f-stack/dpdk/drivers/common/qat/qat_qp.c

685 lines
18 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2015-2018 Intel Corporation
*/
#include <rte_common.h>
#include <rte_dev.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_atomic.h>
#include <rte_prefetch.h>
#include "qat_logs.h"
#include "qat_device.h"
#include "qat_qp.h"
#include "qat_sym.h"
#include "qat_comp.h"
#include "adf_transport_access_macros.h"
#define ADF_MAX_DESC 4096
#define ADF_MIN_DESC 128
#define ADF_ARB_REG_SLOT 0x1000
#define ADF_ARB_RINGSRVARBEN_OFFSET 0x19C
#define WRITE_CSR_ARB_RINGSRVARBEN(csr_addr, index, value) \
ADF_CSR_WR(csr_addr, ADF_ARB_RINGSRVARBEN_OFFSET + \
(ADF_ARB_REG_SLOT * index), value)
__extension__
const struct qat_qp_hw_data qat_gen1_qps[QAT_MAX_SERVICES]
[ADF_MAX_QPS_ON_ANY_SERVICE] = {
/* queue pairs which provide an asymmetric crypto service */
[QAT_SERVICE_ASYMMETRIC] = {
{
.service_type = QAT_SERVICE_ASYMMETRIC,
.hw_bundle_num = 0,
.tx_ring_num = 0,
.rx_ring_num = 8,
.tx_msg_size = 64,
.rx_msg_size = 32,
}, {
.service_type = QAT_SERVICE_ASYMMETRIC,
.hw_bundle_num = 0,
.tx_ring_num = 1,
.rx_ring_num = 9,
.tx_msg_size = 64,
.rx_msg_size = 32,
}
},
/* queue pairs which provide a symmetric crypto service */
[QAT_SERVICE_SYMMETRIC] = {
{
.service_type = QAT_SERVICE_SYMMETRIC,
.hw_bundle_num = 0,
.tx_ring_num = 2,
.rx_ring_num = 10,
.tx_msg_size = 128,
.rx_msg_size = 32,
},
{
.service_type = QAT_SERVICE_SYMMETRIC,
.hw_bundle_num = 0,
.tx_ring_num = 3,
.rx_ring_num = 11,
.tx_msg_size = 128,
.rx_msg_size = 32,
}
},
/* queue pairs which provide a compression service */
[QAT_SERVICE_COMPRESSION] = {
{
.service_type = QAT_SERVICE_COMPRESSION,
.hw_bundle_num = 0,
.tx_ring_num = 6,
.rx_ring_num = 14,
.tx_msg_size = 128,
.rx_msg_size = 32,
}, {
.service_type = QAT_SERVICE_COMPRESSION,
.hw_bundle_num = 0,
.tx_ring_num = 7,
.rx_ring_num = 15,
.tx_msg_size = 128,
.rx_msg_size = 32,
}
}
};
__extension__
const struct qat_qp_hw_data qat_gen3_qps[QAT_MAX_SERVICES]
[ADF_MAX_QPS_ON_ANY_SERVICE] = {
/* queue pairs which provide an asymmetric crypto service */
[QAT_SERVICE_ASYMMETRIC] = {
{
.service_type = QAT_SERVICE_ASYMMETRIC,
.hw_bundle_num = 0,
.tx_ring_num = 0,
.rx_ring_num = 4,
.tx_msg_size = 64,
.rx_msg_size = 32,
}
},
/* queue pairs which provide a symmetric crypto service */
[QAT_SERVICE_SYMMETRIC] = {
{
.service_type = QAT_SERVICE_SYMMETRIC,
.hw_bundle_num = 0,
.tx_ring_num = 1,
.rx_ring_num = 5,
.tx_msg_size = 128,
.rx_msg_size = 32,
}
},
/* queue pairs which provide a compression service */
[QAT_SERVICE_COMPRESSION] = {
{
.service_type = QAT_SERVICE_COMPRESSION,
.hw_bundle_num = 0,
.tx_ring_num = 3,
.rx_ring_num = 7,
.tx_msg_size = 128,
.rx_msg_size = 32,
}
}
};
static int qat_qp_check_queue_alignment(uint64_t phys_addr,
uint32_t queue_size_bytes);
static void qat_queue_delete(struct qat_queue *queue);
static int qat_queue_create(struct qat_pci_device *qat_dev,
struct qat_queue *queue, struct qat_qp_config *, uint8_t dir);
static int adf_verify_queue_size(uint32_t msg_size, uint32_t msg_num,
uint32_t *queue_size_for_csr);
static void adf_configure_queues(struct qat_qp *queue);
static void adf_queue_arb_enable(struct qat_queue *txq, void *base_addr,
rte_spinlock_t *lock);
static void adf_queue_arb_disable(struct qat_queue *txq, void *base_addr,
rte_spinlock_t *lock);
int qat_qps_per_service(const struct qat_qp_hw_data *qp_hw_data,
enum qat_service_type service)
{
int i, count;
for (i = 0, count = 0; i < ADF_MAX_QPS_ON_ANY_SERVICE; i++)
if (qp_hw_data[i].service_type == service)
count++;
return count;
}
static const struct rte_memzone *
queue_dma_zone_reserve(const char *queue_name, uint32_t queue_size,
int socket_id)
{
const struct rte_memzone *mz;
mz = rte_memzone_lookup(queue_name);
if (mz != 0) {
if (((size_t)queue_size <= mz->len) &&
((socket_id == SOCKET_ID_ANY) ||
(socket_id == mz->socket_id))) {
QAT_LOG(DEBUG, "re-use memzone already "
"allocated for %s", queue_name);
return mz;
}
QAT_LOG(ERR, "Incompatible memzone already "
"allocated %s, size %u, socket %d. "
"Requested size %u, socket %u",
queue_name, (uint32_t)mz->len,
mz->socket_id, queue_size, socket_id);
return NULL;
}
QAT_LOG(DEBUG, "Allocate memzone for %s, size %u on socket %u",
queue_name, queue_size, socket_id);
return rte_memzone_reserve_aligned(queue_name, queue_size,
socket_id, RTE_MEMZONE_IOVA_CONTIG, queue_size);
}
int qat_qp_setup(struct qat_pci_device *qat_dev,
struct qat_qp **qp_addr,
uint16_t queue_pair_id,
struct qat_qp_config *qat_qp_conf)
{
struct qat_qp *qp;
struct rte_pci_device *pci_dev = qat_dev->pci_dev;
char op_cookie_pool_name[RTE_RING_NAMESIZE];
uint32_t i;
QAT_LOG(DEBUG, "Setup qp %u on qat pci device %d gen %d",
queue_pair_id, qat_dev->qat_dev_id, qat_dev->qat_dev_gen);
if ((qat_qp_conf->nb_descriptors > ADF_MAX_DESC) ||
(qat_qp_conf->nb_descriptors < ADF_MIN_DESC)) {
QAT_LOG(ERR, "Can't create qp for %u descriptors",
qat_qp_conf->nb_descriptors);
return -EINVAL;
}
if (pci_dev->mem_resource[0].addr == NULL) {
QAT_LOG(ERR, "Could not find VF config space "
"(UIO driver attached?).");
return -EINVAL;
}
/* Allocate the queue pair data structure. */
qp = rte_zmalloc_socket("qat PMD qp metadata",
sizeof(*qp), RTE_CACHE_LINE_SIZE,
qat_qp_conf->socket_id);
if (qp == NULL) {
QAT_LOG(ERR, "Failed to alloc mem for qp struct");
return -ENOMEM;
}
qp->nb_descriptors = qat_qp_conf->nb_descriptors;
qp->op_cookies = rte_zmalloc_socket("qat PMD op cookie pointer",
qat_qp_conf->nb_descriptors * sizeof(*qp->op_cookies),
RTE_CACHE_LINE_SIZE, qat_qp_conf->socket_id);
if (qp->op_cookies == NULL) {
QAT_LOG(ERR, "Failed to alloc mem for cookie");
rte_free(qp);
return -ENOMEM;
}
qp->mmap_bar_addr = pci_dev->mem_resource[0].addr;
qp->inflights16 = 0;
if (qat_queue_create(qat_dev, &(qp->tx_q), qat_qp_conf,
ADF_RING_DIR_TX) != 0) {
QAT_LOG(ERR, "Tx queue create failed "
"queue_pair_id=%u", queue_pair_id);
goto create_err;
}
if (qat_queue_create(qat_dev, &(qp->rx_q), qat_qp_conf,
ADF_RING_DIR_RX) != 0) {
QAT_LOG(ERR, "Rx queue create failed "
"queue_pair_id=%hu", queue_pair_id);
qat_queue_delete(&(qp->tx_q));
goto create_err;
}
adf_configure_queues(qp);
adf_queue_arb_enable(&qp->tx_q, qp->mmap_bar_addr,
&qat_dev->arb_csr_lock);
snprintf(op_cookie_pool_name, RTE_RING_NAMESIZE,
"%s%d_cookies_%s_qp%hu",
pci_dev->driver->driver.name, qat_dev->qat_dev_id,
qat_qp_conf->service_str, queue_pair_id);
QAT_LOG(DEBUG, "cookiepool: %s", op_cookie_pool_name);
qp->op_cookie_pool = rte_mempool_lookup(op_cookie_pool_name);
if (qp->op_cookie_pool == NULL)
qp->op_cookie_pool = rte_mempool_create(op_cookie_pool_name,
qp->nb_descriptors,
qat_qp_conf->cookie_size, 64, 0,
NULL, NULL, NULL, NULL,
qat_dev->pci_dev->device.numa_node,
0);
if (!qp->op_cookie_pool) {
QAT_LOG(ERR, "QAT PMD Cannot create"
" op mempool");
goto create_err;
}
for (i = 0; i < qp->nb_descriptors; i++) {
if (rte_mempool_get(qp->op_cookie_pool, &qp->op_cookies[i])) {
QAT_LOG(ERR, "QAT PMD Cannot get op_cookie");
goto create_err;
}
}
qp->qat_dev_gen = qat_dev->qat_dev_gen;
qp->build_request = qat_qp_conf->build_request;
qp->service_type = qat_qp_conf->hw->service_type;
qp->qat_dev = qat_dev;
QAT_LOG(DEBUG, "QP setup complete: id: %d, cookiepool: %s",
queue_pair_id, op_cookie_pool_name);
*qp_addr = qp;
return 0;
create_err:
if (qp->op_cookie_pool)
rte_mempool_free(qp->op_cookie_pool);
rte_free(qp->op_cookies);
rte_free(qp);
return -EFAULT;
}
int qat_qp_release(struct qat_qp **qp_addr)
{
struct qat_qp *qp = *qp_addr;
uint32_t i;
if (qp == NULL) {
QAT_LOG(DEBUG, "qp already freed");
return 0;
}
QAT_LOG(DEBUG, "Free qp on qat_pci device %d",
qp->qat_dev->qat_dev_id);
/* Don't free memory if there are still responses to be processed */
if (qp->inflights16 == 0) {
qat_queue_delete(&(qp->tx_q));
qat_queue_delete(&(qp->rx_q));
} else {
return -EAGAIN;
}
adf_queue_arb_disable(&(qp->tx_q), qp->mmap_bar_addr,
&qp->qat_dev->arb_csr_lock);
for (i = 0; i < qp->nb_descriptors; i++)
rte_mempool_put(qp->op_cookie_pool, qp->op_cookies[i]);
if (qp->op_cookie_pool)
rte_mempool_free(qp->op_cookie_pool);
rte_free(qp->op_cookies);
rte_free(qp);
*qp_addr = NULL;
return 0;
}
static void qat_queue_delete(struct qat_queue *queue)
{
const struct rte_memzone *mz;
int status = 0;
if (queue == NULL) {
QAT_LOG(DEBUG, "Invalid queue");
return;
}
QAT_LOG(DEBUG, "Free ring %d, memzone: %s",
queue->hw_queue_number, queue->memz_name);
mz = rte_memzone_lookup(queue->memz_name);
if (mz != NULL) {
/* Write an unused pattern to the queue memory. */
memset(queue->base_addr, 0x7F, queue->queue_size);
status = rte_memzone_free(mz);
if (status != 0)
QAT_LOG(ERR, "Error %d on freeing queue %s",
status, queue->memz_name);
} else {
QAT_LOG(DEBUG, "queue %s doesn't exist",
queue->memz_name);
}
}
static int
qat_queue_create(struct qat_pci_device *qat_dev, struct qat_queue *queue,
struct qat_qp_config *qp_conf, uint8_t dir)
{
uint64_t queue_base;
void *io_addr;
const struct rte_memzone *qp_mz;
struct rte_pci_device *pci_dev = qat_dev->pci_dev;
int ret = 0;
uint16_t desc_size = (dir == ADF_RING_DIR_TX ?
qp_conf->hw->tx_msg_size : qp_conf->hw->rx_msg_size);
uint32_t queue_size_bytes = (qp_conf->nb_descriptors)*(desc_size);
queue->hw_bundle_number = qp_conf->hw->hw_bundle_num;
queue->hw_queue_number = (dir == ADF_RING_DIR_TX ?
qp_conf->hw->tx_ring_num : qp_conf->hw->rx_ring_num);
if (desc_size > ADF_MSG_SIZE_TO_BYTES(ADF_MAX_MSG_SIZE)) {
QAT_LOG(ERR, "Invalid descriptor size %d", desc_size);
return -EINVAL;
}
/*
* Allocate a memzone for the queue - create a unique name.
*/
snprintf(queue->memz_name, sizeof(queue->memz_name),
"%s_%d_%s_%s_%d_%d",
pci_dev->driver->driver.name, qat_dev->qat_dev_id,
qp_conf->service_str, "qp_mem",
queue->hw_bundle_number, queue->hw_queue_number);
qp_mz = queue_dma_zone_reserve(queue->memz_name, queue_size_bytes,
qat_dev->pci_dev->device.numa_node);
if (qp_mz == NULL) {
QAT_LOG(ERR, "Failed to allocate ring memzone");
return -ENOMEM;
}
queue->base_addr = (char *)qp_mz->addr;
queue->base_phys_addr = qp_mz->iova;
if (qat_qp_check_queue_alignment(queue->base_phys_addr,
queue_size_bytes)) {
QAT_LOG(ERR, "Invalid alignment on queue create "
" 0x%"PRIx64"\n",
queue->base_phys_addr);
ret = -EFAULT;
goto queue_create_err;
}
if (adf_verify_queue_size(desc_size, qp_conf->nb_descriptors,
&(queue->queue_size)) != 0) {
QAT_LOG(ERR, "Invalid num inflights");
ret = -EINVAL;
goto queue_create_err;
}
queue->max_inflights = ADF_MAX_INFLIGHTS(queue->queue_size,
ADF_BYTES_TO_MSG_SIZE(desc_size));
queue->modulo_mask = (1 << ADF_RING_SIZE_MODULO(queue->queue_size)) - 1;
if (queue->max_inflights < 2) {
QAT_LOG(ERR, "Invalid num inflights");
ret = -EINVAL;
goto queue_create_err;
}
queue->head = 0;
queue->tail = 0;
queue->msg_size = desc_size;
/*
* Write an unused pattern to the queue memory.
*/
memset(queue->base_addr, 0x7F, queue_size_bytes);
queue_base = BUILD_RING_BASE_ADDR(queue->base_phys_addr,
queue->queue_size);
io_addr = pci_dev->mem_resource[0].addr;
WRITE_CSR_RING_BASE(io_addr, queue->hw_bundle_number,
queue->hw_queue_number, queue_base);
QAT_LOG(DEBUG, "RING: Name:%s, size in CSR: %u, in bytes %u,"
" nb msgs %u, msg_size %u, max_inflights %u modulo mask %u",
queue->memz_name,
queue->queue_size, queue_size_bytes,
qp_conf->nb_descriptors, desc_size,
queue->max_inflights, queue->modulo_mask);
return 0;
queue_create_err:
rte_memzone_free(qp_mz);
return ret;
}
static int qat_qp_check_queue_alignment(uint64_t phys_addr,
uint32_t queue_size_bytes)
{
if (((queue_size_bytes - 1) & phys_addr) != 0)
return -EINVAL;
return 0;
}
static int adf_verify_queue_size(uint32_t msg_size, uint32_t msg_num,
uint32_t *p_queue_size_for_csr)
{
uint8_t i = ADF_MIN_RING_SIZE;
for (; i <= ADF_MAX_RING_SIZE; i++)
if ((msg_size * msg_num) ==
(uint32_t)ADF_SIZE_TO_RING_SIZE_IN_BYTES(i)) {
*p_queue_size_for_csr = i;
return 0;
}
QAT_LOG(ERR, "Invalid ring size %d", msg_size * msg_num);
return -EINVAL;
}
static void adf_queue_arb_enable(struct qat_queue *txq, void *base_addr,
rte_spinlock_t *lock)
{
uint32_t arb_csr_offset = ADF_ARB_RINGSRVARBEN_OFFSET +
(ADF_ARB_REG_SLOT *
txq->hw_bundle_number);
uint32_t value;
rte_spinlock_lock(lock);
value = ADF_CSR_RD(base_addr, arb_csr_offset);
value |= (0x01 << txq->hw_queue_number);
ADF_CSR_WR(base_addr, arb_csr_offset, value);
rte_spinlock_unlock(lock);
}
static void adf_queue_arb_disable(struct qat_queue *txq, void *base_addr,
rte_spinlock_t *lock)
{
uint32_t arb_csr_offset = ADF_ARB_RINGSRVARBEN_OFFSET +
(ADF_ARB_REG_SLOT *
txq->hw_bundle_number);
uint32_t value;
rte_spinlock_lock(lock);
value = ADF_CSR_RD(base_addr, arb_csr_offset);
value &= ~(0x01 << txq->hw_queue_number);
ADF_CSR_WR(base_addr, arb_csr_offset, value);
rte_spinlock_unlock(lock);
}
static void adf_configure_queues(struct qat_qp *qp)
{
uint32_t queue_config;
struct qat_queue *queue = &qp->tx_q;
queue_config = BUILD_RING_CONFIG(queue->queue_size);
WRITE_CSR_RING_CONFIG(qp->mmap_bar_addr, queue->hw_bundle_number,
queue->hw_queue_number, queue_config);
queue = &qp->rx_q;
queue_config =
BUILD_RESP_RING_CONFIG(queue->queue_size,
ADF_RING_NEAR_WATERMARK_512,
ADF_RING_NEAR_WATERMARK_0);
WRITE_CSR_RING_CONFIG(qp->mmap_bar_addr, queue->hw_bundle_number,
queue->hw_queue_number, queue_config);
}
static inline uint32_t adf_modulo(uint32_t data, uint32_t modulo_mask)
{
return data & modulo_mask;
}
static inline void
txq_write_tail(struct qat_qp *qp, struct qat_queue *q) {
WRITE_CSR_RING_TAIL(qp->mmap_bar_addr, q->hw_bundle_number,
q->hw_queue_number, q->tail);
q->nb_pending_requests = 0;
q->csr_tail = q->tail;
}
static inline
void rxq_free_desc(struct qat_qp *qp, struct qat_queue *q)
{
uint32_t old_head, new_head;
uint32_t max_head;
old_head = q->csr_head;
new_head = q->head;
max_head = qp->nb_descriptors * q->msg_size;
/* write out free descriptors */
void *cur_desc = (uint8_t *)q->base_addr + old_head;
if (new_head < old_head) {
memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, max_head - old_head);
memset(q->base_addr, ADF_RING_EMPTY_SIG_BYTE, new_head);
} else {
memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, new_head - old_head);
}
q->nb_processed_responses = 0;
q->csr_head = new_head;
/* write current head to CSR */
WRITE_CSR_RING_HEAD(qp->mmap_bar_addr, q->hw_bundle_number,
q->hw_queue_number, new_head);
}
uint16_t
qat_enqueue_op_burst(void *qp, void **ops, uint16_t nb_ops)
{
register struct qat_queue *queue;
struct qat_qp *tmp_qp = (struct qat_qp *)qp;
register uint32_t nb_ops_sent = 0;
register int ret;
uint16_t nb_ops_possible = nb_ops;
register uint8_t *base_addr;
register uint32_t tail;
int overflow;
if (unlikely(nb_ops == 0))
return 0;
/* read params used a lot in main loop into registers */
queue = &(tmp_qp->tx_q);
base_addr = (uint8_t *)queue->base_addr;
tail = queue->tail;
/* Find how many can actually fit on the ring */
tmp_qp->inflights16 += nb_ops;
overflow = tmp_qp->inflights16 - queue->max_inflights;
if (overflow > 0) {
tmp_qp->inflights16 -= overflow;
nb_ops_possible = nb_ops - overflow;
if (nb_ops_possible == 0)
return 0;
}
while (nb_ops_sent != nb_ops_possible) {
ret = tmp_qp->build_request(*ops, base_addr + tail,
tmp_qp->op_cookies[tail / queue->msg_size],
tmp_qp->qat_dev_gen);
if (ret != 0) {
tmp_qp->stats.enqueue_err_count++;
/*
* This message cannot be enqueued,
* decrease number of ops that wasn't sent
*/
tmp_qp->inflights16 -= nb_ops_possible - nb_ops_sent;
if (nb_ops_sent == 0)
return 0;
goto kick_tail;
}
tail = adf_modulo(tail + queue->msg_size, queue->modulo_mask);
ops++;
nb_ops_sent++;
}
kick_tail:
queue->tail = tail;
tmp_qp->stats.enqueued_count += nb_ops_sent;
queue->nb_pending_requests += nb_ops_sent;
if (tmp_qp->inflights16 < QAT_CSR_TAIL_FORCE_WRITE_THRESH ||
queue->nb_pending_requests > QAT_CSR_TAIL_WRITE_THRESH) {
txq_write_tail(tmp_qp, queue);
}
return nb_ops_sent;
}
uint16_t
qat_dequeue_op_burst(void *qp, void **ops, uint16_t nb_ops)
{
struct qat_queue *rx_queue, *tx_queue;
struct qat_qp *tmp_qp = (struct qat_qp *)qp;
uint32_t head;
uint32_t resp_counter = 0;
uint8_t *resp_msg;
rx_queue = &(tmp_qp->rx_q);
tx_queue = &(tmp_qp->tx_q);
head = rx_queue->head;
resp_msg = (uint8_t *)rx_queue->base_addr + rx_queue->head;
while (*(uint32_t *)resp_msg != ADF_RING_EMPTY_SIG &&
resp_counter != nb_ops) {
if (tmp_qp->service_type == QAT_SERVICE_SYMMETRIC)
qat_sym_process_response(ops, resp_msg);
else if (tmp_qp->service_type == QAT_SERVICE_COMPRESSION)
qat_comp_process_response(ops, resp_msg,
&tmp_qp->stats.dequeue_err_count);
head = adf_modulo(head + rx_queue->msg_size,
rx_queue->modulo_mask);
resp_msg = (uint8_t *)rx_queue->base_addr + head;
ops++;
resp_counter++;
}
if (resp_counter > 0) {
rx_queue->head = head;
tmp_qp->stats.dequeued_count += resp_counter;
rx_queue->nb_processed_responses += resp_counter;
tmp_qp->inflights16 -= resp_counter;
if (rx_queue->nb_processed_responses >
QAT_CSR_HEAD_WRITE_THRESH)
rxq_free_desc(tmp_qp, rx_queue);
}
/* also check if tail needs to be advanced */
if (tmp_qp->inflights16 <= QAT_CSR_TAIL_FORCE_WRITE_THRESH &&
tx_queue->tail != tx_queue->csr_tail) {
txq_write_tail(tmp_qp, tx_queue);
}
return resp_counter;
}
__rte_weak int
qat_comp_process_response(void **op __rte_unused, uint8_t *resp __rte_unused,
uint64_t *dequeue_err_count __rte_unused)
{
return 0;
}