f-stack/dpdk/drivers/net/sfc/sfc_dp_tx.h

297 lines
7.8 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2016-2018 Solarflare Communications Inc.
* All rights reserved.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*/
#ifndef _SFC_DP_TX_H
#define _SFC_DP_TX_H
#include <rte_ethdev_driver.h>
#include "sfc_dp.h"
#include "sfc_debug.h"
#include "sfc_tso.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* Generic transmit queue information used on data path.
* It must be kept as small as it is possible since it is built into
* the structure used on datapath.
*/
struct sfc_dp_txq {
struct sfc_dp_queue dpq;
};
/** Datapath transmit queue descriptor number limitations */
struct sfc_dp_tx_hw_limits {
unsigned int txq_max_entries;
unsigned int txq_min_entries;
};
/**
* Datapath transmit queue creation information.
*
* The structure is used just to pass information from control path to
* datapath. It could be just function arguments, but it would be hardly
* readable.
*/
struct sfc_dp_tx_qcreate_info {
/** Maximum number of pushed Tx descriptors */
unsigned int max_fill_level;
/** Minimum number of unused Tx descriptors to do reap */
unsigned int free_thresh;
/** Offloads enabled on the transmit queue */
uint64_t offloads;
/** Tx queue size */
unsigned int txq_entries;
/** Maximum size of data in the DMA descriptor */
uint16_t dma_desc_size_max;
/** DMA-mapped Tx descriptors ring */
void *txq_hw_ring;
/** Associated event queue size */
unsigned int evq_entries;
/** Hardware event ring */
void *evq_hw_ring;
/** The queue index in hardware (required to push right doorbell) */
unsigned int hw_index;
/** Virtual address of the memory-mapped BAR to push Tx doorbell */
volatile void *mem_bar;
/** VI window size shift */
unsigned int vi_window_shift;
/**
* Maximum number of bytes into the packet the TCP header can start for
* the hardware to apply TSO packet edits.
*/
uint16_t tso_tcp_header_offset_limit;
};
/**
* Get Tx datapath specific device info.
*
* @param dev_info Device info to be adjusted
*/
typedef void (sfc_dp_tx_get_dev_info_t)(struct rte_eth_dev_info *dev_info);
/**
* Get size of transmit and event queue rings by the number of Tx
* descriptors.
*
* @param nb_tx_desc Number of Tx descriptors
* @param txq_entries Location for number of Tx ring entries
* @param evq_entries Location for number of event ring entries
* @param txq_max_fill_level Location for maximum Tx ring fill level
*
* @return 0 or positive errno.
*/
typedef int (sfc_dp_tx_qsize_up_rings_t)(uint16_t nb_tx_desc,
struct sfc_dp_tx_hw_limits *limits,
unsigned int *txq_entries,
unsigned int *evq_entries,
unsigned int *txq_max_fill_level);
/**
* Allocate and initialize datapath transmit queue.
*
* @param port_id The port identifier
* @param queue_id The queue identifier
* @param pci_addr PCI function address
* @param socket_id Socket identifier to allocate memory
* @param info Tx queue details wrapped in structure
* @param dp_txqp Location for generic datapath transmit queue pointer
*
* @return 0 or positive errno.
*/
typedef int (sfc_dp_tx_qcreate_t)(uint16_t port_id, uint16_t queue_id,
const struct rte_pci_addr *pci_addr,
int socket_id,
const struct sfc_dp_tx_qcreate_info *info,
struct sfc_dp_txq **dp_txqp);
/**
* Free resources allocated for datapath transmit queue.
*/
typedef void (sfc_dp_tx_qdestroy_t)(struct sfc_dp_txq *dp_txq);
/**
* Transmit queue start callback.
*
* It handovers EvQ to the datapath.
*/
typedef int (sfc_dp_tx_qstart_t)(struct sfc_dp_txq *dp_txq,
unsigned int evq_read_ptr,
unsigned int txq_desc_index);
/**
* Transmit queue stop function called before the queue flush.
*
* It returns EvQ to the control path.
*/
typedef void (sfc_dp_tx_qstop_t)(struct sfc_dp_txq *dp_txq,
unsigned int *evq_read_ptr);
/**
* Transmit event handler used during queue flush only.
*/
typedef bool (sfc_dp_tx_qtx_ev_t)(struct sfc_dp_txq *dp_txq, unsigned int id);
/**
* Transmit queue function called after the queue flush.
*/
typedef void (sfc_dp_tx_qreap_t)(struct sfc_dp_txq *dp_txq);
/**
* Check Tx descriptor status
*/
typedef int (sfc_dp_tx_qdesc_status_t)(struct sfc_dp_txq *dp_txq,
uint16_t offset);
/** Transmit datapath definition */
struct sfc_dp_tx {
struct sfc_dp dp;
unsigned int features;
#define SFC_DP_TX_FEAT_MULTI_PROCESS 0x1
/**
* Tx offload capabilities supported by the datapath on device
* level only if HW/FW supports it.
*/
uint64_t dev_offload_capa;
/**
* Tx offload capabilities supported by the datapath per-queue
* if HW/FW supports it.
*/
uint64_t queue_offload_capa;
sfc_dp_tx_get_dev_info_t *get_dev_info;
sfc_dp_tx_qsize_up_rings_t *qsize_up_rings;
sfc_dp_tx_qcreate_t *qcreate;
sfc_dp_tx_qdestroy_t *qdestroy;
sfc_dp_tx_qstart_t *qstart;
sfc_dp_tx_qstop_t *qstop;
sfc_dp_tx_qtx_ev_t *qtx_ev;
sfc_dp_tx_qreap_t *qreap;
sfc_dp_tx_qdesc_status_t *qdesc_status;
eth_tx_prep_t pkt_prepare;
eth_tx_burst_t pkt_burst;
};
static inline struct sfc_dp_tx *
sfc_dp_find_tx_by_name(struct sfc_dp_list *head, const char *name)
{
struct sfc_dp *p = sfc_dp_find_by_name(head, SFC_DP_TX, name);
return (p == NULL) ? NULL : container_of(p, struct sfc_dp_tx, dp);
}
static inline struct sfc_dp_tx *
sfc_dp_find_tx_by_caps(struct sfc_dp_list *head, unsigned int avail_caps)
{
struct sfc_dp *p = sfc_dp_find_by_caps(head, SFC_DP_TX, avail_caps);
return (p == NULL) ? NULL : container_of(p, struct sfc_dp_tx, dp);
}
/** Get Tx datapath ops by the datapath TxQ handle */
const struct sfc_dp_tx *sfc_dp_tx_by_dp_txq(const struct sfc_dp_txq *dp_txq);
static inline uint64_t
sfc_dp_tx_offload_capa(const struct sfc_dp_tx *dp_tx)
{
return dp_tx->dev_offload_capa | dp_tx->queue_offload_capa;
}
static inline int
sfc_dp_tx_prepare_pkt(struct rte_mbuf *m,
uint32_t tso_tcp_header_offset_limit,
unsigned int max_fill_level,
unsigned int nb_tso_descs,
unsigned int nb_vlan_descs)
{
unsigned int descs_required = m->nb_segs;
#ifdef RTE_LIBRTE_SFC_EFX_DEBUG
int ret;
ret = rte_validate_tx_offload(m);
if (ret != 0) {
/*
* Negative error code is returned by rte_validate_tx_offload(),
* but positive are used inside net/sfc PMD.
*/
SFC_ASSERT(ret < 0);
return -ret;
}
#endif
if (m->ol_flags & PKT_TX_TCP_SEG) {
unsigned int tcph_off = m->l2_len + m->l3_len;
unsigned int header_len;
switch (m->ol_flags & PKT_TX_TUNNEL_MASK) {
case 0:
break;
case PKT_TX_TUNNEL_VXLAN:
/* FALLTHROUGH */
case PKT_TX_TUNNEL_GENEVE:
if (!(m->ol_flags &
(PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IPV6)))
return EINVAL;
tcph_off += m->outer_l2_len + m->outer_l3_len;
}
header_len = tcph_off + m->l4_len;
if (unlikely(tcph_off > tso_tcp_header_offset_limit))
return EINVAL;
descs_required += nb_tso_descs;
/*
* Extra descriptor that is required when a packet header
* is separated from remaining content of the first segment.
*/
if (rte_pktmbuf_data_len(m) > header_len) {
descs_required++;
} else if (rte_pktmbuf_data_len(m) < header_len &&
unlikely(header_len > SFC_TSOH_STD_LEN)) {
/*
* Header linearization is required and
* the header is too big to be linearized
*/
return EINVAL;
}
}
/*
* The number of VLAN descriptors is added regardless of requested
* VLAN offload since VLAN is sticky and sending packet without VLAN
* insertion may require VLAN descriptor to reset the sticky to 0.
*/
descs_required += nb_vlan_descs;
/*
* Max fill level must be sufficient to hold all required descriptors
* to send the packet entirely.
*/
if (descs_required > max_fill_level)
return ENOBUFS;
return 0;
}
extern struct sfc_dp_tx sfc_efx_tx;
extern struct sfc_dp_tx sfc_ef10_tx;
extern struct sfc_dp_tx sfc_ef10_simple_tx;
#ifdef __cplusplus
}
#endif
#endif /* _SFC_DP_TX_H */