mirror of https://github.com/F-Stack/f-stack.git
794 lines
28 KiB
C
794 lines
28 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2017 Intel Corporation.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <rte_ethdev_driver.h>
|
|
#include <rte_malloc.h>
|
|
|
|
#include "base/i40e_prototype.h"
|
|
#include "base/i40e_type.h"
|
|
#include "i40e_ethdev.h"
|
|
#include "i40e_rxtx.h"
|
|
#include "i40e_rxtx_vec_common.h"
|
|
|
|
#include <x86intrin.h>
|
|
|
|
#ifndef __INTEL_COMPILER
|
|
#pragma GCC diagnostic ignored "-Wcast-qual"
|
|
#endif
|
|
|
|
static inline void
|
|
i40e_rxq_rearm(struct i40e_rx_queue *rxq)
|
|
{
|
|
int i;
|
|
uint16_t rx_id;
|
|
volatile union i40e_rx_desc *rxdp;
|
|
struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
|
|
|
|
rxdp = rxq->rx_ring + rxq->rxrearm_start;
|
|
|
|
/* Pull 'n' more MBUFs into the software ring */
|
|
if (rte_mempool_get_bulk(rxq->mp,
|
|
(void *)rxep,
|
|
RTE_I40E_RXQ_REARM_THRESH) < 0) {
|
|
if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
|
|
rxq->nb_rx_desc) {
|
|
__m128i dma_addr0;
|
|
dma_addr0 = _mm_setzero_si128();
|
|
for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
|
|
rxep[i].mbuf = &rxq->fake_mbuf;
|
|
_mm_store_si128((__m128i *)&rxdp[i].read,
|
|
dma_addr0);
|
|
}
|
|
}
|
|
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
|
|
RTE_I40E_RXQ_REARM_THRESH;
|
|
return;
|
|
}
|
|
|
|
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
|
|
struct rte_mbuf *mb0, *mb1;
|
|
__m128i dma_addr0, dma_addr1;
|
|
__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
|
|
RTE_PKTMBUF_HEADROOM);
|
|
/* Initialize the mbufs in vector, process 2 mbufs in one loop */
|
|
for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
|
|
__m128i vaddr0, vaddr1;
|
|
|
|
mb0 = rxep[0].mbuf;
|
|
mb1 = rxep[1].mbuf;
|
|
|
|
/* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
|
|
offsetof(struct rte_mbuf, buf_addr) + 8);
|
|
vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
|
|
vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
|
|
|
|
/* convert pa to dma_addr hdr/data */
|
|
dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
|
|
dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
|
|
|
|
/* add headroom to pa values */
|
|
dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
|
|
dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
|
|
|
|
/* flush desc with pa dma_addr */
|
|
_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
|
|
_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
|
|
}
|
|
#else
|
|
struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
|
|
__m256i dma_addr0_1, dma_addr2_3;
|
|
__m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
|
|
/* Initialize the mbufs in vector, process 4 mbufs in one loop */
|
|
for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH;
|
|
i += 4, rxep += 4, rxdp += 4) {
|
|
__m128i vaddr0, vaddr1, vaddr2, vaddr3;
|
|
__m256i vaddr0_1, vaddr2_3;
|
|
|
|
mb0 = rxep[0].mbuf;
|
|
mb1 = rxep[1].mbuf;
|
|
mb2 = rxep[2].mbuf;
|
|
mb3 = rxep[3].mbuf;
|
|
|
|
/* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
|
|
offsetof(struct rte_mbuf, buf_addr) + 8);
|
|
vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
|
|
vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
|
|
vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
|
|
vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
|
|
|
|
/*
|
|
* merge 0 & 1, by casting 0 to 256-bit and inserting 1
|
|
* into the high lanes. Similarly for 2 & 3
|
|
*/
|
|
vaddr0_1 = _mm256_inserti128_si256(
|
|
_mm256_castsi128_si256(vaddr0), vaddr1, 1);
|
|
vaddr2_3 = _mm256_inserti128_si256(
|
|
_mm256_castsi128_si256(vaddr2), vaddr3, 1);
|
|
|
|
/* convert pa to dma_addr hdr/data */
|
|
dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
|
|
dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
|
|
|
|
/* add headroom to pa values */
|
|
dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
|
|
dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
|
|
|
|
/* flush desc with pa dma_addr */
|
|
_mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
|
|
_mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
|
|
}
|
|
|
|
#endif
|
|
|
|
rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
|
|
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
|
|
rxq->rxrearm_start = 0;
|
|
|
|
rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
|
|
|
|
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
|
|
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
|
|
|
|
/* Update the tail pointer on the NIC */
|
|
I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
|
|
}
|
|
|
|
#define PKTLEN_SHIFT 10
|
|
|
|
static inline uint16_t
|
|
_recv_raw_pkts_vec_avx2(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts, uint8_t *split_packet)
|
|
{
|
|
#define RTE_I40E_DESCS_PER_LOOP_AVX 8
|
|
|
|
const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
|
|
const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
|
|
0, rxq->mbuf_initializer);
|
|
struct i40e_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
|
|
volatile union i40e_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
|
|
const int avx_aligned = ((rxq->rx_tail & 1) == 0);
|
|
rte_prefetch0(rxdp);
|
|
|
|
/* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP_AVX */
|
|
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP_AVX);
|
|
|
|
/* See if we need to rearm the RX queue - gives the prefetch a bit
|
|
* of time to act
|
|
*/
|
|
if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
|
|
i40e_rxq_rearm(rxq);
|
|
|
|
/* Before we start moving massive data around, check to see if
|
|
* there is actually a packet available
|
|
*/
|
|
if (!(rxdp->wb.qword1.status_error_len &
|
|
rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
|
|
return 0;
|
|
|
|
/* constants used in processing loop */
|
|
const __m256i crc_adjust = _mm256_set_epi16(
|
|
/* first descriptor */
|
|
0, 0, 0, /* ignore non-length fields */
|
|
-rxq->crc_len, /* sub crc on data_len */
|
|
0, /* ignore high-16bits of pkt_len */
|
|
-rxq->crc_len, /* sub crc on pkt_len */
|
|
0, 0, /* ignore pkt_type field */
|
|
/* second descriptor */
|
|
0, 0, 0, /* ignore non-length fields */
|
|
-rxq->crc_len, /* sub crc on data_len */
|
|
0, /* ignore high-16bits of pkt_len */
|
|
-rxq->crc_len, /* sub crc on pkt_len */
|
|
0, 0 /* ignore pkt_type field */
|
|
);
|
|
|
|
/* 8 packets DD mask, LSB in each 32-bit value */
|
|
const __m256i dd_check = _mm256_set1_epi32(1);
|
|
|
|
/* 8 packets EOP mask, second-LSB in each 32-bit value */
|
|
const __m256i eop_check = _mm256_slli_epi32(dd_check,
|
|
I40E_RX_DESC_STATUS_EOF_SHIFT);
|
|
|
|
/* mask to shuffle from desc. to mbuf (2 descriptors)*/
|
|
const __m256i shuf_msk = _mm256_set_epi8(
|
|
/* first descriptor */
|
|
7, 6, 5, 4, /* octet 4~7, 32bits rss */
|
|
3, 2, /* octet 2~3, low 16 bits vlan_macip */
|
|
15, 14, /* octet 15~14, 16 bits data_len */
|
|
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
|
|
15, 14, /* octet 15~14, low 16 bits pkt_len */
|
|
0xFF, 0xFF, /* pkt_type set as unknown */
|
|
0xFF, 0xFF, /*pkt_type set as unknown */
|
|
/* second descriptor */
|
|
7, 6, 5, 4, /* octet 4~7, 32bits rss */
|
|
3, 2, /* octet 2~3, low 16 bits vlan_macip */
|
|
15, 14, /* octet 15~14, 16 bits data_len */
|
|
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
|
|
15, 14, /* octet 15~14, low 16 bits pkt_len */
|
|
0xFF, 0xFF, /* pkt_type set as unknown */
|
|
0xFF, 0xFF /*pkt_type set as unknown */
|
|
);
|
|
/*
|
|
* compile-time check the above crc and shuffle layout is correct.
|
|
* NOTE: the first field (lowest address) is given last in set_epi
|
|
* calls above.
|
|
*/
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
|
|
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
|
|
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
|
|
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
|
|
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
|
|
|
|
/* Status/Error flag masks */
|
|
/*
|
|
* mask everything except RSS, flow director and VLAN flags
|
|
* bit2 is for VLAN tag, bit11 for flow director indication
|
|
* bit13:12 for RSS indication. Bits 3-5 of error
|
|
* field (bits 22-24) are for IP/L4 checksum errors
|
|
*/
|
|
const __m256i flags_mask = _mm256_set1_epi32(
|
|
(1 << 2) | (1 << 11) | (3 << 12) | (7 << 22));
|
|
/*
|
|
* data to be shuffled by result of flag mask. If VLAN bit is set,
|
|
* (bit 2), then position 4 in this array will be used in the
|
|
* destination
|
|
*/
|
|
const __m256i vlan_flags_shuf = _mm256_set_epi32(
|
|
0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
|
|
0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
|
|
/*
|
|
* data to be shuffled by result of flag mask, shifted down 11.
|
|
* If RSS/FDIR bits are set, shuffle moves appropriate flags in
|
|
* place.
|
|
*/
|
|
const __m256i rss_flags_shuf = _mm256_set_epi8(
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
|
|
0, 0, PKT_RX_FDIR, 0, /* end up 128-bits */
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
|
|
0, 0, PKT_RX_FDIR, 0);
|
|
|
|
/*
|
|
* data to be shuffled by the result of the flags mask shifted by 22
|
|
* bits. This gives use the l3_l4 flags.
|
|
*/
|
|
const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* shift right 1 bit to make sure it not exceed 255 */
|
|
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1,
|
|
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
|
|
PKT_RX_IP_CKSUM_BAD >> 1,
|
|
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
|
|
/* second 128-bits */
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1,
|
|
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
|
|
PKT_RX_IP_CKSUM_BAD >> 1,
|
|
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
|
|
|
|
const __m256i cksum_mask = _mm256_set1_epi32(
|
|
PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
|
|
PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
|
|
PKT_RX_EIP_CKSUM_BAD);
|
|
|
|
RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
|
|
|
|
uint16_t i, received;
|
|
for (i = 0, received = 0; i < nb_pkts;
|
|
i += RTE_I40E_DESCS_PER_LOOP_AVX,
|
|
rxdp += RTE_I40E_DESCS_PER_LOOP_AVX) {
|
|
/* step 1, copy over 8 mbuf pointers to rx_pkts array */
|
|
_mm256_storeu_si256((void *)&rx_pkts[i],
|
|
_mm256_loadu_si256((void *)&sw_ring[i]));
|
|
#ifdef RTE_ARCH_X86_64
|
|
_mm256_storeu_si256((void *)&rx_pkts[i + 4],
|
|
_mm256_loadu_si256((void *)&sw_ring[i + 4]));
|
|
#endif
|
|
|
|
__m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
|
|
#ifdef RTE_LIBRTE_I40E_16BYTE_RX_DESC
|
|
/* for AVX we need alignment otherwise loads are not atomic */
|
|
if (avx_aligned) {
|
|
/* load in descriptors, 2 at a time, in reverse order */
|
|
raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
|
|
rte_compiler_barrier();
|
|
raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
|
|
rte_compiler_barrier();
|
|
raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
|
|
rte_compiler_barrier();
|
|
raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
|
|
} else
|
|
#endif
|
|
do {
|
|
const __m128i raw_desc7 = _mm_load_si128((void *)(rxdp + 7));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc6 = _mm_load_si128((void *)(rxdp + 6));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc5 = _mm_load_si128((void *)(rxdp + 5));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc4 = _mm_load_si128((void *)(rxdp + 4));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc3 = _mm_load_si128((void *)(rxdp + 3));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc2 = _mm_load_si128((void *)(rxdp + 2));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc1 = _mm_load_si128((void *)(rxdp + 1));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc0 = _mm_load_si128((void *)(rxdp + 0));
|
|
|
|
raw_desc6_7 = _mm256_inserti128_si256(
|
|
_mm256_castsi128_si256(raw_desc6), raw_desc7, 1);
|
|
raw_desc4_5 = _mm256_inserti128_si256(
|
|
_mm256_castsi128_si256(raw_desc4), raw_desc5, 1);
|
|
raw_desc2_3 = _mm256_inserti128_si256(
|
|
_mm256_castsi128_si256(raw_desc2), raw_desc3, 1);
|
|
raw_desc0_1 = _mm256_inserti128_si256(
|
|
_mm256_castsi128_si256(raw_desc0), raw_desc1, 1);
|
|
} while (0);
|
|
|
|
if (split_packet) {
|
|
int j;
|
|
for (j = 0; j < RTE_I40E_DESCS_PER_LOOP_AVX; j++)
|
|
rte_mbuf_prefetch_part2(rx_pkts[i + j]);
|
|
}
|
|
|
|
/*
|
|
* convert descriptors 4-7 into mbufs, adjusting length and
|
|
* re-arranging fields. Then write into the mbuf
|
|
*/
|
|
const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7, PKTLEN_SHIFT);
|
|
const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5, PKTLEN_SHIFT);
|
|
const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7, len6_7, 0x80);
|
|
const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5, len4_5, 0x80);
|
|
__m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
|
|
__m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);
|
|
mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
|
|
mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
|
|
/*
|
|
* to get packet types, shift 64-bit values down 30 bits
|
|
* and so ptype is in lower 8-bits in each
|
|
*/
|
|
const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
|
|
const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
|
|
const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
|
|
const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
|
|
const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
|
|
const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
|
|
mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4);
|
|
mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0);
|
|
mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4);
|
|
mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0);
|
|
/* merge the status bits into one register */
|
|
const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
|
|
desc4_5);
|
|
|
|
/*
|
|
* convert descriptors 0-3 into mbufs, adjusting length and
|
|
* re-arranging fields. Then write into the mbuf
|
|
*/
|
|
const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3, PKTLEN_SHIFT);
|
|
const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1, PKTLEN_SHIFT);
|
|
const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3, len2_3, 0x80);
|
|
const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1, len0_1, 0x80);
|
|
__m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
|
|
__m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);
|
|
mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
|
|
mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
|
|
/* get the packet types */
|
|
const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
|
|
const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
|
|
const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
|
|
const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
|
|
const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
|
|
const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
|
|
mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4);
|
|
mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0);
|
|
mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4);
|
|
mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0);
|
|
/* merge the status bits into one register */
|
|
const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
|
|
desc0_1);
|
|
|
|
/*
|
|
* take the two sets of status bits and merge to one
|
|
* After merge, the packets status flags are in the
|
|
* order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
|
|
*/
|
|
__m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
|
|
status0_3);
|
|
|
|
/* now do flag manipulation */
|
|
|
|
/* get only flag/error bits we want */
|
|
const __m256i flag_bits = _mm256_and_si256(
|
|
status0_7, flags_mask);
|
|
/* set vlan and rss flags */
|
|
const __m256i vlan_flags = _mm256_shuffle_epi8(
|
|
vlan_flags_shuf, flag_bits);
|
|
const __m256i rss_flags = _mm256_shuffle_epi8(
|
|
rss_flags_shuf, _mm256_srli_epi32(flag_bits, 11));
|
|
/*
|
|
* l3_l4_error flags, shuffle, then shift to correct adjustment
|
|
* of flags in flags_shuf, and finally mask out extra bits
|
|
*/
|
|
__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
|
|
_mm256_srli_epi32(flag_bits, 22));
|
|
l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
|
|
l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
|
|
|
|
/* merge flags */
|
|
const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
|
|
_mm256_or_si256(rss_flags, vlan_flags));
|
|
/*
|
|
* At this point, we have the 8 sets of flags in the low 16-bits
|
|
* of each 32-bit value in vlan0.
|
|
* We want to extract these, and merge them with the mbuf init data
|
|
* so we can do a single write to the mbuf to set the flags
|
|
* and all the other initialization fields. Extracting the
|
|
* appropriate flags means that we have to do a shift and blend for
|
|
* each mbuf before we do the write. However, we can also
|
|
* add in the previously computed rx_descriptor fields to
|
|
* make a single 256-bit write per mbuf
|
|
*/
|
|
/* check the structure matches expectations */
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
|
|
offsetof(struct rte_mbuf, rearm_data) + 8);
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
|
|
RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
|
|
/* build up data and do writes */
|
|
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
|
|
rearm6, rearm7;
|
|
rearm6 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 8), 0x04);
|
|
rearm4 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 4), 0x04);
|
|
rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
|
|
rearm0 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(mbuf_flags, 4), 0x04);
|
|
/* permute to add in the rx_descriptor e.g. rss fields */
|
|
rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
|
|
rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
|
|
rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
|
|
rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
|
|
/* write to mbuf */
|
|
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, rearm6);
|
|
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, rearm4);
|
|
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, rearm2);
|
|
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, rearm0);
|
|
|
|
/* repeat for the odd mbufs */
|
|
const __m256i odd_flags = _mm256_castsi128_si256(
|
|
_mm256_extracti128_si256(mbuf_flags, 1));
|
|
rearm7 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 8), 0x04);
|
|
rearm5 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 4), 0x04);
|
|
rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
|
|
rearm1 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(odd_flags, 4), 0x04);
|
|
/* since odd mbufs are already in hi 128-bits use blend */
|
|
rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
|
|
rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
|
|
rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
|
|
rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
|
|
/* again write to mbufs */
|
|
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, rearm7);
|
|
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, rearm5);
|
|
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, rearm3);
|
|
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, rearm1);
|
|
|
|
/* extract and record EOP bit */
|
|
if (split_packet) {
|
|
const __m128i eop_mask = _mm_set1_epi16(
|
|
1 << I40E_RX_DESC_STATUS_EOF_SHIFT);
|
|
const __m256i eop_bits256 = _mm256_and_si256(status0_7,
|
|
eop_check);
|
|
/* pack status bits into a single 128-bit register */
|
|
const __m128i eop_bits = _mm_packus_epi32(
|
|
_mm256_castsi256_si128(eop_bits256),
|
|
_mm256_extractf128_si256(eop_bits256, 1));
|
|
/*
|
|
* flip bits, and mask out the EOP bit, which is now
|
|
* a split-packet bit i.e. !EOP, rather than EOP one.
|
|
*/
|
|
__m128i split_bits = _mm_andnot_si128(eop_bits,
|
|
eop_mask);
|
|
/*
|
|
* eop bits are out of order, so we need to shuffle them
|
|
* back into order again. In doing so, only use low 8
|
|
* bits, which acts like another pack instruction
|
|
* The original order is (hi->lo): 1,3,5,7,0,2,4,6
|
|
* [Since we use epi8, the 16-bit positions are
|
|
* multiplied by 2 in the eop_shuffle value.]
|
|
*/
|
|
__m128i eop_shuffle = _mm_set_epi8(
|
|
0xFF, 0xFF, 0xFF, 0xFF, /* zero hi 64b */
|
|
0xFF, 0xFF, 0xFF, 0xFF,
|
|
8, 0, 10, 2, /* move values to lo 64b */
|
|
12, 4, 14, 6);
|
|
split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
|
|
*(uint64_t *)split_packet = _mm_cvtsi128_si64(split_bits);
|
|
split_packet += RTE_I40E_DESCS_PER_LOOP_AVX;
|
|
}
|
|
|
|
/* perform dd_check */
|
|
status0_7 = _mm256_and_si256(status0_7, dd_check);
|
|
status0_7 = _mm256_packs_epi32(status0_7,
|
|
_mm256_setzero_si256());
|
|
|
|
uint64_t burst = __builtin_popcountll(_mm_cvtsi128_si64(
|
|
_mm256_extracti128_si256(status0_7, 1)));
|
|
burst += __builtin_popcountll(_mm_cvtsi128_si64(
|
|
_mm256_castsi256_si128(status0_7)));
|
|
received += burst;
|
|
if (burst != RTE_I40E_DESCS_PER_LOOP_AVX)
|
|
break;
|
|
}
|
|
|
|
/* update tail pointers */
|
|
rxq->rx_tail += received;
|
|
rxq->rx_tail &= (rxq->nb_rx_desc - 1);
|
|
if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
|
|
rxq->rx_tail--;
|
|
received--;
|
|
}
|
|
rxq->rxrearm_nb += received;
|
|
return received;
|
|
}
|
|
|
|
/*
|
|
* Notice:
|
|
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
|
|
*/
|
|
uint16_t
|
|
i40e_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
return _recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
|
|
}
|
|
|
|
/*
|
|
* vPMD receive routine that reassembles single burst of 32 scattered packets
|
|
* Notice:
|
|
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
|
|
*/
|
|
static uint16_t
|
|
i40e_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct i40e_rx_queue *rxq = rx_queue;
|
|
uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
|
|
|
|
/* get some new buffers */
|
|
uint16_t nb_bufs = _recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
|
|
split_flags);
|
|
if (nb_bufs == 0)
|
|
return 0;
|
|
|
|
/* happy day case, full burst + no packets to be joined */
|
|
const uint64_t *split_fl64 = (uint64_t *)split_flags;
|
|
|
|
if (rxq->pkt_first_seg == NULL &&
|
|
split_fl64[0] == 0 && split_fl64[1] == 0 &&
|
|
split_fl64[2] == 0 && split_fl64[3] == 0)
|
|
return nb_bufs;
|
|
|
|
/* reassemble any packets that need reassembly*/
|
|
unsigned int i = 0;
|
|
|
|
if (rxq->pkt_first_seg == NULL) {
|
|
/* find the first split flag, and only reassemble then*/
|
|
while (i < nb_bufs && !split_flags[i])
|
|
i++;
|
|
if (i == nb_bufs)
|
|
return nb_bufs;
|
|
rxq->pkt_first_seg = rx_pkts[i];
|
|
}
|
|
return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
|
|
&split_flags[i]);
|
|
}
|
|
|
|
/*
|
|
* vPMD receive routine that reassembles scattered packets.
|
|
* Main receive routine that can handle arbitrary burst sizes
|
|
* Notice:
|
|
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
|
|
*/
|
|
uint16_t
|
|
i40e_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t retval = 0;
|
|
while (nb_pkts > RTE_I40E_VPMD_RX_BURST) {
|
|
uint16_t burst = i40e_recv_scattered_burst_vec_avx2(rx_queue,
|
|
rx_pkts + retval, RTE_I40E_VPMD_RX_BURST);
|
|
retval += burst;
|
|
nb_pkts -= burst;
|
|
if (burst < RTE_I40E_VPMD_RX_BURST)
|
|
return retval;
|
|
}
|
|
return retval + i40e_recv_scattered_burst_vec_avx2(rx_queue,
|
|
rx_pkts + retval, nb_pkts);
|
|
}
|
|
|
|
|
|
static inline void
|
|
vtx1(volatile struct i40e_tx_desc *txdp,
|
|
struct rte_mbuf *pkt, uint64_t flags)
|
|
{
|
|
uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
|
|
((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT) |
|
|
((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
|
|
|
|
__m128i descriptor = _mm_set_epi64x(high_qw,
|
|
pkt->buf_physaddr + pkt->data_off);
|
|
_mm_store_si128((__m128i *)txdp, descriptor);
|
|
}
|
|
|
|
static inline void
|
|
vtx(volatile struct i40e_tx_desc *txdp,
|
|
struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
|
|
{
|
|
const uint64_t hi_qw_tmpl = (I40E_TX_DESC_DTYPE_DATA |
|
|
((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT));
|
|
|
|
/* if unaligned on 32-bit boundary, do one to align */
|
|
if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
|
|
vtx1(txdp, *pkt, flags);
|
|
nb_pkts--, txdp++, pkt++;
|
|
}
|
|
|
|
/* do two at a time while possible, in bursts */
|
|
for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
|
|
uint64_t hi_qw3 = hi_qw_tmpl |
|
|
((uint64_t)pkt[3]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
|
|
uint64_t hi_qw2 = hi_qw_tmpl |
|
|
((uint64_t)pkt[2]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
|
|
uint64_t hi_qw1 = hi_qw_tmpl |
|
|
((uint64_t)pkt[1]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
|
|
uint64_t hi_qw0 = hi_qw_tmpl |
|
|
((uint64_t)pkt[0]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
|
|
|
|
__m256i desc2_3 = _mm256_set_epi64x(
|
|
hi_qw3, pkt[3]->buf_physaddr + pkt[3]->data_off,
|
|
hi_qw2, pkt[2]->buf_physaddr + pkt[2]->data_off);
|
|
__m256i desc0_1 = _mm256_set_epi64x(
|
|
hi_qw1, pkt[1]->buf_physaddr + pkt[1]->data_off,
|
|
hi_qw0, pkt[0]->buf_physaddr + pkt[0]->data_off);
|
|
_mm256_store_si256((void *)(txdp + 2), desc2_3);
|
|
_mm256_store_si256((void *)txdp, desc0_1);
|
|
}
|
|
|
|
/* do any last ones */
|
|
while (nb_pkts) {
|
|
vtx1(txdp, *pkt, flags);
|
|
txdp++, pkt++, nb_pkts--;
|
|
}
|
|
}
|
|
|
|
static inline uint16_t
|
|
i40e_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
|
|
volatile struct i40e_tx_desc *txdp;
|
|
struct i40e_tx_entry *txep;
|
|
uint16_t n, nb_commit, tx_id;
|
|
uint64_t flags = I40E_TD_CMD;
|
|
uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
|
|
|
|
/* cross rx_thresh boundary is not allowed */
|
|
nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
|
|
|
|
if (txq->nb_tx_free < txq->tx_free_thresh)
|
|
i40e_tx_free_bufs(txq);
|
|
|
|
nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
|
|
if (unlikely(nb_pkts == 0))
|
|
return 0;
|
|
|
|
tx_id = txq->tx_tail;
|
|
txdp = &txq->tx_ring[tx_id];
|
|
txep = &txq->sw_ring[tx_id];
|
|
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
|
|
|
|
n = (uint16_t)(txq->nb_tx_desc - tx_id);
|
|
if (nb_commit >= n) {
|
|
tx_backlog_entry(txep, tx_pkts, n);
|
|
|
|
vtx(txdp, tx_pkts, n - 1, flags);
|
|
tx_pkts += (n - 1);
|
|
txdp += (n - 1);
|
|
|
|
vtx1(txdp, *tx_pkts++, rs);
|
|
|
|
nb_commit = (uint16_t)(nb_commit - n);
|
|
|
|
tx_id = 0;
|
|
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
|
|
/* avoid reach the end of ring */
|
|
txdp = &txq->tx_ring[tx_id];
|
|
txep = &txq->sw_ring[tx_id];
|
|
}
|
|
|
|
tx_backlog_entry(txep, tx_pkts, nb_commit);
|
|
|
|
vtx(txdp, tx_pkts, nb_commit, flags);
|
|
|
|
tx_id = (uint16_t)(tx_id + nb_commit);
|
|
if (tx_id > txq->tx_next_rs) {
|
|
txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
|
|
rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
|
|
I40E_TXD_QW1_CMD_SHIFT);
|
|
txq->tx_next_rs =
|
|
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
|
|
}
|
|
|
|
txq->tx_tail = tx_id;
|
|
|
|
I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
uint16_t
|
|
i40e_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t nb_tx = 0;
|
|
struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
|
|
|
|
while (nb_pkts) {
|
|
uint16_t ret, num;
|
|
|
|
num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
|
|
ret = i40e_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
|
|
num);
|
|
nb_tx += ret;
|
|
nb_pkts -= ret;
|
|
if (ret < num)
|
|
break;
|
|
}
|
|
|
|
return nb_tx;
|
|
}
|