f-stack/dpdk/lib/librte_flow_classify/rte_flow_classify.c

682 lines
17 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <rte_string_fns.h>
#include <rte_compat.h>
#include <rte_flow_classify.h>
#include "rte_flow_classify_parse.h"
#include <rte_flow_driver.h>
#include <rte_table_acl.h>
#include <stdbool.h>
int librte_flow_classify_logtype;
static uint32_t unique_id = 1;
enum rte_flow_classify_table_type table_type
= RTE_FLOW_CLASSIFY_TABLE_TYPE_NONE;
struct rte_flow_classify_table_entry {
/* meta-data for classify rule */
uint32_t rule_id;
/* Flow action */
struct classify_action action;
};
struct rte_cls_table {
/* Input parameters */
struct rte_table_ops ops;
uint32_t entry_size;
enum rte_flow_classify_table_type type;
/* Handle to the low-level table object */
void *h_table;
};
#define RTE_FLOW_CLASSIFIER_MAX_NAME_SZ 256
struct rte_flow_classifier {
/* Input parameters */
char name[RTE_FLOW_CLASSIFIER_MAX_NAME_SZ];
int socket_id;
/* Internal */
/* ntuple_filter */
struct rte_eth_ntuple_filter ntuple_filter;
/* classifier tables */
struct rte_cls_table tables[RTE_FLOW_CLASSIFY_TABLE_MAX];
uint32_t table_mask;
uint32_t num_tables;
uint16_t nb_pkts;
struct rte_flow_classify_table_entry
*entries[RTE_PORT_IN_BURST_SIZE_MAX];
} __rte_cache_aligned;
enum {
PROTO_FIELD_IPV4,
SRC_FIELD_IPV4,
DST_FIELD_IPV4,
SRCP_FIELD_IPV4,
DSTP_FIELD_IPV4,
NUM_FIELDS_IPV4
};
struct acl_keys {
struct rte_table_acl_rule_add_params key_add; /* add key */
struct rte_table_acl_rule_delete_params key_del; /* delete key */
};
struct classify_rules {
enum rte_flow_classify_rule_type type;
union {
struct rte_flow_classify_ipv4_5tuple ipv4_5tuple;
} u;
};
struct rte_flow_classify_rule {
uint32_t id; /* unique ID of classify rule */
enum rte_flow_classify_table_type tbl_type; /* rule table */
struct classify_rules rules; /* union of rules */
union {
struct acl_keys key;
} u;
int key_found; /* rule key found in table */
struct rte_flow_classify_table_entry entry; /* rule meta data */
void *entry_ptr; /* handle to the table entry for rule meta data */
};
int
rte_flow_classify_validate(
struct rte_flow_classifier *cls,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct rte_flow_item *items;
parse_filter_t parse_filter;
uint32_t item_num = 0;
uint32_t i = 0;
int ret;
if (error == NULL)
return -EINVAL;
if (cls == NULL) {
RTE_FLOW_CLASSIFY_LOG(ERR,
"%s: rte_flow_classifier parameter is NULL\n",
__func__);
return -EINVAL;
}
if (!attr) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "NULL attribute.");
return -EINVAL;
}
if (!pattern) {
rte_flow_error_set(error,
EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "NULL pattern.");
return -EINVAL;
}
if (!actions) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "NULL action.");
return -EINVAL;
}
memset(&cls->ntuple_filter, 0, sizeof(cls->ntuple_filter));
/* Get the non-void item number of pattern */
while ((pattern + i)->type != RTE_FLOW_ITEM_TYPE_END) {
if ((pattern + i)->type != RTE_FLOW_ITEM_TYPE_VOID)
item_num++;
i++;
}
item_num++;
items = malloc(item_num * sizeof(struct rte_flow_item));
if (!items) {
rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "No memory for pattern items.");
return -ENOMEM;
}
memset(items, 0, item_num * sizeof(struct rte_flow_item));
classify_pattern_skip_void_item(items, pattern);
parse_filter = classify_find_parse_filter_func(items);
if (!parse_filter) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
pattern, "Unsupported pattern");
free(items);
return -EINVAL;
}
ret = parse_filter(attr, items, actions, &cls->ntuple_filter, error);
free(items);
return ret;
}
#define uint32_t_to_char(ip, a, b, c, d) do {\
*a = (unsigned char)(ip >> 24 & 0xff);\
*b = (unsigned char)(ip >> 16 & 0xff);\
*c = (unsigned char)(ip >> 8 & 0xff);\
*d = (unsigned char)(ip & 0xff);\
} while (0)
static inline void
print_acl_ipv4_key_add(struct rte_table_acl_rule_add_params *key)
{
unsigned char a, b, c, d;
printf("%s: 0x%02hhx/0x%hhx ", __func__,
key->field_value[PROTO_FIELD_IPV4].value.u8,
key->field_value[PROTO_FIELD_IPV4].mask_range.u8);
uint32_t_to_char(key->field_value[SRC_FIELD_IPV4].value.u32,
&a, &b, &c, &d);
printf(" %hhu.%hhu.%hhu.%hhu/0x%x ", a, b, c, d,
key->field_value[SRC_FIELD_IPV4].mask_range.u32);
uint32_t_to_char(key->field_value[DST_FIELD_IPV4].value.u32,
&a, &b, &c, &d);
printf("%hhu.%hhu.%hhu.%hhu/0x%x ", a, b, c, d,
key->field_value[DST_FIELD_IPV4].mask_range.u32);
printf("%hu : 0x%x %hu : 0x%x",
key->field_value[SRCP_FIELD_IPV4].value.u16,
key->field_value[SRCP_FIELD_IPV4].mask_range.u16,
key->field_value[DSTP_FIELD_IPV4].value.u16,
key->field_value[DSTP_FIELD_IPV4].mask_range.u16);
printf(" priority: 0x%x\n", key->priority);
}
static inline void
print_acl_ipv4_key_delete(struct rte_table_acl_rule_delete_params *key)
{
unsigned char a, b, c, d;
printf("%s: 0x%02hhx/0x%hhx ", __func__,
key->field_value[PROTO_FIELD_IPV4].value.u8,
key->field_value[PROTO_FIELD_IPV4].mask_range.u8);
uint32_t_to_char(key->field_value[SRC_FIELD_IPV4].value.u32,
&a, &b, &c, &d);
printf(" %hhu.%hhu.%hhu.%hhu/0x%x ", a, b, c, d,
key->field_value[SRC_FIELD_IPV4].mask_range.u32);
uint32_t_to_char(key->field_value[DST_FIELD_IPV4].value.u32,
&a, &b, &c, &d);
printf("%hhu.%hhu.%hhu.%hhu/0x%x ", a, b, c, d,
key->field_value[DST_FIELD_IPV4].mask_range.u32);
printf("%hu : 0x%x %hu : 0x%x\n",
key->field_value[SRCP_FIELD_IPV4].value.u16,
key->field_value[SRCP_FIELD_IPV4].mask_range.u16,
key->field_value[DSTP_FIELD_IPV4].value.u16,
key->field_value[DSTP_FIELD_IPV4].mask_range.u16);
}
static int
rte_flow_classifier_check_params(struct rte_flow_classifier_params *params)
{
if (params == NULL) {
RTE_FLOW_CLASSIFY_LOG(ERR,
"%s: Incorrect value for parameter params\n", __func__);
return -EINVAL;
}
/* name */
if (params->name == NULL) {
RTE_FLOW_CLASSIFY_LOG(ERR,
"%s: Incorrect value for parameter name\n", __func__);
return -EINVAL;
}
/* socket */
if (params->socket_id < 0) {
RTE_FLOW_CLASSIFY_LOG(ERR,
"%s: Incorrect value for parameter socket_id\n",
__func__);
return -EINVAL;
}
return 0;
}
struct rte_flow_classifier *
rte_flow_classifier_create(struct rte_flow_classifier_params *params)
{
struct rte_flow_classifier *cls;
int ret;
/* Check input parameters */
ret = rte_flow_classifier_check_params(params);
if (ret != 0) {
RTE_FLOW_CLASSIFY_LOG(ERR,
"%s: flow classifier params check failed (%d)\n",
__func__, ret);
return NULL;
}
/* Allocate memory for the flow classifier */
cls = rte_zmalloc_socket("FLOW_CLASSIFIER",
sizeof(struct rte_flow_classifier),
RTE_CACHE_LINE_SIZE, params->socket_id);
if (cls == NULL) {
RTE_FLOW_CLASSIFY_LOG(ERR,
"%s: flow classifier memory allocation failed\n",
__func__);
return NULL;
}
/* Save input parameters */
strlcpy(cls->name, params->name, RTE_FLOW_CLASSIFIER_MAX_NAME_SZ);
cls->socket_id = params->socket_id;
return cls;
}
static void
rte_flow_classify_table_free(struct rte_cls_table *table)
{
if (table->ops.f_free != NULL)
table->ops.f_free(table->h_table);
}
int
rte_flow_classifier_free(struct rte_flow_classifier *cls)
{
uint32_t i;
/* Check input parameters */
if (cls == NULL) {
RTE_FLOW_CLASSIFY_LOG(ERR,
"%s: rte_flow_classifier parameter is NULL\n",
__func__);
return -EINVAL;
}
/* Free tables */
for (i = 0; i < cls->num_tables; i++) {
struct rte_cls_table *table = &cls->tables[i];
rte_flow_classify_table_free(table);
}
/* Free flow classifier memory */
rte_free(cls);
return 0;
}
static int
rte_table_check_params(struct rte_flow_classifier *cls,
struct rte_flow_classify_table_params *params)
{
if (cls == NULL) {
RTE_FLOW_CLASSIFY_LOG(ERR,
"%s: flow classifier parameter is NULL\n",
__func__);
return -EINVAL;
}
if (params == NULL) {
RTE_FLOW_CLASSIFY_LOG(ERR, "%s: params parameter is NULL\n",
__func__);
return -EINVAL;
}
/* ops */
if (params->ops == NULL) {
RTE_FLOW_CLASSIFY_LOG(ERR, "%s: params->ops is NULL\n",
__func__);
return -EINVAL;
}
if (params->ops->f_create == NULL) {
RTE_FLOW_CLASSIFY_LOG(ERR,
"%s: f_create function pointer is NULL\n", __func__);
return -EINVAL;
}
if (params->ops->f_lookup == NULL) {
RTE_FLOW_CLASSIFY_LOG(ERR,
"%s: f_lookup function pointer is NULL\n", __func__);
return -EINVAL;
}
/* De we have room for one more table? */
if (cls->num_tables == RTE_FLOW_CLASSIFY_TABLE_MAX) {
RTE_FLOW_CLASSIFY_LOG(ERR,
"%s: Incorrect value for num_tables parameter\n",
__func__);
return -EINVAL;
}
return 0;
}
int
rte_flow_classify_table_create(struct rte_flow_classifier *cls,
struct rte_flow_classify_table_params *params)
{
struct rte_cls_table *table;
void *h_table;
uint32_t entry_size;
int ret;
/* Check input arguments */
ret = rte_table_check_params(cls, params);
if (ret != 0)
return ret;
/* calculate table entry size */
entry_size = sizeof(struct rte_flow_classify_table_entry);
/* Create the table */
h_table = params->ops->f_create(params->arg_create, cls->socket_id,
entry_size);
if (h_table == NULL) {
RTE_FLOW_CLASSIFY_LOG(ERR, "%s: Table creation failed\n",
__func__);
return -EINVAL;
}
/* Commit current table to the classifier */
table = &cls->tables[cls->num_tables];
table->type = params->type;
cls->num_tables++;
/* Save input parameters */
memcpy(&table->ops, params->ops, sizeof(struct rte_table_ops));
/* Initialize table internal data structure */
table->entry_size = entry_size;
table->h_table = h_table;
return 0;
}
static struct rte_flow_classify_rule *
allocate_acl_ipv4_5tuple_rule(struct rte_flow_classifier *cls)
{
struct rte_flow_classify_rule *rule;
int log_level;
rule = malloc(sizeof(struct rte_flow_classify_rule));
if (!rule)
return rule;
memset(rule, 0, sizeof(struct rte_flow_classify_rule));
rule->id = unique_id++;
rule->rules.type = RTE_FLOW_CLASSIFY_RULE_TYPE_IPV4_5TUPLE;
/* key add values */
rule->u.key.key_add.priority = cls->ntuple_filter.priority;
rule->u.key.key_add.field_value[PROTO_FIELD_IPV4].mask_range.u8 =
cls->ntuple_filter.proto_mask;
rule->u.key.key_add.field_value[PROTO_FIELD_IPV4].value.u8 =
cls->ntuple_filter.proto;
rule->rules.u.ipv4_5tuple.proto = cls->ntuple_filter.proto;
rule->rules.u.ipv4_5tuple.proto_mask = cls->ntuple_filter.proto_mask;
rule->u.key.key_add.field_value[SRC_FIELD_IPV4].mask_range.u32 =
cls->ntuple_filter.src_ip_mask;
rule->u.key.key_add.field_value[SRC_FIELD_IPV4].value.u32 =
cls->ntuple_filter.src_ip;
rule->rules.u.ipv4_5tuple.src_ip_mask = cls->ntuple_filter.src_ip_mask;
rule->rules.u.ipv4_5tuple.src_ip = cls->ntuple_filter.src_ip;
rule->u.key.key_add.field_value[DST_FIELD_IPV4].mask_range.u32 =
cls->ntuple_filter.dst_ip_mask;
rule->u.key.key_add.field_value[DST_FIELD_IPV4].value.u32 =
cls->ntuple_filter.dst_ip;
rule->rules.u.ipv4_5tuple.dst_ip_mask = cls->ntuple_filter.dst_ip_mask;
rule->rules.u.ipv4_5tuple.dst_ip = cls->ntuple_filter.dst_ip;
rule->u.key.key_add.field_value[SRCP_FIELD_IPV4].mask_range.u16 =
cls->ntuple_filter.src_port_mask;
rule->u.key.key_add.field_value[SRCP_FIELD_IPV4].value.u16 =
cls->ntuple_filter.src_port;
rule->rules.u.ipv4_5tuple.src_port_mask =
cls->ntuple_filter.src_port_mask;
rule->rules.u.ipv4_5tuple.src_port = cls->ntuple_filter.src_port;
rule->u.key.key_add.field_value[DSTP_FIELD_IPV4].mask_range.u16 =
cls->ntuple_filter.dst_port_mask;
rule->u.key.key_add.field_value[DSTP_FIELD_IPV4].value.u16 =
cls->ntuple_filter.dst_port;
rule->rules.u.ipv4_5tuple.dst_port_mask =
cls->ntuple_filter.dst_port_mask;
rule->rules.u.ipv4_5tuple.dst_port = cls->ntuple_filter.dst_port;
log_level = rte_log_get_level(librte_flow_classify_logtype);
if (log_level == RTE_LOG_DEBUG)
print_acl_ipv4_key_add(&rule->u.key.key_add);
/* key delete values */
memcpy(&rule->u.key.key_del.field_value[PROTO_FIELD_IPV4],
&rule->u.key.key_add.field_value[PROTO_FIELD_IPV4],
NUM_FIELDS_IPV4 * sizeof(struct rte_acl_field));
if (log_level == RTE_LOG_DEBUG)
print_acl_ipv4_key_delete(&rule->u.key.key_del);
return rule;
}
struct rte_flow_classify_rule *
rte_flow_classify_table_entry_add(struct rte_flow_classifier *cls,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
int *key_found,
struct rte_flow_error *error)
{
struct rte_flow_classify_rule *rule;
struct rte_flow_classify_table_entry *table_entry;
struct classify_action *action;
uint32_t i;
int ret;
if (!error)
return NULL;
if (key_found == NULL) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, "NULL key_found.");
return NULL;
}
/* parse attr, pattern and actions */
ret = rte_flow_classify_validate(cls, attr, pattern, actions, error);
if (ret < 0)
return NULL;
switch (table_type) {
case RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE:
rule = allocate_acl_ipv4_5tuple_rule(cls);
if (!rule)
return NULL;
rule->tbl_type = table_type;
cls->table_mask |= table_type;
break;
default:
return NULL;
}
action = classify_get_flow_action();
table_entry = &rule->entry;
table_entry->rule_id = rule->id;
table_entry->action.action_mask = action->action_mask;
/* Copy actions */
if (action->action_mask & (1LLU << RTE_FLOW_ACTION_TYPE_COUNT)) {
memcpy(&table_entry->action.act.counter, &action->act.counter,
sizeof(table_entry->action.act.counter));
}
if (action->action_mask & (1LLU << RTE_FLOW_ACTION_TYPE_MARK)) {
memcpy(&table_entry->action.act.mark, &action->act.mark,
sizeof(table_entry->action.act.mark));
}
for (i = 0; i < cls->num_tables; i++) {
struct rte_cls_table *table = &cls->tables[i];
if (table->type == table_type) {
if (table->ops.f_add != NULL) {
ret = table->ops.f_add(
table->h_table,
&rule->u.key.key_add,
&rule->entry,
&rule->key_found,
&rule->entry_ptr);
if (ret) {
free(rule);
return NULL;
}
*key_found = rule->key_found;
}
return rule;
}
}
free(rule);
return NULL;
}
int
rte_flow_classify_table_entry_delete(struct rte_flow_classifier *cls,
struct rte_flow_classify_rule *rule)
{
uint32_t i;
int ret = -EINVAL;
if (!cls || !rule)
return ret;
enum rte_flow_classify_table_type tbl_type = rule->tbl_type;
for (i = 0; i < cls->num_tables; i++) {
struct rte_cls_table *table = &cls->tables[i];
if (table->type == tbl_type) {
if (table->ops.f_delete != NULL) {
ret = table->ops.f_delete(table->h_table,
&rule->u.key.key_del,
&rule->key_found,
&rule->entry);
if (ret == 0)
free(rule);
return ret;
}
}
}
return ret;
}
static int
flow_classifier_lookup(struct rte_flow_classifier *cls,
struct rte_cls_table *table,
struct rte_mbuf **pkts,
const uint16_t nb_pkts)
{
int ret = -EINVAL;
uint64_t pkts_mask;
uint64_t lookup_hit_mask;
pkts_mask = RTE_LEN2MASK(nb_pkts, uint64_t);
ret = table->ops.f_lookup(table->h_table,
pkts, pkts_mask, &lookup_hit_mask,
(void **)cls->entries);
if (!ret && lookup_hit_mask)
cls->nb_pkts = nb_pkts;
else
cls->nb_pkts = 0;
return ret;
}
static int
action_apply(struct rte_flow_classifier *cls,
struct rte_flow_classify_rule *rule,
struct rte_flow_classify_stats *stats)
{
struct rte_flow_classify_ipv4_5tuple_stats *ntuple_stats;
struct rte_flow_classify_table_entry *entry = &rule->entry;
uint64_t count = 0;
uint32_t action_mask = entry->action.action_mask;
int i, ret = -EINVAL;
if (action_mask & (1LLU << RTE_FLOW_ACTION_TYPE_COUNT)) {
for (i = 0; i < cls->nb_pkts; i++) {
if (rule->id == cls->entries[i]->rule_id)
count++;
}
if (count) {
ret = 0;
ntuple_stats = stats->stats;
ntuple_stats->counter1 = count;
ntuple_stats->ipv4_5tuple = rule->rules.u.ipv4_5tuple;
}
}
return ret;
}
int
rte_flow_classifier_query(struct rte_flow_classifier *cls,
struct rte_mbuf **pkts,
const uint16_t nb_pkts,
struct rte_flow_classify_rule *rule,
struct rte_flow_classify_stats *stats)
{
enum rte_flow_classify_table_type tbl_type;
uint32_t i;
int ret = -EINVAL;
if (!cls || !rule || !stats || !pkts || nb_pkts == 0)
return ret;
tbl_type = rule->tbl_type;
for (i = 0; i < cls->num_tables; i++) {
struct rte_cls_table *table = &cls->tables[i];
if (table->type == tbl_type) {
ret = flow_classifier_lookup(cls, table,
pkts, nb_pkts);
if (!ret) {
ret = action_apply(cls, rule, stats);
return ret;
}
}
}
return ret;
}
RTE_INIT(librte_flow_classify_init_log)
{
librte_flow_classify_logtype =
rte_log_register("lib.flow_classify");
if (librte_flow_classify_logtype >= 0)
rte_log_set_level(librte_flow_classify_logtype, RTE_LOG_INFO);
}