mirror of https://github.com/F-Stack/f-stack.git
488 lines
14 KiB
C
488 lines
14 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <sys/queue.h>
|
|
#include <string.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_eal_memconfig.h>
|
|
#include "rte_distributor.h"
|
|
|
|
#define NO_FLAGS 0
|
|
#define RTE_DISTRIB_PREFIX "DT_"
|
|
|
|
/* we will use the bottom four bits of pointer for flags, shifting out
|
|
* the top four bits to make room (since a 64-bit pointer actually only uses
|
|
* 48 bits). An arithmetic-right-shift will then appropriately restore the
|
|
* original pointer value with proper sign extension into the top bits. */
|
|
#define RTE_DISTRIB_FLAG_BITS 4
|
|
#define RTE_DISTRIB_FLAGS_MASK (0x0F)
|
|
#define RTE_DISTRIB_NO_BUF 0 /**< empty flags: no buffer requested */
|
|
#define RTE_DISTRIB_GET_BUF (1) /**< worker requests a buffer, returns old */
|
|
#define RTE_DISTRIB_RETURN_BUF (2) /**< worker returns a buffer, no request */
|
|
|
|
#define RTE_DISTRIB_BACKLOG_SIZE 8
|
|
#define RTE_DISTRIB_BACKLOG_MASK (RTE_DISTRIB_BACKLOG_SIZE - 1)
|
|
|
|
#define RTE_DISTRIB_MAX_RETURNS 128
|
|
#define RTE_DISTRIB_RETURNS_MASK (RTE_DISTRIB_MAX_RETURNS - 1)
|
|
|
|
/**
|
|
* Maximum number of workers allowed.
|
|
* Be aware of increasing the limit, becaus it is limited by how we track
|
|
* in-flight tags. See @in_flight_bitmask and @rte_distributor_process
|
|
*/
|
|
#define RTE_DISTRIB_MAX_WORKERS 64
|
|
|
|
/**
|
|
* Buffer structure used to pass the pointer data between cores. This is cache
|
|
* line aligned, but to improve performance and prevent adjacent cache-line
|
|
* prefetches of buffers for other workers, e.g. when worker 1's buffer is on
|
|
* the next cache line to worker 0, we pad this out to three cache lines.
|
|
* Only 64-bits of the memory is actually used though.
|
|
*/
|
|
union rte_distributor_buffer {
|
|
volatile int64_t bufptr64;
|
|
char pad[RTE_CACHE_LINE_SIZE*3];
|
|
} __rte_cache_aligned;
|
|
|
|
struct rte_distributor_backlog {
|
|
unsigned start;
|
|
unsigned count;
|
|
int64_t pkts[RTE_DISTRIB_BACKLOG_SIZE];
|
|
};
|
|
|
|
struct rte_distributor_returned_pkts {
|
|
unsigned start;
|
|
unsigned count;
|
|
struct rte_mbuf *mbufs[RTE_DISTRIB_MAX_RETURNS];
|
|
};
|
|
|
|
struct rte_distributor {
|
|
TAILQ_ENTRY(rte_distributor) next; /**< Next in list. */
|
|
|
|
char name[RTE_DISTRIBUTOR_NAMESIZE]; /**< Name of the ring. */
|
|
unsigned num_workers; /**< Number of workers polling */
|
|
|
|
uint32_t in_flight_tags[RTE_DISTRIB_MAX_WORKERS];
|
|
/**< Tracks the tag being processed per core */
|
|
uint64_t in_flight_bitmask;
|
|
/**< on/off bits for in-flight tags.
|
|
* Note that if RTE_DISTRIB_MAX_WORKERS is larger than 64 then
|
|
* the bitmask has to expand.
|
|
*/
|
|
|
|
struct rte_distributor_backlog backlog[RTE_DISTRIB_MAX_WORKERS];
|
|
|
|
union rte_distributor_buffer bufs[RTE_DISTRIB_MAX_WORKERS];
|
|
|
|
struct rte_distributor_returned_pkts returns;
|
|
};
|
|
|
|
TAILQ_HEAD(rte_distributor_list, rte_distributor);
|
|
|
|
static struct rte_tailq_elem rte_distributor_tailq = {
|
|
.name = "RTE_DISTRIBUTOR",
|
|
};
|
|
EAL_REGISTER_TAILQ(rte_distributor_tailq)
|
|
|
|
/**** APIs called by workers ****/
|
|
|
|
void
|
|
rte_distributor_request_pkt(struct rte_distributor *d,
|
|
unsigned worker_id, struct rte_mbuf *oldpkt)
|
|
{
|
|
union rte_distributor_buffer *buf = &d->bufs[worker_id];
|
|
int64_t req = (((int64_t)(uintptr_t)oldpkt) << RTE_DISTRIB_FLAG_BITS)
|
|
| RTE_DISTRIB_GET_BUF;
|
|
while (unlikely(buf->bufptr64 & RTE_DISTRIB_FLAGS_MASK))
|
|
rte_pause();
|
|
buf->bufptr64 = req;
|
|
}
|
|
|
|
struct rte_mbuf *
|
|
rte_distributor_poll_pkt(struct rte_distributor *d,
|
|
unsigned worker_id)
|
|
{
|
|
union rte_distributor_buffer *buf = &d->bufs[worker_id];
|
|
if (buf->bufptr64 & RTE_DISTRIB_GET_BUF)
|
|
return NULL;
|
|
|
|
/* since bufptr64 is signed, this should be an arithmetic shift */
|
|
int64_t ret = buf->bufptr64 >> RTE_DISTRIB_FLAG_BITS;
|
|
return (struct rte_mbuf *)((uintptr_t)ret);
|
|
}
|
|
|
|
struct rte_mbuf *
|
|
rte_distributor_get_pkt(struct rte_distributor *d,
|
|
unsigned worker_id, struct rte_mbuf *oldpkt)
|
|
{
|
|
struct rte_mbuf *ret;
|
|
rte_distributor_request_pkt(d, worker_id, oldpkt);
|
|
while ((ret = rte_distributor_poll_pkt(d, worker_id)) == NULL)
|
|
rte_pause();
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
rte_distributor_return_pkt(struct rte_distributor *d,
|
|
unsigned worker_id, struct rte_mbuf *oldpkt)
|
|
{
|
|
union rte_distributor_buffer *buf = &d->bufs[worker_id];
|
|
uint64_t req = (((int64_t)(uintptr_t)oldpkt) << RTE_DISTRIB_FLAG_BITS)
|
|
| RTE_DISTRIB_RETURN_BUF;
|
|
buf->bufptr64 = req;
|
|
return 0;
|
|
}
|
|
|
|
/**** APIs called on distributor core ***/
|
|
|
|
/* as name suggests, adds a packet to the backlog for a particular worker */
|
|
static int
|
|
add_to_backlog(struct rte_distributor_backlog *bl, int64_t item)
|
|
{
|
|
if (bl->count == RTE_DISTRIB_BACKLOG_SIZE)
|
|
return -1;
|
|
|
|
bl->pkts[(bl->start + bl->count++) & (RTE_DISTRIB_BACKLOG_MASK)]
|
|
= item;
|
|
return 0;
|
|
}
|
|
|
|
/* takes the next packet for a worker off the backlog */
|
|
static int64_t
|
|
backlog_pop(struct rte_distributor_backlog *bl)
|
|
{
|
|
bl->count--;
|
|
return bl->pkts[bl->start++ & RTE_DISTRIB_BACKLOG_MASK];
|
|
}
|
|
|
|
/* stores a packet returned from a worker inside the returns array */
|
|
static inline void
|
|
store_return(uintptr_t oldbuf, struct rte_distributor *d,
|
|
unsigned *ret_start, unsigned *ret_count)
|
|
{
|
|
/* store returns in a circular buffer - code is branch-free */
|
|
d->returns.mbufs[(*ret_start + *ret_count) & RTE_DISTRIB_RETURNS_MASK]
|
|
= (void *)oldbuf;
|
|
*ret_start += (*ret_count == RTE_DISTRIB_RETURNS_MASK) & !!(oldbuf);
|
|
*ret_count += (*ret_count != RTE_DISTRIB_RETURNS_MASK) & !!(oldbuf);
|
|
}
|
|
|
|
static inline void
|
|
handle_worker_shutdown(struct rte_distributor *d, unsigned wkr)
|
|
{
|
|
d->in_flight_tags[wkr] = 0;
|
|
d->in_flight_bitmask &= ~(1UL << wkr);
|
|
d->bufs[wkr].bufptr64 = 0;
|
|
if (unlikely(d->backlog[wkr].count != 0)) {
|
|
/* On return of a packet, we need to move the
|
|
* queued packets for this core elsewhere.
|
|
* Easiest solution is to set things up for
|
|
* a recursive call. That will cause those
|
|
* packets to be queued up for the next free
|
|
* core, i.e. it will return as soon as a
|
|
* core becomes free to accept the first
|
|
* packet, as subsequent ones will be added to
|
|
* the backlog for that core.
|
|
*/
|
|
struct rte_mbuf *pkts[RTE_DISTRIB_BACKLOG_SIZE];
|
|
unsigned i;
|
|
struct rte_distributor_backlog *bl = &d->backlog[wkr];
|
|
|
|
for (i = 0; i < bl->count; i++) {
|
|
unsigned idx = (bl->start + i) &
|
|
RTE_DISTRIB_BACKLOG_MASK;
|
|
pkts[i] = (void *)((uintptr_t)(bl->pkts[idx] >>
|
|
RTE_DISTRIB_FLAG_BITS));
|
|
}
|
|
/* recursive call.
|
|
* Note that the tags were set before first level call
|
|
* to rte_distributor_process.
|
|
*/
|
|
rte_distributor_process(d, pkts, i);
|
|
bl->count = bl->start = 0;
|
|
}
|
|
}
|
|
|
|
/* this function is called when process() fn is called without any new
|
|
* packets. It goes through all the workers and clears any returned packets
|
|
* to do a partial flush.
|
|
*/
|
|
static int
|
|
process_returns(struct rte_distributor *d)
|
|
{
|
|
unsigned wkr;
|
|
unsigned flushed = 0;
|
|
unsigned ret_start = d->returns.start,
|
|
ret_count = d->returns.count;
|
|
|
|
for (wkr = 0; wkr < d->num_workers; wkr++) {
|
|
|
|
const int64_t data = d->bufs[wkr].bufptr64;
|
|
uintptr_t oldbuf = 0;
|
|
|
|
if (data & RTE_DISTRIB_GET_BUF) {
|
|
flushed++;
|
|
if (d->backlog[wkr].count)
|
|
d->bufs[wkr].bufptr64 =
|
|
backlog_pop(&d->backlog[wkr]);
|
|
else {
|
|
d->bufs[wkr].bufptr64 = RTE_DISTRIB_GET_BUF;
|
|
d->in_flight_tags[wkr] = 0;
|
|
d->in_flight_bitmask &= ~(1UL << wkr);
|
|
}
|
|
oldbuf = data >> RTE_DISTRIB_FLAG_BITS;
|
|
} else if (data & RTE_DISTRIB_RETURN_BUF) {
|
|
handle_worker_shutdown(d, wkr);
|
|
oldbuf = data >> RTE_DISTRIB_FLAG_BITS;
|
|
}
|
|
|
|
store_return(oldbuf, d, &ret_start, &ret_count);
|
|
}
|
|
|
|
d->returns.start = ret_start;
|
|
d->returns.count = ret_count;
|
|
|
|
return flushed;
|
|
}
|
|
|
|
/* process a set of packets to distribute them to workers */
|
|
int
|
|
rte_distributor_process(struct rte_distributor *d,
|
|
struct rte_mbuf **mbufs, unsigned num_mbufs)
|
|
{
|
|
unsigned next_idx = 0;
|
|
unsigned wkr = 0;
|
|
struct rte_mbuf *next_mb = NULL;
|
|
int64_t next_value = 0;
|
|
uint32_t new_tag = 0;
|
|
unsigned ret_start = d->returns.start,
|
|
ret_count = d->returns.count;
|
|
|
|
if (unlikely(num_mbufs == 0))
|
|
return process_returns(d);
|
|
|
|
while (next_idx < num_mbufs || next_mb != NULL) {
|
|
|
|
int64_t data = d->bufs[wkr].bufptr64;
|
|
uintptr_t oldbuf = 0;
|
|
|
|
if (!next_mb) {
|
|
next_mb = mbufs[next_idx++];
|
|
next_value = (((int64_t)(uintptr_t)next_mb)
|
|
<< RTE_DISTRIB_FLAG_BITS);
|
|
/*
|
|
* User is advocated to set tag vaue for each
|
|
* mbuf before calling rte_distributor_process.
|
|
* User defined tags are used to identify flows,
|
|
* or sessions.
|
|
*/
|
|
new_tag = next_mb->hash.usr;
|
|
|
|
/*
|
|
* Note that if RTE_DISTRIB_MAX_WORKERS is larger than 64
|
|
* then the size of match has to be expanded.
|
|
*/
|
|
uint64_t match = 0;
|
|
unsigned i;
|
|
/*
|
|
* to scan for a match use "xor" and "not" to get a 0/1
|
|
* value, then use shifting to merge to single "match"
|
|
* variable, where a one-bit indicates a match for the
|
|
* worker given by the bit-position
|
|
*/
|
|
for (i = 0; i < d->num_workers; i++)
|
|
match |= (!(d->in_flight_tags[i] ^ new_tag)
|
|
<< i);
|
|
|
|
/* Only turned-on bits are considered as match */
|
|
match &= d->in_flight_bitmask;
|
|
|
|
if (match) {
|
|
next_mb = NULL;
|
|
unsigned worker = __builtin_ctzl(match);
|
|
if (add_to_backlog(&d->backlog[worker],
|
|
next_value) < 0)
|
|
next_idx--;
|
|
}
|
|
}
|
|
|
|
if ((data & RTE_DISTRIB_GET_BUF) &&
|
|
(d->backlog[wkr].count || next_mb)) {
|
|
|
|
if (d->backlog[wkr].count)
|
|
d->bufs[wkr].bufptr64 =
|
|
backlog_pop(&d->backlog[wkr]);
|
|
|
|
else {
|
|
d->bufs[wkr].bufptr64 = next_value;
|
|
d->in_flight_tags[wkr] = new_tag;
|
|
d->in_flight_bitmask |= (1UL << wkr);
|
|
next_mb = NULL;
|
|
}
|
|
oldbuf = data >> RTE_DISTRIB_FLAG_BITS;
|
|
} else if (data & RTE_DISTRIB_RETURN_BUF) {
|
|
handle_worker_shutdown(d, wkr);
|
|
oldbuf = data >> RTE_DISTRIB_FLAG_BITS;
|
|
}
|
|
|
|
/* store returns in a circular buffer */
|
|
store_return(oldbuf, d, &ret_start, &ret_count);
|
|
|
|
if (++wkr == d->num_workers)
|
|
wkr = 0;
|
|
}
|
|
/* to finish, check all workers for backlog and schedule work for them
|
|
* if they are ready */
|
|
for (wkr = 0; wkr < d->num_workers; wkr++)
|
|
if (d->backlog[wkr].count &&
|
|
(d->bufs[wkr].bufptr64 & RTE_DISTRIB_GET_BUF)) {
|
|
|
|
int64_t oldbuf = d->bufs[wkr].bufptr64 >>
|
|
RTE_DISTRIB_FLAG_BITS;
|
|
store_return(oldbuf, d, &ret_start, &ret_count);
|
|
|
|
d->bufs[wkr].bufptr64 = backlog_pop(&d->backlog[wkr]);
|
|
}
|
|
|
|
d->returns.start = ret_start;
|
|
d->returns.count = ret_count;
|
|
return num_mbufs;
|
|
}
|
|
|
|
/* return to the caller, packets returned from workers */
|
|
int
|
|
rte_distributor_returned_pkts(struct rte_distributor *d,
|
|
struct rte_mbuf **mbufs, unsigned max_mbufs)
|
|
{
|
|
struct rte_distributor_returned_pkts *returns = &d->returns;
|
|
unsigned retval = (max_mbufs < returns->count) ?
|
|
max_mbufs : returns->count;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < retval; i++) {
|
|
unsigned idx = (returns->start + i) & RTE_DISTRIB_RETURNS_MASK;
|
|
mbufs[i] = returns->mbufs[idx];
|
|
}
|
|
returns->start += i;
|
|
returns->count -= i;
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* return the number of packets in-flight in a distributor, i.e. packets
|
|
* being workered on or queued up in a backlog. */
|
|
static inline unsigned
|
|
total_outstanding(const struct rte_distributor *d)
|
|
{
|
|
unsigned wkr, total_outstanding;
|
|
|
|
total_outstanding = __builtin_popcountl(d->in_flight_bitmask);
|
|
|
|
for (wkr = 0; wkr < d->num_workers; wkr++)
|
|
total_outstanding += d->backlog[wkr].count;
|
|
|
|
return total_outstanding;
|
|
}
|
|
|
|
/* flush the distributor, so that there are no outstanding packets in flight or
|
|
* queued up. */
|
|
int
|
|
rte_distributor_flush(struct rte_distributor *d)
|
|
{
|
|
const unsigned flushed = total_outstanding(d);
|
|
|
|
while (total_outstanding(d) > 0)
|
|
rte_distributor_process(d, NULL, 0);
|
|
|
|
return flushed;
|
|
}
|
|
|
|
/* clears the internal returns array in the distributor */
|
|
void
|
|
rte_distributor_clear_returns(struct rte_distributor *d)
|
|
{
|
|
d->returns.start = d->returns.count = 0;
|
|
#ifndef __OPTIMIZE__
|
|
memset(d->returns.mbufs, 0, sizeof(d->returns.mbufs));
|
|
#endif
|
|
}
|
|
|
|
/* creates a distributor instance */
|
|
struct rte_distributor *
|
|
rte_distributor_create(const char *name,
|
|
unsigned socket_id,
|
|
unsigned num_workers)
|
|
{
|
|
struct rte_distributor *d;
|
|
struct rte_distributor_list *distributor_list;
|
|
char mz_name[RTE_MEMZONE_NAMESIZE];
|
|
const struct rte_memzone *mz;
|
|
|
|
/* compilation-time checks */
|
|
RTE_BUILD_BUG_ON((sizeof(*d) & RTE_CACHE_LINE_MASK) != 0);
|
|
RTE_BUILD_BUG_ON((RTE_DISTRIB_MAX_WORKERS & 7) != 0);
|
|
RTE_BUILD_BUG_ON(RTE_DISTRIB_MAX_WORKERS >
|
|
sizeof(d->in_flight_bitmask) * CHAR_BIT);
|
|
|
|
if (name == NULL || num_workers >= RTE_DISTRIB_MAX_WORKERS) {
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
snprintf(mz_name, sizeof(mz_name), RTE_DISTRIB_PREFIX"%s", name);
|
|
mz = rte_memzone_reserve(mz_name, sizeof(*d), socket_id, NO_FLAGS);
|
|
if (mz == NULL) {
|
|
rte_errno = ENOMEM;
|
|
return NULL;
|
|
}
|
|
|
|
d = mz->addr;
|
|
snprintf(d->name, sizeof(d->name), "%s", name);
|
|
d->num_workers = num_workers;
|
|
|
|
distributor_list = RTE_TAILQ_CAST(rte_distributor_tailq.head,
|
|
rte_distributor_list);
|
|
|
|
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
|
|
TAILQ_INSERT_TAIL(distributor_list, d, next);
|
|
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
return d;
|
|
}
|