f-stack/dpdk/drivers/net/enetc/enetc_rxtx.c

329 lines
8.0 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2018-2019 NXP
*/
#include <stdbool.h>
#include <stdint.h>
#include <unistd.h>
#include "rte_ethdev.h"
#include "rte_malloc.h"
#include "rte_memzone.h"
#include "base/enetc_hw.h"
#include "enetc.h"
#include "enetc_logs.h"
#define ENETC_RXBD_BUNDLE 8 /* Number of BDs to update at once */
static int
enetc_clean_tx_ring(struct enetc_bdr *tx_ring)
{
int tx_frm_cnt = 0;
struct enetc_swbd *tx_swbd;
int i;
i = tx_ring->next_to_clean;
tx_swbd = &tx_ring->q_swbd[i];
while ((int)(enetc_rd_reg(tx_ring->tcisr) &
ENETC_TBCISR_IDX_MASK) != i) {
rte_pktmbuf_free(tx_swbd->buffer_addr);
tx_swbd->buffer_addr = NULL;
tx_swbd++;
i++;
if (unlikely(i == tx_ring->bd_count)) {
i = 0;
tx_swbd = &tx_ring->q_swbd[0];
}
tx_frm_cnt++;
}
tx_ring->next_to_clean = i;
return tx_frm_cnt++;
}
uint16_t
enetc_xmit_pkts(void *tx_queue,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct enetc_swbd *tx_swbd;
int i, start, bds_to_use;
struct enetc_tx_bd *txbd;
struct enetc_bdr *tx_ring = (struct enetc_bdr *)tx_queue;
i = tx_ring->next_to_use;
bds_to_use = enetc_bd_unused(tx_ring);
if (bds_to_use < nb_pkts)
nb_pkts = bds_to_use;
start = 0;
while (nb_pkts--) {
enetc_clean_tx_ring(tx_ring);
tx_ring->q_swbd[i].buffer_addr = tx_pkts[start];
txbd = ENETC_TXBD(*tx_ring, i);
tx_swbd = &tx_ring->q_swbd[i];
txbd->frm_len = tx_pkts[start]->pkt_len;
txbd->buf_len = txbd->frm_len;
txbd->flags = rte_cpu_to_le_16(ENETC_TXBD_FLAGS_F);
txbd->addr = (uint64_t)(uintptr_t)
rte_cpu_to_le_64((size_t)tx_swbd->buffer_addr->buf_iova +
tx_swbd->buffer_addr->data_off);
i++;
start++;
if (unlikely(i == tx_ring->bd_count))
i = 0;
}
tx_ring->next_to_use = i;
enetc_wr_reg(tx_ring->tcir, i);
return start;
}
int
enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
{
struct enetc_swbd *rx_swbd;
union enetc_rx_bd *rxbd;
int i, j;
i = rx_ring->next_to_use;
rx_swbd = &rx_ring->q_swbd[i];
rxbd = ENETC_RXBD(*rx_ring, i);
for (j = 0; j < buff_cnt; j++) {
rx_swbd->buffer_addr = (void *)(uintptr_t)
rte_cpu_to_le_64((uint64_t)(uintptr_t)
rte_pktmbuf_alloc(rx_ring->mb_pool));
rxbd->w.addr = (uint64_t)(uintptr_t)
rx_swbd->buffer_addr->buf_iova +
rx_swbd->buffer_addr->data_off;
/* clear 'R" as well */
rxbd->r.lstatus = 0;
rx_swbd++;
rxbd++;
i++;
if (unlikely(i == rx_ring->bd_count)) {
i = 0;
rxbd = ENETC_RXBD(*rx_ring, 0);
rx_swbd = &rx_ring->q_swbd[i];
}
}
if (likely(j)) {
rx_ring->next_to_alloc = i;
rx_ring->next_to_use = i;
enetc_wr_reg(rx_ring->rcir, i);
}
return j;
}
static inline void enetc_slow_parsing(struct rte_mbuf *m,
uint64_t parse_results)
{
m->ol_flags &= ~(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
switch (parse_results) {
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4;
m->ol_flags |= PKT_RX_IP_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6;
m->ol_flags |= PKT_RX_IP_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4_TCP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_TCP;
m->ol_flags |= PKT_RX_IP_CKSUM_GOOD |
PKT_RX_L4_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6_TCP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_TCP;
m->ol_flags |= PKT_RX_IP_CKSUM_GOOD |
PKT_RX_L4_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4_UDP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_UDP;
m->ol_flags |= PKT_RX_IP_CKSUM_GOOD |
PKT_RX_L4_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6_UDP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_UDP;
m->ol_flags |= PKT_RX_IP_CKSUM_GOOD |
PKT_RX_L4_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4_SCTP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_SCTP;
m->ol_flags |= PKT_RX_IP_CKSUM_GOOD |
PKT_RX_L4_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6_SCTP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_SCTP;
m->ol_flags |= PKT_RX_IP_CKSUM_GOOD |
PKT_RX_L4_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4_ICMP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_ICMP;
m->ol_flags |= PKT_RX_IP_CKSUM_GOOD |
PKT_RX_L4_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6_ICMP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_ICMP;
m->ol_flags |= PKT_RX_IP_CKSUM_GOOD |
PKT_RX_L4_CKSUM_BAD;
return;
/* More switch cases can be added */
default:
m->packet_type = RTE_PTYPE_UNKNOWN;
m->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN |
PKT_RX_L4_CKSUM_UNKNOWN;
}
}
static inline void __attribute__((hot))
enetc_dev_rx_parse(struct rte_mbuf *m, uint16_t parse_results)
{
ENETC_PMD_DP_DEBUG("parse summary = 0x%x ", parse_results);
m->ol_flags |= PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD;
switch (parse_results) {
case ENETC_PKT_TYPE_ETHER:
m->packet_type = RTE_PTYPE_L2_ETHER;
return;
case ENETC_PKT_TYPE_IPV4:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4;
return;
case ENETC_PKT_TYPE_IPV6:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6;
return;
case ENETC_PKT_TYPE_IPV4_TCP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_TCP;
return;
case ENETC_PKT_TYPE_IPV6_TCP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_TCP;
return;
case ENETC_PKT_TYPE_IPV4_UDP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_UDP;
return;
case ENETC_PKT_TYPE_IPV6_UDP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_UDP;
return;
case ENETC_PKT_TYPE_IPV4_SCTP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_SCTP;
return;
case ENETC_PKT_TYPE_IPV6_SCTP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_SCTP;
return;
case ENETC_PKT_TYPE_IPV4_ICMP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_ICMP;
return;
case ENETC_PKT_TYPE_IPV6_ICMP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_ICMP;
return;
/* More switch cases can be added */
default:
enetc_slow_parsing(m, parse_results);
}
}
static int
enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
struct rte_mbuf **rx_pkts,
int work_limit)
{
int rx_frm_cnt = 0;
int cleaned_cnt, i;
struct enetc_swbd *rx_swbd;
cleaned_cnt = enetc_bd_unused(rx_ring);
/* next descriptor to process */
i = rx_ring->next_to_clean;
rx_swbd = &rx_ring->q_swbd[i];
while (likely(rx_frm_cnt < work_limit)) {
union enetc_rx_bd *rxbd;
uint32_t bd_status;
if (cleaned_cnt >= ENETC_RXBD_BUNDLE) {
int count = enetc_refill_rx_ring(rx_ring, cleaned_cnt);
cleaned_cnt -= count;
}
rxbd = ENETC_RXBD(*rx_ring, i);
bd_status = rte_le_to_cpu_32(rxbd->r.lstatus);
if (!bd_status)
break;
rx_swbd->buffer_addr->pkt_len = rxbd->r.buf_len -
rx_ring->crc_len;
rx_swbd->buffer_addr->data_len = rxbd->r.buf_len -
rx_ring->crc_len;
rx_swbd->buffer_addr->hash.rss = rxbd->r.rss_hash;
rx_swbd->buffer_addr->ol_flags = 0;
enetc_dev_rx_parse(rx_swbd->buffer_addr,
rxbd->r.parse_summary);
rx_pkts[rx_frm_cnt] = rx_swbd->buffer_addr;
cleaned_cnt++;
rx_swbd++;
i++;
if (unlikely(i == rx_ring->bd_count)) {
i = 0;
rx_swbd = &rx_ring->q_swbd[i];
}
rx_ring->next_to_clean = i;
rx_frm_cnt++;
}
return rx_frm_cnt;
}
uint16_t
enetc_recv_pkts(void *rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct enetc_bdr *rx_ring = (struct enetc_bdr *)rxq;
return enetc_clean_rx_ring(rx_ring, rx_pkts, nb_pkts);
}