mirror of https://github.com/F-Stack/f-stack.git
380 lines
9.9 KiB
C
380 lines
9.9 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2016-2017 Intel Corporation
|
|
*/
|
|
|
|
#include <rte_malloc.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_crypto.h>
|
|
#include <rte_cryptodev.h>
|
|
|
|
#include "cperf_test_latency.h"
|
|
#include "cperf_ops.h"
|
|
#include "cperf_test_common.h"
|
|
|
|
struct cperf_op_result {
|
|
uint64_t tsc_start;
|
|
uint64_t tsc_end;
|
|
enum rte_crypto_op_status status;
|
|
};
|
|
|
|
struct cperf_latency_ctx {
|
|
uint8_t dev_id;
|
|
uint16_t qp_id;
|
|
uint8_t lcore_id;
|
|
|
|
struct rte_mempool *pool;
|
|
|
|
struct rte_cryptodev_sym_session *sess;
|
|
|
|
cperf_populate_ops_t populate_ops;
|
|
|
|
uint32_t src_buf_offset;
|
|
uint32_t dst_buf_offset;
|
|
|
|
const struct cperf_options *options;
|
|
const struct cperf_test_vector *test_vector;
|
|
struct cperf_op_result *res;
|
|
};
|
|
|
|
struct priv_op_data {
|
|
struct cperf_op_result *result;
|
|
};
|
|
|
|
#define max(a, b) (a > b ? (uint64_t)a : (uint64_t)b)
|
|
#define min(a, b) (a < b ? (uint64_t)a : (uint64_t)b)
|
|
|
|
static void
|
|
cperf_latency_test_free(struct cperf_latency_ctx *ctx)
|
|
{
|
|
if (ctx) {
|
|
if (ctx->sess) {
|
|
rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
|
|
rte_cryptodev_sym_session_free(ctx->sess);
|
|
}
|
|
|
|
if (ctx->pool)
|
|
rte_mempool_free(ctx->pool);
|
|
|
|
rte_free(ctx->res);
|
|
rte_free(ctx);
|
|
}
|
|
}
|
|
|
|
void *
|
|
cperf_latency_test_constructor(struct rte_mempool *sess_mp,
|
|
struct rte_mempool *sess_priv_mp,
|
|
uint8_t dev_id, uint16_t qp_id,
|
|
const struct cperf_options *options,
|
|
const struct cperf_test_vector *test_vector,
|
|
const struct cperf_op_fns *op_fns)
|
|
{
|
|
struct cperf_latency_ctx *ctx = NULL;
|
|
size_t extra_op_priv_size = sizeof(struct priv_op_data);
|
|
|
|
ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0);
|
|
if (ctx == NULL)
|
|
goto err;
|
|
|
|
ctx->dev_id = dev_id;
|
|
ctx->qp_id = qp_id;
|
|
|
|
ctx->populate_ops = op_fns->populate_ops;
|
|
ctx->options = options;
|
|
ctx->test_vector = test_vector;
|
|
|
|
/* IV goes at the end of the crypto operation */
|
|
uint16_t iv_offset = sizeof(struct rte_crypto_op) +
|
|
sizeof(struct rte_crypto_sym_op) +
|
|
sizeof(struct cperf_op_result *);
|
|
|
|
ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
|
|
test_vector, iv_offset);
|
|
if (ctx->sess == NULL)
|
|
goto err;
|
|
|
|
if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id,
|
|
extra_op_priv_size,
|
|
&ctx->src_buf_offset, &ctx->dst_buf_offset,
|
|
&ctx->pool) < 0)
|
|
goto err;
|
|
|
|
ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) *
|
|
ctx->options->total_ops, 0);
|
|
|
|
if (ctx->res == NULL)
|
|
goto err;
|
|
|
|
return ctx;
|
|
err:
|
|
cperf_latency_test_free(ctx);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline void
|
|
store_timestamp(struct rte_crypto_op *op, uint64_t timestamp)
|
|
{
|
|
struct priv_op_data *priv_data;
|
|
|
|
priv_data = (struct priv_op_data *) (op->sym + 1);
|
|
priv_data->result->status = op->status;
|
|
priv_data->result->tsc_end = timestamp;
|
|
}
|
|
|
|
int
|
|
cperf_latency_test_runner(void *arg)
|
|
{
|
|
struct cperf_latency_ctx *ctx = arg;
|
|
uint16_t test_burst_size;
|
|
uint8_t burst_size_idx = 0;
|
|
uint32_t imix_idx = 0;
|
|
|
|
static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);
|
|
|
|
if (ctx == NULL)
|
|
return 0;
|
|
|
|
struct rte_crypto_op *ops[ctx->options->max_burst_size];
|
|
struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
|
|
uint64_t i;
|
|
struct priv_op_data *priv_data;
|
|
|
|
uint32_t lcore = rte_lcore_id();
|
|
|
|
#ifdef CPERF_LINEARIZATION_ENABLE
|
|
struct rte_cryptodev_info dev_info;
|
|
int linearize = 0;
|
|
|
|
/* Check if source mbufs require coalescing */
|
|
if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
|
|
rte_cryptodev_info_get(ctx->dev_id, &dev_info);
|
|
if ((dev_info.feature_flags &
|
|
RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
|
|
linearize = 1;
|
|
}
|
|
#endif /* CPERF_LINEARIZATION_ENABLE */
|
|
|
|
ctx->lcore_id = lcore;
|
|
|
|
/* Warm up the host CPU before starting the test */
|
|
for (i = 0; i < ctx->options->total_ops; i++)
|
|
rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
|
|
|
|
/* Get first size from range or list */
|
|
if (ctx->options->inc_burst_size != 0)
|
|
test_burst_size = ctx->options->min_burst_size;
|
|
else
|
|
test_burst_size = ctx->options->burst_size_list[0];
|
|
|
|
uint16_t iv_offset = sizeof(struct rte_crypto_op) +
|
|
sizeof(struct rte_crypto_sym_op) +
|
|
sizeof(struct cperf_op_result *);
|
|
|
|
while (test_burst_size <= ctx->options->max_burst_size) {
|
|
uint64_t ops_enqd = 0, ops_deqd = 0;
|
|
uint64_t b_idx = 0;
|
|
|
|
uint64_t tsc_val, tsc_end, tsc_start;
|
|
uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0;
|
|
uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0;
|
|
uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0;
|
|
|
|
while (enqd_tot < ctx->options->total_ops) {
|
|
|
|
uint16_t burst_size = ((enqd_tot + test_burst_size)
|
|
<= ctx->options->total_ops) ?
|
|
test_burst_size :
|
|
ctx->options->total_ops -
|
|
enqd_tot;
|
|
|
|
/* Allocate objects containing crypto operations and mbufs */
|
|
if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
|
|
burst_size) != 0) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Failed to allocate more crypto operations "
|
|
"from the crypto operation pool.\n"
|
|
"Consider increasing the pool size "
|
|
"with --pool-sz\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Setup crypto op, attach mbuf etc */
|
|
(ctx->populate_ops)(ops, ctx->src_buf_offset,
|
|
ctx->dst_buf_offset,
|
|
burst_size, ctx->sess, ctx->options,
|
|
ctx->test_vector, iv_offset,
|
|
&imix_idx);
|
|
|
|
tsc_start = rte_rdtsc_precise();
|
|
|
|
#ifdef CPERF_LINEARIZATION_ENABLE
|
|
if (linearize) {
|
|
/* PMD doesn't support scatter-gather and source buffer
|
|
* is segmented.
|
|
* We need to linearize it before enqueuing.
|
|
*/
|
|
for (i = 0; i < burst_size; i++)
|
|
rte_pktmbuf_linearize(ops[i]->sym->m_src);
|
|
}
|
|
#endif /* CPERF_LINEARIZATION_ENABLE */
|
|
|
|
/* Enqueue burst of ops on crypto device */
|
|
ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops, burst_size);
|
|
|
|
/* Dequeue processed burst of ops from crypto device */
|
|
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops_processed, test_burst_size);
|
|
|
|
tsc_end = rte_rdtsc_precise();
|
|
|
|
/* Free memory for not enqueued operations */
|
|
if (ops_enqd != burst_size)
|
|
rte_mempool_put_bulk(ctx->pool,
|
|
(void **)&ops[ops_enqd],
|
|
burst_size - ops_enqd);
|
|
|
|
for (i = 0; i < ops_enqd; i++) {
|
|
ctx->res[tsc_idx].tsc_start = tsc_start;
|
|
/*
|
|
* Private data structure starts after the end of the
|
|
* rte_crypto_sym_op structure.
|
|
*/
|
|
priv_data = (struct priv_op_data *) (ops[i]->sym + 1);
|
|
priv_data->result = (void *)&ctx->res[tsc_idx];
|
|
tsc_idx++;
|
|
}
|
|
|
|
if (likely(ops_deqd)) {
|
|
/* Free crypto ops so they can be reused. */
|
|
for (i = 0; i < ops_deqd; i++)
|
|
store_timestamp(ops_processed[i], tsc_end);
|
|
|
|
rte_mempool_put_bulk(ctx->pool,
|
|
(void **)ops_processed, ops_deqd);
|
|
|
|
deqd_tot += ops_deqd;
|
|
deqd_max = max(ops_deqd, deqd_max);
|
|
deqd_min = min(ops_deqd, deqd_min);
|
|
}
|
|
|
|
enqd_tot += ops_enqd;
|
|
enqd_max = max(ops_enqd, enqd_max);
|
|
enqd_min = min(ops_enqd, enqd_min);
|
|
|
|
b_idx++;
|
|
}
|
|
|
|
/* Dequeue any operations still in the crypto device */
|
|
while (deqd_tot < ctx->options->total_ops) {
|
|
/* Sending 0 length burst to flush sw crypto device */
|
|
rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
|
|
|
|
/* dequeue burst */
|
|
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops_processed, test_burst_size);
|
|
|
|
tsc_end = rte_rdtsc_precise();
|
|
|
|
if (ops_deqd != 0) {
|
|
for (i = 0; i < ops_deqd; i++)
|
|
store_timestamp(ops_processed[i], tsc_end);
|
|
|
|
rte_mempool_put_bulk(ctx->pool,
|
|
(void **)ops_processed, ops_deqd);
|
|
|
|
deqd_tot += ops_deqd;
|
|
deqd_max = max(ops_deqd, deqd_max);
|
|
deqd_min = min(ops_deqd, deqd_min);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < tsc_idx; i++) {
|
|
tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start;
|
|
tsc_max = max(tsc_val, tsc_max);
|
|
tsc_min = min(tsc_val, tsc_min);
|
|
tsc_tot += tsc_val;
|
|
}
|
|
|
|
double time_tot, time_avg, time_max, time_min;
|
|
|
|
const uint64_t tunit = 1000000; /* us */
|
|
const uint64_t tsc_hz = rte_get_tsc_hz();
|
|
|
|
uint64_t enqd_avg = enqd_tot / b_idx;
|
|
uint64_t deqd_avg = deqd_tot / b_idx;
|
|
uint64_t tsc_avg = tsc_tot / tsc_idx;
|
|
|
|
time_tot = tunit*(double)(tsc_tot) / tsc_hz;
|
|
time_avg = tunit*(double)(tsc_avg) / tsc_hz;
|
|
time_max = tunit*(double)(tsc_max) / tsc_hz;
|
|
time_min = tunit*(double)(tsc_min) / tsc_hz;
|
|
|
|
if (ctx->options->csv) {
|
|
if (rte_atomic16_test_and_set(&display_once))
|
|
printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, "
|
|
"cycles, time (us)");
|
|
|
|
for (i = 0; i < ctx->options->total_ops; i++) {
|
|
|
|
printf("\n%u,%u,%u,%"PRIu64",%"PRIu64",%.3f",
|
|
ctx->lcore_id, ctx->options->test_buffer_size,
|
|
test_burst_size, i + 1,
|
|
ctx->res[i].tsc_end - ctx->res[i].tsc_start,
|
|
tunit * (double) (ctx->res[i].tsc_end
|
|
- ctx->res[i].tsc_start)
|
|
/ tsc_hz);
|
|
|
|
}
|
|
} else {
|
|
printf("\n# Device %d on lcore %u\n", ctx->dev_id,
|
|
ctx->lcore_id);
|
|
printf("\n# total operations: %u", ctx->options->total_ops);
|
|
printf("\n# Buffer size: %u", ctx->options->test_buffer_size);
|
|
printf("\n# Burst size: %u", test_burst_size);
|
|
printf("\n# Number of bursts: %"PRIu64,
|
|
b_idx);
|
|
|
|
printf("\n#");
|
|
printf("\n# \t Total\t Average\t "
|
|
"Maximum\t Minimum");
|
|
printf("\n# enqueued\t%12"PRIu64"\t%10"PRIu64"\t"
|
|
"%10"PRIu64"\t%10"PRIu64, enqd_tot,
|
|
enqd_avg, enqd_max, enqd_min);
|
|
printf("\n# dequeued\t%12"PRIu64"\t%10"PRIu64"\t"
|
|
"%10"PRIu64"\t%10"PRIu64, deqd_tot,
|
|
deqd_avg, deqd_max, deqd_min);
|
|
printf("\n# cycles\t%12"PRIu64"\t%10"PRIu64"\t"
|
|
"%10"PRIu64"\t%10"PRIu64, tsc_tot,
|
|
tsc_avg, tsc_max, tsc_min);
|
|
printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f",
|
|
time_tot, time_avg, time_max, time_min);
|
|
printf("\n\n");
|
|
|
|
}
|
|
|
|
/* Get next size from range or list */
|
|
if (ctx->options->inc_burst_size != 0)
|
|
test_burst_size += ctx->options->inc_burst_size;
|
|
else {
|
|
if (++burst_size_idx == ctx->options->burst_size_count)
|
|
break;
|
|
test_burst_size =
|
|
ctx->options->burst_size_list[burst_size_idx];
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
cperf_latency_test_destructor(void *arg)
|
|
{
|
|
struct cperf_latency_ctx *ctx = arg;
|
|
|
|
if (ctx == NULL)
|
|
return;
|
|
|
|
cperf_latency_test_free(ctx);
|
|
}
|