_desc);
if (tx_desc_sz % NFP_ALIGN_RING_DESC != 0 ||
nb_desc > NFP_NET_MAX_TX_DESC ||
nb_desc < NFP_NET_MIN_TX_DESC) {
PMD_DRV_LOG(ERR, "Wrong nb_desc value");
return -EINVAL;
}
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
tx_conf->tx_free_thresh :
DEFAULT_TX_FREE_THRESH);
if (tx_free_thresh > (nb_desc)) {
PMD_DRV_LOG(ERR,
"tx_free_thresh must be less than the number of TX "
"descriptors. (tx_free_thresh=%u port=%d "
"queue=%d)", (unsigned int)tx_free_thresh,
dev->data->port_id, (int)queue_idx);
return -(EINVAL);
}
/*
* Free memory prior to re-allocation if needed. This is the case after
* calling nfp_net_stop
*/
if (dev->data->tx_queues[queue_idx]) {
PMD_TX_LOG(DEBUG, "Freeing memory prior to re-allocation %d",
queue_idx);
nfp_net_tx_queue_release(dev, queue_idx);
dev->data->tx_queues[queue_idx] = NULL;
}
/* Allocating tx queue data structure */
txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct nfp_net_txq),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq == NULL) {
PMD_DRV_LOG(ERR, "Error allocating tx dma");
return -ENOMEM;
}
dev->data->tx_queues[queue_idx] = txq;
/*
* Allocate TX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
sizeof(struct nfp_net_tx_desc) *
NFP_NET_MAX_TX_DESC, NFP_MEMZONE_ALIGN,
socket_id);
if (tz == NULL) {
PMD_DRV_LOG(ERR, "Error allocating tx dma");
nfp_net_tx_queue_release(dev, queue_idx);
dev->data->tx_queues[queue_idx] = NULL;
return -ENOMEM;
}
txq->tx_count = nb_desc;
txq->tx_free_thresh = tx_free_thresh;
txq->tx_pthresh = tx_conf->tx_thresh.pthresh;
txq->tx_hthresh = tx_conf->tx_thresh.hthresh;
txq->tx_wthresh = tx_conf->tx_thresh.wthresh;
/* queue mapping based on firmware configuration */
txq->qidx = queue_idx;
txq->tx_qcidx = queue_idx * hw->stride_tx;
txq->qcp_q = hw->tx_bar + NFP_QCP_QUEUE_OFF(txq->tx_qcidx);
txq->port_id = dev->data->port_id;
/* Saving physical and virtual addresses for the TX ring */
txq->dma = (uint64_t)tz->iova;
txq->txds = (struct nfp_net_tx_desc *)tz->addr;
/* mbuf pointers array for referencing mbufs linked to TX descriptors */
txq->txbufs = rte_zmalloc_socket("txq->txbufs",
sizeof(*txq->txbufs) * nb_desc,
RTE_CACHE_LINE_SIZE, socket_id);
if (txq->txbufs == NULL) {
nfp_net_tx_queue_release(dev, queue_idx);
dev->data->tx_queues[queue_idx] = NULL;
return -ENOMEM;
}
PMD_TX_LOG(DEBUG, "txbufs=%p hw_ring=%p dma_addr=0x%" PRIx64,
txq->txbufs, txq->txds, (unsigned long)txq->dma);
nfp_net_reset_tx_queue(txq);
txq->hw = hw;
/*
* Telling the HW about the physical address of the TX ring and number
* of descriptors in log2 format
*/
nn_cfg_writeq(hw, NFP_NET_CFG_TXR_ADDR(queue_idx), txq->dma);
nn_cfg_writeb(hw, NFP_NET_CFG_TXR_SZ(queue_idx), rte_log2_u32(nb_desc));
return 0;
}
/* Leaving always free descriptors for avoiding wrapping confusion */
static inline
uint32_t nfp_free_tx_desc(struct nfp_net_txq *txq)
{
if (txq->wr_p >= txq->rd_p)
return txq->tx_count - (txq->wr_p - txq->rd_p) - 8;
else
return txq->rd_p - txq->wr_p - 8;
}
/*
* nfp_net_txq_full - Check if the TX queue free descriptors
* is below tx_free_threshold
*
* @txq: TX queue to check
*
* This function uses the host copy* of read/write pointers
*/
static inline
uint32_t nfp_net_txq_full(struct nfp_net_txq *txq)
{
return (nfp_free_tx_desc(txq) < txq->tx_free_thresh);
}
/* nfp_net_tx_tso - Set TX descriptor for TSO */
static inline void
nfp_net_tx_tso(struct nfp_net_txq *txq, struct nfp_net_tx_desc *txd,
struct rte_mbuf *mb)
{
uint64_t ol_flags;
struct nfp_net_hw *hw = txq->hw;
if (!(hw->cap & NFP_NET_CFG_CTRL_LSO_ANY))
goto clean_txd;
ol_flags = mb->ol_flags;
if (!(ol_flags & RTE_MBUF_F_TX_TCP_SEG))
goto clean_txd;
txd->l3_offset = mb->l2_len;
txd->l4_offset = mb->l2_len + mb->l3_len;
txd->lso_hdrlen = mb->l2_len + mb->l3_len + mb->l4_len;
txd->mss = rte_cpu_to_le_16(mb->tso_segsz);
txd->flags = PCIE_DESC_TX_LSO;
return;
clean_txd:
txd->flags = 0;
txd->l3_offset = 0;
txd->l4_offset = 0;
txd->lso_hdrlen = 0;
txd->mss = 0;
}
/* nfp_net_tx_cksum - Set TX CSUM offload flags in TX descriptor */
static inline void
nfp_net_tx_cksum(struct nfp_net_txq *txq, struct nfp_net_tx_desc *txd,
struct rte_mbuf *mb)
{
uint64_t ol_flags;
struct nfp_net_hw *hw = txq->hw;
if (!(hw->cap & NFP_NET_CFG_CTRL_TXCSUM))
return;
ol_flags = mb->ol_flags;
/* IPv6 does not need checksum */
if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM)
txd->flags |= PCIE_DESC_TX_IP4_CSUM;
switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
case RTE_MBUF_F_TX_UDP_CKSUM:
txd->flags |= PCIE_DESC_TX_UDP_CSUM;
break;
case RTE_MBUF_F_TX_TCP_CKSUM:
txd->flags |= PCIE_DESC_TX_TCP_CSUM;
break;
}
if (ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK))
txd->flags |= PCIE_DESC_TX_CSUM;
}
uint16_t
nfp_net_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct nfp_net_txq *txq;
struct nfp_net_hw *hw;
struct nfp_net_tx_desc *txds, txd;
struct rte_mbuf *pkt;
uint64_t dma_addr;
int pkt_size, dma_size;
uint16_t free_descs, issued_descs;
struct rte_mbuf **lmbuf;
int i;
txq = tx_queue;
hw = txq->hw;
txds = &txq->txds[txq->wr_p];
PMD_TX_LOG(DEBUG, "working for queue %u at pos %d and %u packets",
txq->qidx, txq->wr_p, nb_pkts);
if ((nfp_free_tx_desc(txq) < nb_pkts) || (nfp_net_txq_full(txq)))
nfp_net_tx_free_bufs(txq);
free_descs = (uint16_t)nfp_free_tx_desc(txq);
if (unlikely(free_descs == 0))
return 0;
pkt = *tx_pkts;
i = 0;
issued_descs = 0;
PMD_TX_LOG(DEBUG, "queue: %u. Sending %u packets",
txq->qidx, nb_pkts);
/* Sending packets */
while ((i < nb_pkts) && free_descs) {
/* Grabbing the mbuf linked to the current descriptor */
lmbuf = &txq->txbufs[txq->wr_p].mbuf;
/* Warming the cache for releasing the mbuf later on */
RTE_MBUF_PREFETCH_TO_FREE(*lmbuf);
pkt = *(tx_pkts + i);
if (unlikely(pkt->nb_segs > 1 &&
!(hw->cap & NFP_NET_CFG_CTRL_GATHER))) {
PMD_INIT_LOG(INFO, "NFP_NET_CFG_CTRL_GATHER not set");
rte_panic("Multisegment packet unsupported\n");
}
/* Checking if we have enough descriptors */
if (unlikely(pkt->nb_segs > free_descs))
goto xmit_end;
/*
* Checksum and VLAN flags just in the first descriptor for a
* multisegment packet, but TSO info needs to be in all of them.
*/
txd.data_len = pkt->pkt_len;
nfp_net_tx_tso(txq, &txd, pkt);
nfp_net_tx_cksum(txq, &txd, pkt);
if ((pkt->ol_flags & RTE_MBUF_F_TX_VLAN) &&
(hw->cap & NFP_NET_CFG_CTRL_TXVLAN)) {
txd.flags |= PCIE_DESC_TX_VLAN;
txd.vlan = pkt->vlan_tci;
}
/*
* mbuf data_len is the data in one segment and pkt_len data
* in the whole packet. When the packet is just one segment,
* then data_len = pkt_len
*/
pkt_size = pkt->pkt_len;
while (pkt) {
/* Copying TSO, VLAN and cksum info */
*txds = txd;
/* Releasing mbuf used by this descriptor previously*/
if (*lmbuf)
rte_pktmbuf_free_seg(*lmbuf);
/*
* Linking mbuf with descriptor for being released
* next time descriptor is used
*/
*lmbuf = pkt;
dma_size = pkt->data_len;
dma_addr = rte_mbuf_data_iova(pkt);
PMD_TX_LOG(DEBUG, "Working with mbuf at dma address:"
"%" PRIx64 "", dma_addr);
/* Filling descriptors fields */
txds->dma_len = dma_size;
txds->data_len = txd.data_len;
txds->dma_addr_hi = (dma_addr >> 32) & 0xff;
txds->dma_addr_lo = (dma_addr & 0xffffffff);
ASSERT(free_descs > 0);
free_descs--;
txq->wr_p++;
if (unlikely(txq->wr_p == txq->tx_count)) /* wrapping?*/
txq->wr_p = 0;
pkt_size -= dma_size;
/*
* Making the EOP, packets with just one segment
* the priority
*/
if (likely(!pkt_size))
txds->offset_eop = PCIE_DESC_TX_EOP;
else
txds->offset_eop = 0;
pkt = pkt->next;
/* Referencing next free TX descriptor */
txds = &txq->txds[txq->wr_p];
lmbuf = &txq->txbufs[txq->wr_p].mbuf;
issued_descs++;
}
i++;
}
xmit_end:
/* Increment write pointers. Force memory write before we let HW know */
rte_wmb();
nfp_qcp_ptr_add(txq->qcp_q, NFP_QCP_WRITE_PTR, issued_descs);
return i;
}