f-stack/freebsd/arm/freescale/imx/imx6_hdmi.c

769 lines
20 KiB
C

/*-
* Copyright (c) 2015 Oleksandr Tymoshenko <gonzo@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* HDMI core module
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <machine/bus.h>
#include <dev/videomode/videomode.h>
#include <dev/videomode/edidvar.h>
#include <dev/iicbus/iicbus.h>
#include <dev/iicbus/iiconf.h>
#include <arm/freescale/imx/imx_ccmvar.h>
#include <arm/freescale/imx/imx_iomuxvar.h>
#include <arm/freescale/imx/imx_iomuxreg.h>
#include <arm/freescale/imx/imx6_hdmireg.h>
#include "hdmi_if.h"
#define I2C_DDC_ADDR (0x50 << 1)
#define EDID_LENGTH 0x80
struct imx_hdmi_softc {
device_t sc_dev;
struct resource *sc_mem_res;
int sc_mem_rid;
struct intr_config_hook sc_mode_hook;
struct videomode sc_mode;
uint8_t *sc_edid;
uint8_t sc_edid_len;
phandle_t sc_i2c_xref;
};
static struct ofw_compat_data compat_data[] = {
{"fsl,imx6dl-hdmi", 1},
{"fsl,imx6q-hdmi", 1},
{NULL, 0}
};
static inline uint8_t
RD1(struct imx_hdmi_softc *sc, bus_size_t off)
{
return (bus_read_1(sc->sc_mem_res, off));
}
static inline void
WR1(struct imx_hdmi_softc *sc, bus_size_t off, uint8_t val)
{
bus_write_1(sc->sc_mem_res, off, val);
}
static void
imx_hdmi_phy_wait_i2c_done(struct imx_hdmi_softc *sc, int msec)
{
uint8_t val;
val = RD1(sc, HDMI_IH_I2CMPHY_STAT0) &
(HDMI_IH_I2CMPHY_STAT0_DONE | HDMI_IH_I2CMPHY_STAT0_ERROR);
while (val == 0) {
pause("HDMI_PHY", hz/100);
msec -= 10;
if (msec <= 0)
return;
val = RD1(sc, HDMI_IH_I2CMPHY_STAT0) &
(HDMI_IH_I2CMPHY_STAT0_DONE | HDMI_IH_I2CMPHY_STAT0_ERROR);
}
}
static void
imx_hdmi_phy_i2c_write(struct imx_hdmi_softc *sc, unsigned short data,
unsigned char addr)
{
/* clear DONE and ERROR flags */
WR1(sc, HDMI_IH_I2CMPHY_STAT0,
HDMI_IH_I2CMPHY_STAT0_DONE | HDMI_IH_I2CMPHY_STAT0_ERROR);
WR1(sc, HDMI_PHY_I2CM_ADDRESS_ADDR, addr);
WR1(sc, HDMI_PHY_I2CM_DATAO_1_ADDR, ((data >> 8) & 0xff));
WR1(sc, HDMI_PHY_I2CM_DATAO_0_ADDR, ((data >> 0) & 0xff));
WR1(sc, HDMI_PHY_I2CM_OPERATION_ADDR, HDMI_PHY_I2CM_OPERATION_ADDR_WRITE);
imx_hdmi_phy_wait_i2c_done(sc, 1000);
}
static void
imx_hdmi_disable_overflow_interrupts(struct imx_hdmi_softc *sc)
{
WR1(sc, HDMI_IH_MUTE_FC_STAT2, HDMI_IH_MUTE_FC_STAT2_OVERFLOW_MASK);
WR1(sc, HDMI_FC_MASK2,
HDMI_FC_MASK2_LOW_PRI | HDMI_FC_MASK2_HIGH_PRI);
}
static void
imx_hdmi_av_composer(struct imx_hdmi_softc *sc)
{
uint8_t inv_val;
int is_dvi;
int hblank, vblank, hsync_len, hbp, vbp;
/* Set up HDMI_FC_INVIDCONF */
inv_val = ((sc->sc_mode.flags & VID_NVSYNC) ?
HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_LOW :
HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_HIGH);
inv_val |= ((sc->sc_mode.flags & VID_NHSYNC) ?
HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_LOW :
HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_HIGH);
inv_val |= HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_HIGH;
inv_val |= ((sc->sc_mode.flags & VID_INTERLACE) ?
HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_LOW);
inv_val |= ((sc->sc_mode.flags & VID_INTERLACE) ?
HDMI_FC_INVIDCONF_IN_I_P_INTERLACED :
HDMI_FC_INVIDCONF_IN_I_P_PROGRESSIVE);
/* TODO: implement HDMI part */
is_dvi = 1;
inv_val |= (is_dvi ?
HDMI_FC_INVIDCONF_DVI_MODEZ_DVI_MODE :
HDMI_FC_INVIDCONF_DVI_MODEZ_HDMI_MODE);
WR1(sc, HDMI_FC_INVIDCONF, inv_val);
/* Set up horizontal active pixel region width */
WR1(sc, HDMI_FC_INHACTV1, sc->sc_mode.hdisplay >> 8);
WR1(sc, HDMI_FC_INHACTV0, sc->sc_mode.hdisplay);
/* Set up vertical blanking pixel region width */
WR1(sc, HDMI_FC_INVACTV1, sc->sc_mode.vdisplay >> 8);
WR1(sc, HDMI_FC_INVACTV0, sc->sc_mode.vdisplay);
/* Set up horizontal blanking pixel region width */
hblank = sc->sc_mode.htotal - sc->sc_mode.hdisplay;
WR1(sc, HDMI_FC_INHBLANK1, hblank >> 8);
WR1(sc, HDMI_FC_INHBLANK0, hblank);
/* Set up vertical blanking pixel region width */
vblank = sc->sc_mode.vtotal - sc->sc_mode.vdisplay;
WR1(sc, HDMI_FC_INVBLANK, vblank);
/* Set up HSYNC active edge delay width (in pixel clks) */
hbp = sc->sc_mode.htotal - sc->sc_mode.hsync_end;
WR1(sc, HDMI_FC_HSYNCINDELAY1, hbp >> 8);
WR1(sc, HDMI_FC_HSYNCINDELAY0, hbp);
/* Set up VSYNC active edge delay (in pixel clks) */
vbp = sc->sc_mode.vtotal - sc->sc_mode.vsync_end;
WR1(sc, HDMI_FC_VSYNCINDELAY, vbp);
hsync_len = (sc->sc_mode.hsync_end - sc->sc_mode.hsync_start);
/* Set up HSYNC active pulse width (in pixel clks) */
WR1(sc, HDMI_FC_HSYNCINWIDTH1, hsync_len >> 8);
WR1(sc, HDMI_FC_HSYNCINWIDTH0, hsync_len);
/* Set up VSYNC active edge delay (in pixel clks) */
WR1(sc, HDMI_FC_VSYNCINWIDTH, (sc->sc_mode.vsync_end - sc->sc_mode.vsync_start));
}
static void
imx_hdmi_phy_enable_power(struct imx_hdmi_softc *sc, uint8_t enable)
{
uint8_t reg;
reg = RD1(sc, HDMI_PHY_CONF0);
reg &= ~HDMI_PHY_CONF0_PDZ_MASK;
reg |= (enable << HDMI_PHY_CONF0_PDZ_OFFSET);
WR1(sc, HDMI_PHY_CONF0, reg);
}
static void
imx_hdmi_phy_enable_tmds(struct imx_hdmi_softc *sc, uint8_t enable)
{
uint8_t reg;
reg = RD1(sc, HDMI_PHY_CONF0);
reg &= ~HDMI_PHY_CONF0_ENTMDS_MASK;
reg |= (enable << HDMI_PHY_CONF0_ENTMDS_OFFSET);
WR1(sc, HDMI_PHY_CONF0, reg);
}
static void
imx_hdmi_phy_gen2_pddq(struct imx_hdmi_softc *sc, uint8_t enable)
{
uint8_t reg;
reg = RD1(sc, HDMI_PHY_CONF0);
reg &= ~HDMI_PHY_CONF0_GEN2_PDDQ_MASK;
reg |= (enable << HDMI_PHY_CONF0_GEN2_PDDQ_OFFSET);
WR1(sc, HDMI_PHY_CONF0, reg);
}
static void
imx_hdmi_phy_gen2_txpwron(struct imx_hdmi_softc *sc, uint8_t enable)
{
uint8_t reg;
reg = RD1(sc, HDMI_PHY_CONF0);
reg &= ~HDMI_PHY_CONF0_GEN2_TXPWRON_MASK;
reg |= (enable << HDMI_PHY_CONF0_GEN2_TXPWRON_OFFSET);
WR1(sc, HDMI_PHY_CONF0, reg);
}
static void
imx_hdmi_phy_sel_data_en_pol(struct imx_hdmi_softc *sc, uint8_t enable)
{
uint8_t reg;
reg = RD1(sc, HDMI_PHY_CONF0);
reg &= ~HDMI_PHY_CONF0_SELDATAENPOL_MASK;
reg |= (enable << HDMI_PHY_CONF0_SELDATAENPOL_OFFSET);
WR1(sc, HDMI_PHY_CONF0, reg);
}
static void
imx_hdmi_phy_sel_interface_control(struct imx_hdmi_softc *sc, uint8_t enable)
{
uint8_t reg;
reg = RD1(sc, HDMI_PHY_CONF0);
reg &= ~HDMI_PHY_CONF0_SELDIPIF_MASK;
reg |= (enable << HDMI_PHY_CONF0_SELDIPIF_OFFSET);
WR1(sc, HDMI_PHY_CONF0, reg);
}
static inline void
imx_hdmi_phy_test_clear(struct imx_hdmi_softc *sc, unsigned char bit)
{
uint8_t val;
val = RD1(sc, HDMI_PHY_TST0);
val &= ~HDMI_PHY_TST0_TSTCLR_MASK;
val |= (bit << HDMI_PHY_TST0_TSTCLR_OFFSET) &
HDMI_PHY_TST0_TSTCLR_MASK;
WR1(sc, HDMI_PHY_TST0, val);
}
static void
imx_hdmi_clear_overflow(struct imx_hdmi_softc *sc)
{
int count;
uint8_t val;
/* TMDS software reset */
WR1(sc, HDMI_MC_SWRSTZ, (uint8_t)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ);
val = RD1(sc, HDMI_FC_INVIDCONF);
for (count = 0 ; count < 5 ; count++)
WR1(sc, HDMI_FC_INVIDCONF, val);
}
static int
imx_hdmi_phy_configure(struct imx_hdmi_softc *sc)
{
uint8_t val;
uint8_t msec;
WR1(sc, HDMI_MC_FLOWCTRL, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_BYPASS);
/* gen2 tx power off */
imx_hdmi_phy_gen2_txpwron(sc, 0);
/* gen2 pddq */
imx_hdmi_phy_gen2_pddq(sc, 1);
/* PHY reset */
WR1(sc, HDMI_MC_PHYRSTZ, HDMI_MC_PHYRSTZ_DEASSERT);
WR1(sc, HDMI_MC_PHYRSTZ, HDMI_MC_PHYRSTZ_ASSERT);
WR1(sc, HDMI_MC_HEACPHY_RST, HDMI_MC_HEACPHY_RST_ASSERT);
imx_hdmi_phy_test_clear(sc, 1);
WR1(sc, HDMI_PHY_I2CM_SLAVE_ADDR, HDMI_PHY_I2CM_SLAVE_ADDR_PHY_GEN2);
imx_hdmi_phy_test_clear(sc, 0);
/*
* Following initialization are for 8bit per color case
*/
/*
* PLL/MPLL config, see section 24.7.22 in TRM
* config, see section 24.7.22
*/
if (sc->sc_mode.dot_clock*1000 <= 45250000) {
imx_hdmi_phy_i2c_write(sc, CPCE_CTRL_45_25, HDMI_PHY_I2C_CPCE_CTRL);
imx_hdmi_phy_i2c_write(sc, GMPCTRL_45_25, HDMI_PHY_I2C_GMPCTRL);
} else if (sc->sc_mode.dot_clock*1000 <= 92500000) {
imx_hdmi_phy_i2c_write(sc, CPCE_CTRL_92_50, HDMI_PHY_I2C_CPCE_CTRL);
imx_hdmi_phy_i2c_write(sc, GMPCTRL_92_50, HDMI_PHY_I2C_GMPCTRL);
} else if (sc->sc_mode.dot_clock*1000 <= 185000000) {
imx_hdmi_phy_i2c_write(sc, CPCE_CTRL_185, HDMI_PHY_I2C_CPCE_CTRL);
imx_hdmi_phy_i2c_write(sc, GMPCTRL_185, HDMI_PHY_I2C_GMPCTRL);
} else {
imx_hdmi_phy_i2c_write(sc, CPCE_CTRL_370, HDMI_PHY_I2C_CPCE_CTRL);
imx_hdmi_phy_i2c_write(sc, GMPCTRL_370, HDMI_PHY_I2C_GMPCTRL);
}
/*
* Values described in TRM section 34.9.2 PLL/MPLL Generic
* Configuration Settings. Table 34-23.
*/
if (sc->sc_mode.dot_clock*1000 <= 54000000) {
imx_hdmi_phy_i2c_write(sc, 0x091c, HDMI_PHY_I2C_CURRCTRL);
} else if (sc->sc_mode.dot_clock*1000 <= 58400000) {
imx_hdmi_phy_i2c_write(sc, 0x091c, HDMI_PHY_I2C_CURRCTRL);
} else if (sc->sc_mode.dot_clock*1000 <= 72000000) {
imx_hdmi_phy_i2c_write(sc, 0x06dc, HDMI_PHY_I2C_CURRCTRL);
} else if (sc->sc_mode.dot_clock*1000 <= 74250000) {
imx_hdmi_phy_i2c_write(sc, 0x06dc, HDMI_PHY_I2C_CURRCTRL);
} else if (sc->sc_mode.dot_clock*1000 <= 118800000) {
imx_hdmi_phy_i2c_write(sc, 0x091c, HDMI_PHY_I2C_CURRCTRL);
} else if (sc->sc_mode.dot_clock*1000 <= 216000000) {
imx_hdmi_phy_i2c_write(sc, 0x06dc, HDMI_PHY_I2C_CURRCTRL);
} else {
panic("Unsupported mode\n");
}
imx_hdmi_phy_i2c_write(sc, 0x0000, HDMI_PHY_I2C_PLLPHBYCTRL);
imx_hdmi_phy_i2c_write(sc, MSM_CTRL_FB_CLK, HDMI_PHY_I2C_MSM_CTRL);
/* RESISTANCE TERM 133 Ohm */
imx_hdmi_phy_i2c_write(sc, TXTERM_133, HDMI_PHY_I2C_TXTERM);
/* REMOVE CLK TERM */
imx_hdmi_phy_i2c_write(sc, CKCALCTRL_OVERRIDE, HDMI_PHY_I2C_CKCALCTRL);
if (sc->sc_mode.dot_clock*1000 > 148500000) {
imx_hdmi_phy_i2c_write(sc,CKSYMTXCTRL_OVERRIDE | CKSYMTXCTRL_TX_SYMON |
CKSYMTXCTRL_TX_TRBON | CKSYMTXCTRL_TX_CK_SYMON, HDMI_PHY_I2C_CKSYMTXCTRL);
imx_hdmi_phy_i2c_write(sc, VLEVCTRL_TX_LVL(9) | VLEVCTRL_CK_LVL(9),
HDMI_PHY_I2C_VLEVCTRL);
} else {
imx_hdmi_phy_i2c_write(sc,CKSYMTXCTRL_OVERRIDE | CKSYMTXCTRL_TX_SYMON |
CKSYMTXCTRL_TX_TRAON | CKSYMTXCTRL_TX_CK_SYMON, HDMI_PHY_I2C_CKSYMTXCTRL);
imx_hdmi_phy_i2c_write(sc, VLEVCTRL_TX_LVL(13) | VLEVCTRL_CK_LVL(13),
HDMI_PHY_I2C_VLEVCTRL);
}
imx_hdmi_phy_enable_power(sc, 1);
/* toggle TMDS enable */
imx_hdmi_phy_enable_tmds(sc, 0);
imx_hdmi_phy_enable_tmds(sc, 1);
/* gen2 tx power on */
imx_hdmi_phy_gen2_txpwron(sc, 1);
imx_hdmi_phy_gen2_pddq(sc, 0);
/*Wait for PHY PLL lock */
msec = 4;
val = RD1(sc, HDMI_PHY_STAT0) & HDMI_PHY_TX_PHY_LOCK;
while (val == 0) {
DELAY(1000);
if (msec-- == 0) {
device_printf(sc->sc_dev, "PHY PLL not locked\n");
return (-1);
}
val = RD1(sc, HDMI_PHY_STAT0) & HDMI_PHY_TX_PHY_LOCK;
}
return true;
}
static void
imx_hdmi_phy_init(struct imx_hdmi_softc *sc)
{
int i;
/* HDMI Phy spec says to do the phy initialization sequence twice */
for (i = 0 ; i < 2 ; i++) {
imx_hdmi_phy_sel_data_en_pol(sc, 1);
imx_hdmi_phy_sel_interface_control(sc, 0);
imx_hdmi_phy_enable_tmds(sc, 0);
imx_hdmi_phy_enable_power(sc, 0);
/* Enable CSC */
imx_hdmi_phy_configure(sc);
}
}
static void
imx_hdmi_enable_video_path(struct imx_hdmi_softc *sc)
{
uint8_t clkdis;
/*
* Control period timing
* Values are minimal according to HDMI spec 1.4a
*/
WR1(sc, HDMI_FC_CTRLDUR, 12);
WR1(sc, HDMI_FC_EXCTRLDUR, 32);
WR1(sc, HDMI_FC_EXCTRLSPAC, 1);
/*
* Bits to fill data lines not used to transmit preamble
* for channels 0, 1, and 2 respectively
*/
WR1(sc, HDMI_FC_CH0PREAM, 0x0B);
WR1(sc, HDMI_FC_CH1PREAM, 0x16);
WR1(sc, HDMI_FC_CH2PREAM, 0x21);
/* Save CEC clock */
clkdis = RD1(sc, HDMI_MC_CLKDIS) & HDMI_MC_CLKDIS_CECCLK_DISABLE;
clkdis |= ~HDMI_MC_CLKDIS_CECCLK_DISABLE;
/* Enable pixel clock and tmds data path */
clkdis &= ~HDMI_MC_CLKDIS_PIXELCLK_DISABLE;
WR1(sc, HDMI_MC_CLKDIS, clkdis);
clkdis &= ~HDMI_MC_CLKDIS_TMDSCLK_DISABLE;
WR1(sc, HDMI_MC_CLKDIS, clkdis);
}
static void
imx_hdmi_video_packetize(struct imx_hdmi_softc *sc)
{
unsigned int color_depth = 0;
unsigned int remap_size = HDMI_VP_REMAP_YCC422_16BIT;
unsigned int output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_PP;
uint8_t val;
output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
color_depth = 0;
/* set the packetizer registers */
val = ((color_depth << HDMI_VP_PR_CD_COLOR_DEPTH_OFFSET) &
HDMI_VP_PR_CD_COLOR_DEPTH_MASK);
WR1(sc, HDMI_VP_PR_CD, val);
val = RD1(sc, HDMI_VP_STUFF);
val &= ~HDMI_VP_STUFF_PR_STUFFING_MASK;
val |= HDMI_VP_STUFF_PR_STUFFING_STUFFING_MODE;
WR1(sc, HDMI_VP_STUFF, val);
val = RD1(sc, HDMI_VP_CONF);
val &= ~(HDMI_VP_CONF_PR_EN_MASK |
HDMI_VP_CONF_BYPASS_SELECT_MASK);
val |= HDMI_VP_CONF_PR_EN_DISABLE |
HDMI_VP_CONF_BYPASS_SELECT_VID_PACKETIZER;
WR1(sc, HDMI_VP_CONF, val);
val = RD1(sc, HDMI_VP_STUFF);
val &= ~HDMI_VP_STUFF_IDEFAULT_PHASE_MASK;
val |= 1 << HDMI_VP_STUFF_IDEFAULT_PHASE_OFFSET;
WR1(sc, HDMI_VP_STUFF, val);
WR1(sc, HDMI_VP_REMAP, remap_size);
if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_PP) {
val = RD1(sc, HDMI_VP_CONF);
val &= ~(HDMI_VP_CONF_BYPASS_EN_MASK |
HDMI_VP_CONF_PP_EN_ENMASK |
HDMI_VP_CONF_YCC422_EN_MASK);
val |= HDMI_VP_CONF_BYPASS_EN_DISABLE |
HDMI_VP_CONF_PP_EN_ENABLE |
HDMI_VP_CONF_YCC422_EN_DISABLE;
WR1(sc, HDMI_VP_CONF, val);
} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422) {
val = RD1(sc, HDMI_VP_CONF);
val &= ~(HDMI_VP_CONF_BYPASS_EN_MASK |
HDMI_VP_CONF_PP_EN_ENMASK |
HDMI_VP_CONF_YCC422_EN_MASK);
val |= HDMI_VP_CONF_BYPASS_EN_DISABLE |
HDMI_VP_CONF_PP_EN_DISABLE |
HDMI_VP_CONF_YCC422_EN_ENABLE;
WR1(sc, HDMI_VP_CONF, val);
} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS) {
val = RD1(sc, HDMI_VP_CONF);
val &= ~(HDMI_VP_CONF_BYPASS_EN_MASK |
HDMI_VP_CONF_PP_EN_ENMASK |
HDMI_VP_CONF_YCC422_EN_MASK);
val |= HDMI_VP_CONF_BYPASS_EN_ENABLE |
HDMI_VP_CONF_PP_EN_DISABLE |
HDMI_VP_CONF_YCC422_EN_DISABLE;
WR1(sc, HDMI_VP_CONF, val);
} else {
return;
}
val = RD1(sc, HDMI_VP_STUFF);
val &= ~(HDMI_VP_STUFF_PP_STUFFING_MASK |
HDMI_VP_STUFF_YCC422_STUFFING_MASK);
val |= HDMI_VP_STUFF_PP_STUFFING_STUFFING_MODE |
HDMI_VP_STUFF_YCC422_STUFFING_STUFFING_MODE;
WR1(sc, HDMI_VP_STUFF, val);
val = RD1(sc, HDMI_VP_CONF);
val &= ~HDMI_VP_CONF_OUTPUT_SELECTOR_MASK;
val |= output_select;
WR1(sc, HDMI_VP_CONF, val);
}
static void
imx_hdmi_video_sample(struct imx_hdmi_softc *sc)
{
int color_format;
uint8_t val;
color_format = 0x01;
val = HDMI_TX_INVID0_INTERNAL_DE_GENERATOR_DISABLE |
((color_format << HDMI_TX_INVID0_VIDEO_MAPPING_OFFSET) &
HDMI_TX_INVID0_VIDEO_MAPPING_MASK);
WR1(sc, HDMI_TX_INVID0, val);
/* Enable TX stuffing: When DE is inactive, fix the output data to 0 */
val = HDMI_TX_INSTUFFING_BDBDATA_STUFFING_ENABLE |
HDMI_TX_INSTUFFING_RCRDATA_STUFFING_ENABLE |
HDMI_TX_INSTUFFING_GYDATA_STUFFING_ENABLE;
WR1(sc, HDMI_TX_INSTUFFING, val);
WR1(sc, HDMI_TX_GYDATA0, 0x0);
WR1(sc, HDMI_TX_GYDATA1, 0x0);
WR1(sc, HDMI_TX_RCRDATA0, 0x0);
WR1(sc, HDMI_TX_RCRDATA1, 0x0);
WR1(sc, HDMI_TX_BCBDATA0, 0x0);
WR1(sc, HDMI_TX_BCBDATA1, 0x0);
}
static int
imx_hdmi_set_mode(struct imx_hdmi_softc *sc)
{
imx_hdmi_disable_overflow_interrupts(sc);
imx_hdmi_av_composer(sc);
imx_hdmi_phy_init(sc);
imx_hdmi_enable_video_path(sc);
/* TODO: AVI infoframes */
imx_hdmi_video_packetize(sc);
/* TODO: imx_hdmi_video_csc(sc); */
imx_hdmi_video_sample(sc);
imx_hdmi_clear_overflow(sc);
return (0);
}
static int
hdmi_edid_read(struct imx_hdmi_softc *sc, uint8_t **edid, uint32_t *edid_len)
{
device_t i2c_dev;
int result;
uint8_t addr = 0;
struct iic_msg msg[] = {
{ 0, IIC_M_WR, 1, &addr },
{ 0, IIC_M_RD, EDID_LENGTH, NULL}
};
*edid = NULL;
*edid_len = 0;
if (sc->sc_i2c_xref == 0)
return (ENXIO);
i2c_dev = OF_device_from_xref(sc->sc_i2c_xref);
if (!i2c_dev) {
device_printf(sc->sc_dev,
"no actual device for \"ddc-i2c-bus\" property (handle=%x)\n", sc->sc_i2c_xref);
return (ENXIO);
}
device_printf(sc->sc_dev, "reading EDID from %s, addr %02x\n",
device_get_nameunit(i2c_dev), I2C_DDC_ADDR/2);
msg[0].slave = I2C_DDC_ADDR;
msg[1].slave = I2C_DDC_ADDR;
msg[1].buf = sc->sc_edid;
result = iicbus_request_bus(i2c_dev, sc->sc_dev, IIC_INTRWAIT);
if (result) {
device_printf(sc->sc_dev, "failed to request i2c bus: %d\n", result);
return (result);
}
result = iicbus_transfer(i2c_dev, msg, 2);
iicbus_release_bus(i2c_dev, sc->sc_dev);
if (result) {
device_printf(sc->sc_dev, "i2c transfer failed: %d\n", result);
return (result);
} else {
*edid_len = sc->sc_edid_len;
*edid = sc->sc_edid;
}
return (result);
}
static void
imx_hdmi_detect_cable(void *arg)
{
struct imx_hdmi_softc *sc;
sc = arg;
EVENTHANDLER_INVOKE(hdmi_event, sc->sc_dev, HDMI_EVENT_CONNECTED);
/* Finished with the interrupt hook */
config_intrhook_disestablish(&sc->sc_mode_hook);
}
static int
imx_hdmi_detach(device_t dev)
{
struct imx_hdmi_softc *sc;
sc = device_get_softc(dev);
if (sc->sc_mem_res != NULL)
bus_release_resource(dev, SYS_RES_MEMORY,
sc->sc_mem_rid, sc->sc_mem_res);
return (0);
}
static int
imx_hdmi_attach(device_t dev)
{
struct imx_hdmi_softc *sc;
int err;
uint32_t gpr3;
phandle_t node, i2c_xref;
sc = device_get_softc(dev);
sc->sc_dev = dev;
err = 0;
/* Allocate memory resources. */
sc->sc_mem_rid = 0;
sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_mem_rid,
RF_ACTIVE);
if (sc->sc_mem_res == NULL) {
device_printf(dev, "Cannot allocate memory resources\n");
err = ENXIO;
goto out;
}
sc->sc_mode_hook.ich_func = imx_hdmi_detect_cable;
sc->sc_mode_hook.ich_arg = sc;
if (config_intrhook_establish(&sc->sc_mode_hook) != 0) {
err = ENOMEM;
goto out;
}
node = ofw_bus_get_node(dev);
if (OF_getencprop(node, "ddc-i2c-bus", &i2c_xref, sizeof(i2c_xref)) == -1)
sc->sc_i2c_xref = 0;
else
sc->sc_i2c_xref = i2c_xref;
sc->sc_edid = malloc(EDID_LENGTH, M_DEVBUF, M_WAITOK | M_ZERO);
sc->sc_edid_len = EDID_LENGTH;
imx_ccm_hdmi_enable();
device_printf(sc->sc_dev, "HDMI controller %02x:%02x:%02x:%02x\n",
RD1(sc, HDMI_DESIGN_ID), RD1(sc, HDMI_REVISION_ID),
RD1(sc, HDMI_PRODUCT_ID0), RD1(sc, HDMI_PRODUCT_ID1));
gpr3 = imx_iomux_gpr_get(IOMUXC_GPR3);
gpr3 &= ~(IOMUXC_GPR3_HDMI_MASK);
gpr3 |= IOMUXC_GPR3_HDMI_IPU1_DI0;
imx_iomux_gpr_set(IOMUXC_GPR3, gpr3);
WR1(sc, HDMI_PHY_POL0, HDMI_PHY_HPD);
WR1(sc, HDMI_IH_PHY_STAT0, HDMI_IH_PHY_STAT0_HPD);
out:
if (err != 0)
imx_hdmi_detach(dev);
return (err);
}
static int
imx_hdmi_probe(device_t dev)
{
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
return (ENXIO);
device_set_desc(dev, "Freescale i.MX6 HDMI core");
return (BUS_PROBE_DEFAULT);
}
static int
imx_hdmi_get_edid(device_t dev, uint8_t **edid, uint32_t *edid_len)
{
return (hdmi_edid_read(device_get_softc(dev), edid, edid_len));
}
static int
imx_hdmi_set_videomode(device_t dev, const struct videomode *mode)
{
struct imx_hdmi_softc *sc;
sc = device_get_softc(dev);
memcpy(&sc->sc_mode, mode, sizeof(*mode));
imx_hdmi_set_mode(sc);
return (0);
}
static device_method_t imx_hdmi_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, imx_hdmi_probe),
DEVMETHOD(device_attach, imx_hdmi_attach),
DEVMETHOD(device_detach, imx_hdmi_detach),
/* HDMI methods */
DEVMETHOD(hdmi_get_edid, imx_hdmi_get_edid),
DEVMETHOD(hdmi_set_videomode, imx_hdmi_set_videomode),
DEVMETHOD_END
};
static driver_t imx_hdmi_driver = {
"hdmi",
imx_hdmi_methods,
sizeof(struct imx_hdmi_softc)
};
static devclass_t imx_hdmi_devclass;
DRIVER_MODULE(hdmi, simplebus, imx_hdmi_driver, imx_hdmi_devclass, 0, 0);