f-stack/dpdk/lib/librte_eal/common/eal_common_memory.c

829 lines
21 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <fcntl.h>
#include <errno.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/mman.h>
#include <sys/queue.h>
#include <rte_fbarray.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_errno.h>
#include <rte_log.h>
#include "eal_memalloc.h"
#include "eal_private.h"
#include "eal_internal_cfg.h"
/*
* Try to mmap *size bytes in /dev/zero. If it is successful, return the
* pointer to the mmap'd area and keep *size unmodified. Else, retry
* with a smaller zone: decrease *size by hugepage_sz until it reaches
* 0. In this case, return NULL. Note: this function returns an address
* which is a multiple of hugepage size.
*/
#define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i"
static void *next_baseaddr;
static uint64_t system_page_sz;
#ifdef RTE_ARCH_64
/*
* Linux kernel uses a really high address as starting address for serving
* mmaps calls. If there exists addressing limitations and IOVA mode is VA,
* this starting address is likely too high for those devices. However, it
* is possible to use a lower address in the process virtual address space
* as with 64 bits there is a lot of available space.
*
* Current known limitations are 39 or 40 bits. Setting the starting address
* at 4GB implies there are 508GB or 1020GB for mapping the available
* hugepages. This is likely enough for most systems, although a device with
* addressing limitations should call rte_mem_check_dma_mask for ensuring all
* memory is within supported range.
*/
static uint64_t baseaddr = 0x100000000;
#endif
#define MAX_MMAP_WITH_DEFINED_ADDR_TRIES 5
void *
eal_get_virtual_area(void *requested_addr, size_t *size,
size_t page_sz, int flags, int mmap_flags)
{
bool addr_is_hint, allow_shrink, unmap, no_align;
uint64_t map_sz;
void *mapped_addr, *aligned_addr;
uint8_t try = 0;
if (system_page_sz == 0)
system_page_sz = sysconf(_SC_PAGESIZE);
mmap_flags |= MAP_PRIVATE | MAP_ANONYMOUS;
RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
addr_is_hint = (flags & EAL_VIRTUAL_AREA_ADDR_IS_HINT) > 0;
allow_shrink = (flags & EAL_VIRTUAL_AREA_ALLOW_SHRINK) > 0;
unmap = (flags & EAL_VIRTUAL_AREA_UNMAP) > 0;
if (next_baseaddr == NULL && internal_config.base_virtaddr != 0 &&
rte_eal_process_type() == RTE_PROC_PRIMARY)
next_baseaddr = (void *) internal_config.base_virtaddr;
#ifdef RTE_ARCH_64
if (next_baseaddr == NULL && internal_config.base_virtaddr == 0 &&
rte_eal_process_type() == RTE_PROC_PRIMARY)
next_baseaddr = (void *) baseaddr;
#endif
if (requested_addr == NULL && next_baseaddr != NULL) {
requested_addr = next_baseaddr;
requested_addr = RTE_PTR_ALIGN(requested_addr, page_sz);
addr_is_hint = true;
}
/* we don't need alignment of resulting pointer in the following cases:
*
* 1. page size is equal to system size
* 2. we have a requested address, and it is page-aligned, and we will
* be discarding the address if we get a different one.
*
* for all other cases, alignment is potentially necessary.
*/
no_align = (requested_addr != NULL &&
requested_addr == RTE_PTR_ALIGN(requested_addr, page_sz) &&
!addr_is_hint) ||
page_sz == system_page_sz;
do {
map_sz = no_align ? *size : *size + page_sz;
if (map_sz > SIZE_MAX) {
RTE_LOG(ERR, EAL, "Map size too big\n");
rte_errno = E2BIG;
return NULL;
}
mapped_addr = mmap(requested_addr, (size_t)map_sz, PROT_READ,
mmap_flags, -1, 0);
if (mapped_addr == MAP_FAILED && allow_shrink)
*size -= page_sz;
if (mapped_addr != MAP_FAILED && addr_is_hint &&
mapped_addr != requested_addr) {
try++;
next_baseaddr = RTE_PTR_ADD(next_baseaddr, page_sz);
if (try <= MAX_MMAP_WITH_DEFINED_ADDR_TRIES) {
/* hint was not used. Try with another offset */
munmap(mapped_addr, map_sz);
mapped_addr = MAP_FAILED;
requested_addr = next_baseaddr;
}
}
} while ((allow_shrink || addr_is_hint) &&
mapped_addr == MAP_FAILED && *size > 0);
/* align resulting address - if map failed, we will ignore the value
* anyway, so no need to add additional checks.
*/
aligned_addr = no_align ? mapped_addr :
RTE_PTR_ALIGN(mapped_addr, page_sz);
if (*size == 0) {
RTE_LOG(ERR, EAL, "Cannot get a virtual area of any size: %s\n",
strerror(errno));
rte_errno = errno;
return NULL;
} else if (mapped_addr == MAP_FAILED) {
RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
strerror(errno));
/* pass errno up the call chain */
rte_errno = errno;
return NULL;
} else if (requested_addr != NULL && !addr_is_hint &&
aligned_addr != requested_addr) {
RTE_LOG(ERR, EAL, "Cannot get a virtual area at requested address: %p (got %p)\n",
requested_addr, aligned_addr);
munmap(mapped_addr, map_sz);
rte_errno = EADDRNOTAVAIL;
return NULL;
} else if (requested_addr != NULL && addr_is_hint &&
aligned_addr != requested_addr) {
RTE_LOG(WARNING, EAL, "WARNING! Base virtual address hint (%p != %p) not respected!\n",
requested_addr, aligned_addr);
RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory into secondary processes\n");
} else if (next_baseaddr != NULL) {
next_baseaddr = RTE_PTR_ADD(aligned_addr, *size);
}
RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
aligned_addr, *size);
if (unmap) {
munmap(mapped_addr, map_sz);
} else if (!no_align) {
void *map_end, *aligned_end;
size_t before_len, after_len;
/* when we reserve space with alignment, we add alignment to
* mapping size. On 32-bit, if 1GB alignment was requested, this
* would waste 1GB of address space, which is a luxury we cannot
* afford. so, if alignment was performed, check if any unneeded
* address space can be unmapped back.
*/
map_end = RTE_PTR_ADD(mapped_addr, (size_t)map_sz);
aligned_end = RTE_PTR_ADD(aligned_addr, *size);
/* unmap space before aligned mmap address */
before_len = RTE_PTR_DIFF(aligned_addr, mapped_addr);
if (before_len > 0)
munmap(mapped_addr, before_len);
/* unmap space after aligned end mmap address */
after_len = RTE_PTR_DIFF(map_end, aligned_end);
if (after_len > 0)
munmap(aligned_end, after_len);
}
return aligned_addr;
}
static struct rte_memseg *
virt2memseg(const void *addr, const struct rte_memseg_list *msl)
{
const struct rte_fbarray *arr;
void *start, *end;
int ms_idx;
if (msl == NULL)
return NULL;
/* a memseg list was specified, check if it's the right one */
start = msl->base_va;
end = RTE_PTR_ADD(start, msl->len);
if (addr < start || addr >= end)
return NULL;
/* now, calculate index */
arr = &msl->memseg_arr;
ms_idx = RTE_PTR_DIFF(addr, msl->base_va) / msl->page_sz;
return rte_fbarray_get(arr, ms_idx);
}
static struct rte_memseg_list *
virt2memseg_list(const void *addr)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct rte_memseg_list *msl;
int msl_idx;
for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
void *start, *end;
msl = &mcfg->memsegs[msl_idx];
start = msl->base_va;
end = RTE_PTR_ADD(start, msl->len);
if (addr >= start && addr < end)
break;
}
/* if we didn't find our memseg list */
if (msl_idx == RTE_MAX_MEMSEG_LISTS)
return NULL;
return msl;
}
__rte_experimental struct rte_memseg_list *
rte_mem_virt2memseg_list(const void *addr)
{
return virt2memseg_list(addr);
}
struct virtiova {
rte_iova_t iova;
void *virt;
};
static int
find_virt(const struct rte_memseg_list *msl __rte_unused,
const struct rte_memseg *ms, void *arg)
{
struct virtiova *vi = arg;
if (vi->iova >= ms->iova && vi->iova < (ms->iova + ms->len)) {
size_t offset = vi->iova - ms->iova;
vi->virt = RTE_PTR_ADD(ms->addr, offset);
/* stop the walk */
return 1;
}
return 0;
}
static int
find_virt_legacy(const struct rte_memseg_list *msl __rte_unused,
const struct rte_memseg *ms, size_t len, void *arg)
{
struct virtiova *vi = arg;
if (vi->iova >= ms->iova && vi->iova < (ms->iova + len)) {
size_t offset = vi->iova - ms->iova;
vi->virt = RTE_PTR_ADD(ms->addr, offset);
/* stop the walk */
return 1;
}
return 0;
}
__rte_experimental void *
rte_mem_iova2virt(rte_iova_t iova)
{
struct virtiova vi;
memset(&vi, 0, sizeof(vi));
vi.iova = iova;
/* for legacy mem, we can get away with scanning VA-contiguous segments,
* as we know they are PA-contiguous as well
*/
if (internal_config.legacy_mem)
rte_memseg_contig_walk(find_virt_legacy, &vi);
else
rte_memseg_walk(find_virt, &vi);
return vi.virt;
}
__rte_experimental struct rte_memseg *
rte_mem_virt2memseg(const void *addr, const struct rte_memseg_list *msl)
{
return virt2memseg(addr, msl != NULL ? msl :
rte_mem_virt2memseg_list(addr));
}
static int
physmem_size(const struct rte_memseg_list *msl, void *arg)
{
uint64_t *total_len = arg;
if (msl->external)
return 0;
*total_len += msl->memseg_arr.count * msl->page_sz;
return 0;
}
/* get the total size of memory */
uint64_t
rte_eal_get_physmem_size(void)
{
uint64_t total_len = 0;
rte_memseg_list_walk(physmem_size, &total_len);
return total_len;
}
static int
dump_memseg(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int msl_idx, ms_idx, fd;
FILE *f = arg;
msl_idx = msl - mcfg->memsegs;
if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
return -1;
ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
if (ms_idx < 0)
return -1;
fd = eal_memalloc_get_seg_fd(msl_idx, ms_idx);
fprintf(f, "Segment %i-%i: IOVA:0x%"PRIx64", len:%zu, "
"virt:%p, socket_id:%"PRId32", "
"hugepage_sz:%"PRIu64", nchannel:%"PRIx32", "
"nrank:%"PRIx32" fd:%i\n",
msl_idx, ms_idx,
ms->iova,
ms->len,
ms->addr,
ms->socket_id,
ms->hugepage_sz,
ms->nchannel,
ms->nrank,
fd);
return 0;
}
/*
* Defining here because declared in rte_memory.h, but the actual implementation
* is in eal_common_memalloc.c, like all other memalloc internals.
*/
int __rte_experimental
rte_mem_event_callback_register(const char *name, rte_mem_event_callback_t clb,
void *arg)
{
/* FreeBSD boots with legacy mem enabled by default */
if (internal_config.legacy_mem) {
RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
rte_errno = ENOTSUP;
return -1;
}
return eal_memalloc_mem_event_callback_register(name, clb, arg);
}
int __rte_experimental
rte_mem_event_callback_unregister(const char *name, void *arg)
{
/* FreeBSD boots with legacy mem enabled by default */
if (internal_config.legacy_mem) {
RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
rte_errno = ENOTSUP;
return -1;
}
return eal_memalloc_mem_event_callback_unregister(name, arg);
}
int __rte_experimental
rte_mem_alloc_validator_register(const char *name,
rte_mem_alloc_validator_t clb, int socket_id, size_t limit)
{
/* FreeBSD boots with legacy mem enabled by default */
if (internal_config.legacy_mem) {
RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
rte_errno = ENOTSUP;
return -1;
}
return eal_memalloc_mem_alloc_validator_register(name, clb, socket_id,
limit);
}
int __rte_experimental
rte_mem_alloc_validator_unregister(const char *name, int socket_id)
{
/* FreeBSD boots with legacy mem enabled by default */
if (internal_config.legacy_mem) {
RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
rte_errno = ENOTSUP;
return -1;
}
return eal_memalloc_mem_alloc_validator_unregister(name, socket_id);
}
/* Dump the physical memory layout on console */
void
rte_dump_physmem_layout(FILE *f)
{
rte_memseg_walk(dump_memseg, f);
}
static int
check_iova(const struct rte_memseg_list *msl __rte_unused,
const struct rte_memseg *ms, void *arg)
{
uint64_t *mask = arg;
rte_iova_t iova;
/* higher address within segment */
iova = (ms->iova + ms->len) - 1;
if (!(iova & *mask))
return 0;
RTE_LOG(DEBUG, EAL, "memseg iova %"PRIx64", len %zx, out of range\n",
ms->iova, ms->len);
RTE_LOG(DEBUG, EAL, "\tusing dma mask %"PRIx64"\n", *mask);
return 1;
}
#define MAX_DMA_MASK_BITS 63
/* check memseg iovas are within the required range based on dma mask */
static int
check_dma_mask(uint8_t maskbits, bool thread_unsafe)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
uint64_t mask;
int ret;
/* Sanity check. We only check width can be managed with 64 bits
* variables. Indeed any higher value is likely wrong. */
if (maskbits > MAX_DMA_MASK_BITS) {
RTE_LOG(ERR, EAL, "wrong dma mask size %u (Max: %u)\n",
maskbits, MAX_DMA_MASK_BITS);
return -1;
}
/* create dma mask */
mask = ~((1ULL << maskbits) - 1);
if (thread_unsafe)
ret = rte_memseg_walk_thread_unsafe(check_iova, &mask);
else
ret = rte_memseg_walk(check_iova, &mask);
if (ret)
/*
* Dma mask precludes hugepage usage.
* This device can not be used and we do not need to keep
* the dma mask.
*/
return 1;
/*
* we need to keep the more restricted maskbit for checking
* potential dynamic memory allocation in the future.
*/
mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits :
RTE_MIN(mcfg->dma_maskbits, maskbits);
return 0;
}
int __rte_experimental
rte_mem_check_dma_mask(uint8_t maskbits)
{
return check_dma_mask(maskbits, false);
}
int __rte_experimental
rte_mem_check_dma_mask_thread_unsafe(uint8_t maskbits)
{
return check_dma_mask(maskbits, true);
}
/*
* Set dma mask to use when memory initialization is done.
*
* This function should ONLY be used by code executed before the memory
* initialization. PMDs should use rte_mem_check_dma_mask if addressing
* limitations by the device.
*/
void __rte_experimental
rte_mem_set_dma_mask(uint8_t maskbits)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits :
RTE_MIN(mcfg->dma_maskbits, maskbits);
}
/* return the number of memory channels */
unsigned rte_memory_get_nchannel(void)
{
return rte_eal_get_configuration()->mem_config->nchannel;
}
/* return the number of memory rank */
unsigned rte_memory_get_nrank(void)
{
return rte_eal_get_configuration()->mem_config->nrank;
}
static int
rte_eal_memdevice_init(void)
{
struct rte_config *config;
if (rte_eal_process_type() == RTE_PROC_SECONDARY)
return 0;
config = rte_eal_get_configuration();
config->mem_config->nchannel = internal_config.force_nchannel;
config->mem_config->nrank = internal_config.force_nrank;
return 0;
}
/* Lock page in physical memory and prevent from swapping. */
int
rte_mem_lock_page(const void *virt)
{
unsigned long virtual = (unsigned long)virt;
int page_size = getpagesize();
unsigned long aligned = (virtual & ~(page_size - 1));
return mlock((void *)aligned, page_size);
}
int __rte_experimental
rte_memseg_contig_walk_thread_unsafe(rte_memseg_contig_walk_t func, void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int i, ms_idx, ret = 0;
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
struct rte_memseg_list *msl = &mcfg->memsegs[i];
const struct rte_memseg *ms;
struct rte_fbarray *arr;
if (msl->memseg_arr.count == 0)
continue;
arr = &msl->memseg_arr;
ms_idx = rte_fbarray_find_next_used(arr, 0);
while (ms_idx >= 0) {
int n_segs;
size_t len;
ms = rte_fbarray_get(arr, ms_idx);
/* find how many more segments there are, starting with
* this one.
*/
n_segs = rte_fbarray_find_contig_used(arr, ms_idx);
len = n_segs * msl->page_sz;
ret = func(msl, ms, len, arg);
if (ret)
return ret;
ms_idx = rte_fbarray_find_next_used(arr,
ms_idx + n_segs);
}
}
return 0;
}
int __rte_experimental
rte_memseg_contig_walk(rte_memseg_contig_walk_t func, void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int ret = 0;
/* do not allow allocations/frees/init while we iterate */
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
ret = rte_memseg_contig_walk_thread_unsafe(func, arg);
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
return ret;
}
int __rte_experimental
rte_memseg_walk_thread_unsafe(rte_memseg_walk_t func, void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int i, ms_idx, ret = 0;
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
struct rte_memseg_list *msl = &mcfg->memsegs[i];
const struct rte_memseg *ms;
struct rte_fbarray *arr;
if (msl->memseg_arr.count == 0)
continue;
arr = &msl->memseg_arr;
ms_idx = rte_fbarray_find_next_used(arr, 0);
while (ms_idx >= 0) {
ms = rte_fbarray_get(arr, ms_idx);
ret = func(msl, ms, arg);
if (ret)
return ret;
ms_idx = rte_fbarray_find_next_used(arr, ms_idx + 1);
}
}
return 0;
}
int __rte_experimental
rte_memseg_walk(rte_memseg_walk_t func, void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int ret = 0;
/* do not allow allocations/frees/init while we iterate */
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
ret = rte_memseg_walk_thread_unsafe(func, arg);
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
return ret;
}
int __rte_experimental
rte_memseg_list_walk_thread_unsafe(rte_memseg_list_walk_t func, void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int i, ret = 0;
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
struct rte_memseg_list *msl = &mcfg->memsegs[i];
if (msl->base_va == NULL)
continue;
ret = func(msl, arg);
if (ret)
return ret;
}
return 0;
}
int __rte_experimental
rte_memseg_list_walk(rte_memseg_list_walk_t func, void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int ret = 0;
/* do not allow allocations/frees/init while we iterate */
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
ret = rte_memseg_list_walk_thread_unsafe(func, arg);
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
return ret;
}
int __rte_experimental
rte_memseg_get_fd_thread_unsafe(const struct rte_memseg *ms)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct rte_memseg_list *msl;
struct rte_fbarray *arr;
int msl_idx, seg_idx, ret;
if (ms == NULL) {
rte_errno = EINVAL;
return -1;
}
msl = rte_mem_virt2memseg_list(ms->addr);
if (msl == NULL) {
rte_errno = EINVAL;
return -1;
}
arr = &msl->memseg_arr;
msl_idx = msl - mcfg->memsegs;
seg_idx = rte_fbarray_find_idx(arr, ms);
if (!rte_fbarray_is_used(arr, seg_idx)) {
rte_errno = ENOENT;
return -1;
}
/* segment fd API is not supported for external segments */
if (msl->external) {
rte_errno = ENOTSUP;
return -1;
}
ret = eal_memalloc_get_seg_fd(msl_idx, seg_idx);
if (ret < 0) {
rte_errno = -ret;
ret = -1;
}
return ret;
}
int __rte_experimental
rte_memseg_get_fd(const struct rte_memseg *ms)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int ret;
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
ret = rte_memseg_get_fd_thread_unsafe(ms);
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
return ret;
}
int __rte_experimental
rte_memseg_get_fd_offset_thread_unsafe(const struct rte_memseg *ms,
size_t *offset)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct rte_memseg_list *msl;
struct rte_fbarray *arr;
int msl_idx, seg_idx, ret;
if (ms == NULL || offset == NULL) {
rte_errno = EINVAL;
return -1;
}
msl = rte_mem_virt2memseg_list(ms->addr);
if (msl == NULL) {
rte_errno = EINVAL;
return -1;
}
arr = &msl->memseg_arr;
msl_idx = msl - mcfg->memsegs;
seg_idx = rte_fbarray_find_idx(arr, ms);
if (!rte_fbarray_is_used(arr, seg_idx)) {
rte_errno = ENOENT;
return -1;
}
/* segment fd API is not supported for external segments */
if (msl->external) {
rte_errno = ENOTSUP;
return -1;
}
ret = eal_memalloc_get_seg_fd_offset(msl_idx, seg_idx, offset);
if (ret < 0) {
rte_errno = -ret;
ret = -1;
}
return ret;
}
int __rte_experimental
rte_memseg_get_fd_offset(const struct rte_memseg *ms, size_t *offset)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int ret;
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
ret = rte_memseg_get_fd_offset_thread_unsafe(ms, offset);
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
return ret;
}
/* init memory subsystem */
int
rte_eal_memory_init(void)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int retval;
RTE_LOG(DEBUG, EAL, "Setting up physically contiguous memory...\n");
if (!mcfg)
return -1;
/* lock mem hotplug here, to prevent races while we init */
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
if (rte_eal_memseg_init() < 0)
goto fail;
if (eal_memalloc_init() < 0)
goto fail;
retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
rte_eal_hugepage_init() :
rte_eal_hugepage_attach();
if (retval < 0)
goto fail;
if (internal_config.no_shconf == 0 && rte_eal_memdevice_init() < 0)
goto fail;
return 0;
fail:
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
return -1;
}