f-stack/dpdk/drivers/net/bonding/rte_eth_bond_pmd.c

3761 lines
102 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2017 Intel Corporation
*/
#include <stdlib.h>
#include <stdbool.h>
#include <netinet/in.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_ethdev_driver.h>
#include <rte_ethdev_vdev.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_ip.h>
#include <rte_ip_frag.h>
#include <rte_devargs.h>
#include <rte_kvargs.h>
#include <rte_bus_vdev.h>
#include <rte_alarm.h>
#include <rte_cycles.h>
#include <rte_string_fns.h>
#include "rte_eth_bond.h"
#include "eth_bond_private.h"
#include "eth_bond_8023ad_private.h"
#define REORDER_PERIOD_MS 10
#define DEFAULT_POLLING_INTERVAL_10_MS (10)
#define BOND_MAX_MAC_ADDRS 16
#define HASH_L4_PORTS(h) ((h)->src_port ^ (h)->dst_port)
/* Table for statistics in mode 5 TLB */
static uint64_t tlb_last_obytets[RTE_MAX_ETHPORTS];
static inline size_t
get_vlan_offset(struct rte_ether_hdr *eth_hdr, uint16_t *proto)
{
size_t vlan_offset = 0;
if (rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN) == *proto ||
rte_cpu_to_be_16(RTE_ETHER_TYPE_QINQ) == *proto) {
struct rte_vlan_hdr *vlan_hdr =
(struct rte_vlan_hdr *)(eth_hdr + 1);
vlan_offset = sizeof(struct rte_vlan_hdr);
*proto = vlan_hdr->eth_proto;
if (rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN) == *proto) {
vlan_hdr = vlan_hdr + 1;
*proto = vlan_hdr->eth_proto;
vlan_offset += sizeof(struct rte_vlan_hdr);
}
}
return vlan_offset;
}
static uint16_t
bond_ethdev_rx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct bond_dev_private *internals;
uint16_t num_rx_total = 0;
uint16_t slave_count;
uint16_t active_slave;
int i;
/* Cast to structure, containing bonded device's port id and queue id */
struct bond_rx_queue *bd_rx_q = (struct bond_rx_queue *)queue;
internals = bd_rx_q->dev_private;
slave_count = internals->active_slave_count;
active_slave = internals->active_slave;
for (i = 0; i < slave_count && nb_pkts; i++) {
uint16_t num_rx_slave;
/* Offset of pointer to *bufs increases as packets are received
* from other slaves */
num_rx_slave =
rte_eth_rx_burst(internals->active_slaves[active_slave],
bd_rx_q->queue_id,
bufs + num_rx_total, nb_pkts);
num_rx_total += num_rx_slave;
nb_pkts -= num_rx_slave;
if (++active_slave == slave_count)
active_slave = 0;
}
if (++internals->active_slave >= slave_count)
internals->active_slave = 0;
return num_rx_total;
}
static uint16_t
bond_ethdev_rx_burst_active_backup(void *queue, struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
struct bond_dev_private *internals;
/* Cast to structure, containing bonded device's port id and queue id */
struct bond_rx_queue *bd_rx_q = (struct bond_rx_queue *)queue;
internals = bd_rx_q->dev_private;
return rte_eth_rx_burst(internals->current_primary_port,
bd_rx_q->queue_id, bufs, nb_pkts);
}
static inline uint8_t
is_lacp_packets(uint16_t ethertype, uint8_t subtype, struct rte_mbuf *mbuf)
{
const uint16_t ether_type_slow_be =
rte_be_to_cpu_16(RTE_ETHER_TYPE_SLOW);
return !((mbuf->ol_flags & PKT_RX_VLAN) ? mbuf->vlan_tci : 0) &&
(ethertype == ether_type_slow_be &&
(subtype == SLOW_SUBTYPE_MARKER || subtype == SLOW_SUBTYPE_LACP));
}
/*****************************************************************************
* Flow director's setup for mode 4 optimization
*/
static struct rte_flow_item_eth flow_item_eth_type_8023ad = {
.dst.addr_bytes = { 0 },
.src.addr_bytes = { 0 },
.type = RTE_BE16(RTE_ETHER_TYPE_SLOW),
};
static struct rte_flow_item_eth flow_item_eth_mask_type_8023ad = {
.dst.addr_bytes = { 0 },
.src.addr_bytes = { 0 },
.type = 0xFFFF,
};
static struct rte_flow_item flow_item_8023ad[] = {
{
.type = RTE_FLOW_ITEM_TYPE_ETH,
.spec = &flow_item_eth_type_8023ad,
.last = NULL,
.mask = &flow_item_eth_mask_type_8023ad,
},
{
.type = RTE_FLOW_ITEM_TYPE_END,
.spec = NULL,
.last = NULL,
.mask = NULL,
}
};
const struct rte_flow_attr flow_attr_8023ad = {
.group = 0,
.priority = 0,
.ingress = 1,
.egress = 0,
.reserved = 0,
};
int
bond_ethdev_8023ad_flow_verify(struct rte_eth_dev *bond_dev,
uint16_t slave_port) {
struct rte_eth_dev_info slave_info;
struct rte_flow_error error;
struct bond_dev_private *internals = bond_dev->data->dev_private;
const struct rte_flow_action_queue lacp_queue_conf = {
.index = 0,
};
const struct rte_flow_action actions[] = {
{
.type = RTE_FLOW_ACTION_TYPE_QUEUE,
.conf = &lacp_queue_conf
},
{
.type = RTE_FLOW_ACTION_TYPE_END,
}
};
int ret = rte_flow_validate(slave_port, &flow_attr_8023ad,
flow_item_8023ad, actions, &error);
if (ret < 0) {
RTE_BOND_LOG(ERR, "%s: %s (slave_port=%d queue_id=%d)",
__func__, error.message, slave_port,
internals->mode4.dedicated_queues.rx_qid);
return -1;
}
ret = rte_eth_dev_info_get(slave_port, &slave_info);
if (ret != 0) {
RTE_BOND_LOG(ERR,
"%s: Error during getting device (port %u) info: %s\n",
__func__, slave_port, strerror(-ret));
return ret;
}
if (slave_info.max_rx_queues < bond_dev->data->nb_rx_queues ||
slave_info.max_tx_queues < bond_dev->data->nb_tx_queues) {
RTE_BOND_LOG(ERR,
"%s: Slave %d capabilities doesn't allow to allocate additional queues",
__func__, slave_port);
return -1;
}
return 0;
}
int
bond_8023ad_slow_pkt_hw_filter_supported(uint16_t port_id) {
struct rte_eth_dev *bond_dev = &rte_eth_devices[port_id];
struct bond_dev_private *internals = bond_dev->data->dev_private;
struct rte_eth_dev_info bond_info;
uint16_t idx;
int ret;
/* Verify if all slaves in bonding supports flow director and */
if (internals->slave_count > 0) {
ret = rte_eth_dev_info_get(bond_dev->data->port_id, &bond_info);
if (ret != 0) {
RTE_BOND_LOG(ERR,
"%s: Error during getting device (port %u) info: %s\n",
__func__, bond_dev->data->port_id,
strerror(-ret));
return ret;
}
internals->mode4.dedicated_queues.rx_qid = bond_info.nb_rx_queues;
internals->mode4.dedicated_queues.tx_qid = bond_info.nb_tx_queues;
for (idx = 0; idx < internals->slave_count; idx++) {
if (bond_ethdev_8023ad_flow_verify(bond_dev,
internals->slaves[idx].port_id) != 0)
return -1;
}
}
return 0;
}
int
bond_ethdev_8023ad_flow_set(struct rte_eth_dev *bond_dev, uint16_t slave_port) {
struct rte_flow_error error;
struct bond_dev_private *internals = bond_dev->data->dev_private;
struct rte_flow_action_queue lacp_queue_conf = {
.index = internals->mode4.dedicated_queues.rx_qid,
};
const struct rte_flow_action actions[] = {
{
.type = RTE_FLOW_ACTION_TYPE_QUEUE,
.conf = &lacp_queue_conf
},
{
.type = RTE_FLOW_ACTION_TYPE_END,
}
};
internals->mode4.dedicated_queues.flow[slave_port] = rte_flow_create(slave_port,
&flow_attr_8023ad, flow_item_8023ad, actions, &error);
if (internals->mode4.dedicated_queues.flow[slave_port] == NULL) {
RTE_BOND_LOG(ERR, "bond_ethdev_8023ad_flow_set: %s "
"(slave_port=%d queue_id=%d)",
error.message, slave_port,
internals->mode4.dedicated_queues.rx_qid);
return -1;
}
return 0;
}
static inline uint16_t
rx_burst_8023ad(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts,
bool dedicated_rxq)
{
/* Cast to structure, containing bonded device's port id and queue id */
struct bond_rx_queue *bd_rx_q = (struct bond_rx_queue *)queue;
struct bond_dev_private *internals = bd_rx_q->dev_private;
struct rte_eth_dev *bonded_eth_dev =
&rte_eth_devices[internals->port_id];
struct rte_ether_addr *bond_mac = bonded_eth_dev->data->mac_addrs;
struct rte_ether_hdr *hdr;
const uint16_t ether_type_slow_be =
rte_be_to_cpu_16(RTE_ETHER_TYPE_SLOW);
uint16_t num_rx_total = 0; /* Total number of received packets */
uint16_t slaves[RTE_MAX_ETHPORTS];
uint16_t slave_count, idx;
uint8_t collecting; /* current slave collecting status */
const uint8_t promisc = rte_eth_promiscuous_get(internals->port_id);
const uint8_t allmulti = rte_eth_allmulticast_get(internals->port_id);
uint8_t subtype;
uint16_t i;
uint16_t j;
uint16_t k;
/* Copy slave list to protect against slave up/down changes during tx
* bursting */
slave_count = internals->active_slave_count;
memcpy(slaves, internals->active_slaves,
sizeof(internals->active_slaves[0]) * slave_count);
idx = internals->active_slave;
if (idx >= slave_count) {
internals->active_slave = 0;
idx = 0;
}
for (i = 0; i < slave_count && num_rx_total < nb_pkts; i++) {
j = num_rx_total;
collecting = ACTOR_STATE(&bond_mode_8023ad_ports[slaves[idx]],
COLLECTING);
/* Read packets from this slave */
num_rx_total += rte_eth_rx_burst(slaves[idx], bd_rx_q->queue_id,
&bufs[num_rx_total], nb_pkts - num_rx_total);
for (k = j; k < 2 && k < num_rx_total; k++)
rte_prefetch0(rte_pktmbuf_mtod(bufs[k], void *));
/* Handle slow protocol packets. */
while (j < num_rx_total) {
if (j + 3 < num_rx_total)
rte_prefetch0(rte_pktmbuf_mtod(bufs[j + 3], void *));
hdr = rte_pktmbuf_mtod(bufs[j], struct rte_ether_hdr *);
subtype = ((struct slow_protocol_frame *)hdr)->slow_protocol.subtype;
/* Remove packet from array if:
* - it is slow packet but no dedicated rxq is present,
* - slave is not in collecting state,
* - bonding interface is not in promiscuous mode:
* - packet is unicast and address does not match,
* - packet is multicast and bonding interface
* is not in allmulti,
*/
if (unlikely(
(!dedicated_rxq &&
is_lacp_packets(hdr->ether_type, subtype,
bufs[j])) ||
!collecting ||
(!promisc &&
((rte_is_unicast_ether_addr(&hdr->d_addr) &&
!rte_is_same_ether_addr(bond_mac,
&hdr->d_addr)) ||
(!allmulti &&
rte_is_multicast_ether_addr(&hdr->d_addr)))))) {
if (hdr->ether_type == ether_type_slow_be) {
bond_mode_8023ad_handle_slow_pkt(
internals, slaves[idx], bufs[j]);
} else
rte_pktmbuf_free(bufs[j]);
/* Packet is managed by mode 4 or dropped, shift the array */
num_rx_total--;
if (j < num_rx_total) {
memmove(&bufs[j], &bufs[j + 1], sizeof(bufs[0]) *
(num_rx_total - j));
}
} else
j++;
}
if (unlikely(++idx == slave_count))
idx = 0;
}
if (++internals->active_slave >= slave_count)
internals->active_slave = 0;
return num_rx_total;
}
static uint16_t
bond_ethdev_rx_burst_8023ad(void *queue, struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
return rx_burst_8023ad(queue, bufs, nb_pkts, false);
}
static uint16_t
bond_ethdev_rx_burst_8023ad_fast_queue(void *queue, struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
return rx_burst_8023ad(queue, bufs, nb_pkts, true);
}
#if defined(RTE_LIBRTE_BOND_DEBUG_ALB) || defined(RTE_LIBRTE_BOND_DEBUG_ALB_L1)
uint32_t burstnumberRX;
uint32_t burstnumberTX;
#ifdef RTE_LIBRTE_BOND_DEBUG_ALB
static void
arp_op_name(uint16_t arp_op, char *buf, size_t buf_len)
{
switch (arp_op) {
case RTE_ARP_OP_REQUEST:
strlcpy(buf, "ARP Request", buf_len);
return;
case RTE_ARP_OP_REPLY:
strlcpy(buf, "ARP Reply", buf_len);
return;
case RTE_ARP_OP_REVREQUEST:
strlcpy(buf, "Reverse ARP Request", buf_len);
return;
case RTE_ARP_OP_REVREPLY:
strlcpy(buf, "Reverse ARP Reply", buf_len);
return;
case RTE_ARP_OP_INVREQUEST:
strlcpy(buf, "Peer Identify Request", buf_len);
return;
case RTE_ARP_OP_INVREPLY:
strlcpy(buf, "Peer Identify Reply", buf_len);
return;
default:
break;
}
strlcpy(buf, "Unknown", buf_len);
return;
}
#endif
#define MaxIPv4String 16
static void
ipv4_addr_to_dot(uint32_t be_ipv4_addr, char *buf, uint8_t buf_size)
{
uint32_t ipv4_addr;
ipv4_addr = rte_be_to_cpu_32(be_ipv4_addr);
snprintf(buf, buf_size, "%d.%d.%d.%d", (ipv4_addr >> 24) & 0xFF,
(ipv4_addr >> 16) & 0xFF, (ipv4_addr >> 8) & 0xFF,
ipv4_addr & 0xFF);
}
#define MAX_CLIENTS_NUMBER 128
uint8_t active_clients;
struct client_stats_t {
uint16_t port;
uint32_t ipv4_addr;
uint32_t ipv4_rx_packets;
uint32_t ipv4_tx_packets;
};
struct client_stats_t client_stats[MAX_CLIENTS_NUMBER];
static void
update_client_stats(uint32_t addr, uint16_t port, uint32_t *TXorRXindicator)
{
int i = 0;
for (; i < MAX_CLIENTS_NUMBER; i++) {
if ((client_stats[i].ipv4_addr == addr) && (client_stats[i].port == port)) {
/* Just update RX packets number for this client */
if (TXorRXindicator == &burstnumberRX)
client_stats[i].ipv4_rx_packets++;
else
client_stats[i].ipv4_tx_packets++;
return;
}
}
/* We have a new client. Insert him to the table, and increment stats */
if (TXorRXindicator == &burstnumberRX)
client_stats[active_clients].ipv4_rx_packets++;
else
client_stats[active_clients].ipv4_tx_packets++;
client_stats[active_clients].ipv4_addr = addr;
client_stats[active_clients].port = port;
active_clients++;
}
#ifdef RTE_LIBRTE_BOND_DEBUG_ALB
#define MODE6_DEBUG(info, src_ip, dst_ip, eth_h, arp_op, port, burstnumber) \
rte_log(RTE_LOG_DEBUG, bond_logtype, \
"%s port:%d SrcMAC:%02X:%02X:%02X:%02X:%02X:%02X SrcIP:%s " \
"DstMAC:%02X:%02X:%02X:%02X:%02X:%02X DstIP:%s %s %d\n", \
info, \
port, \
eth_h->s_addr.addr_bytes[0], eth_h->s_addr.addr_bytes[1], \
eth_h->s_addr.addr_bytes[2], eth_h->s_addr.addr_bytes[3], \
eth_h->s_addr.addr_bytes[4], eth_h->s_addr.addr_bytes[5], \
src_ip, \
eth_h->d_addr.addr_bytes[0], eth_h->d_addr.addr_bytes[1], \
eth_h->d_addr.addr_bytes[2], eth_h->d_addr.addr_bytes[3], \
eth_h->d_addr.addr_bytes[4], eth_h->d_addr.addr_bytes[5], \
dst_ip, \
arp_op, ++burstnumber)
#endif
static void
mode6_debug(const char __attribute__((unused)) *info,
struct rte_ether_hdr *eth_h, uint16_t port,
uint32_t __attribute__((unused)) *burstnumber)
{
struct rte_ipv4_hdr *ipv4_h;
#ifdef RTE_LIBRTE_BOND_DEBUG_ALB
struct rte_arp_hdr *arp_h;
char dst_ip[16];
char ArpOp[24];
char buf[16];
#endif
char src_ip[16];
uint16_t ether_type = eth_h->ether_type;
uint16_t offset = get_vlan_offset(eth_h, &ether_type);
#ifdef RTE_LIBRTE_BOND_DEBUG_ALB
strlcpy(buf, info, 16);
#endif
if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
ipv4_h = (struct rte_ipv4_hdr *)((char *)(eth_h + 1) + offset);
ipv4_addr_to_dot(ipv4_h->src_addr, src_ip, MaxIPv4String);
#ifdef RTE_LIBRTE_BOND_DEBUG_ALB
ipv4_addr_to_dot(ipv4_h->dst_addr, dst_ip, MaxIPv4String);
MODE6_DEBUG(buf, src_ip, dst_ip, eth_h, "", port, *burstnumber);
#endif
update_client_stats(ipv4_h->src_addr, port, burstnumber);
}
#ifdef RTE_LIBRTE_BOND_DEBUG_ALB
else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP)) {
arp_h = (struct rte_arp_hdr *)((char *)(eth_h + 1) + offset);
ipv4_addr_to_dot(arp_h->arp_data.arp_sip, src_ip, MaxIPv4String);
ipv4_addr_to_dot(arp_h->arp_data.arp_tip, dst_ip, MaxIPv4String);
arp_op_name(rte_be_to_cpu_16(arp_h->arp_opcode),
ArpOp, sizeof(ArpOp));
MODE6_DEBUG(buf, src_ip, dst_ip, eth_h, ArpOp, port, *burstnumber);
}
#endif
}
#endif
static uint16_t
bond_ethdev_rx_burst_alb(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct bond_tx_queue *bd_tx_q = (struct bond_tx_queue *)queue;
struct bond_dev_private *internals = bd_tx_q->dev_private;
struct rte_ether_hdr *eth_h;
uint16_t ether_type, offset;
uint16_t nb_recv_pkts;
int i;
nb_recv_pkts = bond_ethdev_rx_burst(queue, bufs, nb_pkts);
for (i = 0; i < nb_recv_pkts; i++) {
eth_h = rte_pktmbuf_mtod(bufs[i], struct rte_ether_hdr *);
ether_type = eth_h->ether_type;
offset = get_vlan_offset(eth_h, &ether_type);
if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP)) {
#if defined(RTE_LIBRTE_BOND_DEBUG_ALB) || defined(RTE_LIBRTE_BOND_DEBUG_ALB_L1)
mode6_debug("RX ARP:", eth_h, bufs[i]->port, &burstnumberRX);
#endif
bond_mode_alb_arp_recv(eth_h, offset, internals);
}
#if defined(RTE_LIBRTE_BOND_DEBUG_ALB) || defined(RTE_LIBRTE_BOND_DEBUG_ALB_L1)
else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
mode6_debug("RX IPv4:", eth_h, bufs[i]->port, &burstnumberRX);
#endif
}
return nb_recv_pkts;
}
static uint16_t
bond_ethdev_tx_burst_round_robin(void *queue, struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
struct bond_dev_private *internals;
struct bond_tx_queue *bd_tx_q;
struct rte_mbuf *slave_bufs[RTE_MAX_ETHPORTS][nb_pkts];
uint16_t slave_nb_pkts[RTE_MAX_ETHPORTS] = { 0 };
uint16_t num_of_slaves;
uint16_t slaves[RTE_MAX_ETHPORTS];
uint16_t num_tx_total = 0, num_tx_slave;
static int slave_idx = 0;
int i, cslave_idx = 0, tx_fail_total = 0;
bd_tx_q = (struct bond_tx_queue *)queue;
internals = bd_tx_q->dev_private;
/* Copy slave list to protect against slave up/down changes during tx
* bursting */
num_of_slaves = internals->active_slave_count;
memcpy(slaves, internals->active_slaves,
sizeof(internals->active_slaves[0]) * num_of_slaves);
if (num_of_slaves < 1)
return num_tx_total;
/* Populate slaves mbuf with which packets are to be sent on it */
for (i = 0; i < nb_pkts; i++) {
cslave_idx = (slave_idx + i) % num_of_slaves;
slave_bufs[cslave_idx][(slave_nb_pkts[cslave_idx])++] = bufs[i];
}
/* increment current slave index so the next call to tx burst starts on the
* next slave */
slave_idx = ++cslave_idx;
/* Send packet burst on each slave device */
for (i = 0; i < num_of_slaves; i++) {
if (slave_nb_pkts[i] > 0) {
num_tx_slave = rte_eth_tx_burst(slaves[i], bd_tx_q->queue_id,
slave_bufs[i], slave_nb_pkts[i]);
/* if tx burst fails move packets to end of bufs */
if (unlikely(num_tx_slave < slave_nb_pkts[i])) {
int tx_fail_slave = slave_nb_pkts[i] - num_tx_slave;
tx_fail_total += tx_fail_slave;
memcpy(&bufs[nb_pkts - tx_fail_total],
&slave_bufs[i][num_tx_slave],
tx_fail_slave * sizeof(bufs[0]));
}
num_tx_total += num_tx_slave;
}
}
return num_tx_total;
}
static uint16_t
bond_ethdev_tx_burst_active_backup(void *queue,
struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct bond_dev_private *internals;
struct bond_tx_queue *bd_tx_q;
bd_tx_q = (struct bond_tx_queue *)queue;
internals = bd_tx_q->dev_private;
if (internals->active_slave_count < 1)
return 0;
return rte_eth_tx_burst(internals->current_primary_port, bd_tx_q->queue_id,
bufs, nb_pkts);
}
static inline uint16_t
ether_hash(struct rte_ether_hdr *eth_hdr)
{
unaligned_uint16_t *word_src_addr =
(unaligned_uint16_t *)eth_hdr->s_addr.addr_bytes;
unaligned_uint16_t *word_dst_addr =
(unaligned_uint16_t *)eth_hdr->d_addr.addr_bytes;
return (word_src_addr[0] ^ word_dst_addr[0]) ^
(word_src_addr[1] ^ word_dst_addr[1]) ^
(word_src_addr[2] ^ word_dst_addr[2]);
}
static inline uint32_t
ipv4_hash(struct rte_ipv4_hdr *ipv4_hdr)
{
return ipv4_hdr->src_addr ^ ipv4_hdr->dst_addr;
}
static inline uint32_t
ipv6_hash(struct rte_ipv6_hdr *ipv6_hdr)
{
unaligned_uint32_t *word_src_addr =
(unaligned_uint32_t *)&(ipv6_hdr->src_addr[0]);
unaligned_uint32_t *word_dst_addr =
(unaligned_uint32_t *)&(ipv6_hdr->dst_addr[0]);
return (word_src_addr[0] ^ word_dst_addr[0]) ^
(word_src_addr[1] ^ word_dst_addr[1]) ^
(word_src_addr[2] ^ word_dst_addr[2]) ^
(word_src_addr[3] ^ word_dst_addr[3]);
}
void
burst_xmit_l2_hash(struct rte_mbuf **buf, uint16_t nb_pkts,
uint16_t slave_count, uint16_t *slaves)
{
struct rte_ether_hdr *eth_hdr;
uint32_t hash;
int i;
for (i = 0; i < nb_pkts; i++) {
eth_hdr = rte_pktmbuf_mtod(buf[i], struct rte_ether_hdr *);
hash = ether_hash(eth_hdr);
slaves[i] = (hash ^= hash >> 8) % slave_count;
}
}
void
burst_xmit_l23_hash(struct rte_mbuf **buf, uint16_t nb_pkts,
uint16_t slave_count, uint16_t *slaves)
{
uint16_t i;
struct rte_ether_hdr *eth_hdr;
uint16_t proto;
size_t vlan_offset;
uint32_t hash, l3hash;
for (i = 0; i < nb_pkts; i++) {
eth_hdr = rte_pktmbuf_mtod(buf[i], struct rte_ether_hdr *);
l3hash = 0;
proto = eth_hdr->ether_type;
hash = ether_hash(eth_hdr);
vlan_offset = get_vlan_offset(eth_hdr, &proto);
if (rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4) == proto) {
struct rte_ipv4_hdr *ipv4_hdr = (struct rte_ipv4_hdr *)
((char *)(eth_hdr + 1) + vlan_offset);
l3hash = ipv4_hash(ipv4_hdr);
} else if (rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6) == proto) {
struct rte_ipv6_hdr *ipv6_hdr = (struct rte_ipv6_hdr *)
((char *)(eth_hdr + 1) + vlan_offset);
l3hash = ipv6_hash(ipv6_hdr);
}
hash = hash ^ l3hash;
hash ^= hash >> 16;
hash ^= hash >> 8;
slaves[i] = hash % slave_count;
}
}
void
burst_xmit_l34_hash(struct rte_mbuf **buf, uint16_t nb_pkts,
uint16_t slave_count, uint16_t *slaves)
{
struct rte_ether_hdr *eth_hdr;
uint16_t proto;
size_t vlan_offset;
int i;
struct rte_udp_hdr *udp_hdr;
struct rte_tcp_hdr *tcp_hdr;
uint32_t hash, l3hash, l4hash;
for (i = 0; i < nb_pkts; i++) {
eth_hdr = rte_pktmbuf_mtod(buf[i], struct rte_ether_hdr *);
size_t pkt_end = (size_t)eth_hdr + rte_pktmbuf_data_len(buf[i]);
proto = eth_hdr->ether_type;
vlan_offset = get_vlan_offset(eth_hdr, &proto);
l3hash = 0;
l4hash = 0;
if (rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4) == proto) {
struct rte_ipv4_hdr *ipv4_hdr = (struct rte_ipv4_hdr *)
((char *)(eth_hdr + 1) + vlan_offset);
size_t ip_hdr_offset;
l3hash = ipv4_hash(ipv4_hdr);
/* there is no L4 header in fragmented packet */
if (likely(rte_ipv4_frag_pkt_is_fragmented(ipv4_hdr)
== 0)) {
ip_hdr_offset = (ipv4_hdr->version_ihl
& RTE_IPV4_HDR_IHL_MASK) *
RTE_IPV4_IHL_MULTIPLIER;
if (ipv4_hdr->next_proto_id == IPPROTO_TCP) {
tcp_hdr = (struct rte_tcp_hdr *)
((char *)ipv4_hdr +
ip_hdr_offset);
if ((size_t)tcp_hdr + sizeof(*tcp_hdr)
< pkt_end)
l4hash = HASH_L4_PORTS(tcp_hdr);
} else if (ipv4_hdr->next_proto_id ==
IPPROTO_UDP) {
udp_hdr = (struct rte_udp_hdr *)
((char *)ipv4_hdr +
ip_hdr_offset);
if ((size_t)udp_hdr + sizeof(*udp_hdr)
< pkt_end)
l4hash = HASH_L4_PORTS(udp_hdr);
}
}
} else if (rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6) == proto) {
struct rte_ipv6_hdr *ipv6_hdr = (struct rte_ipv6_hdr *)
((char *)(eth_hdr + 1) + vlan_offset);
l3hash = ipv6_hash(ipv6_hdr);
if (ipv6_hdr->proto == IPPROTO_TCP) {
tcp_hdr = (struct rte_tcp_hdr *)(ipv6_hdr + 1);
l4hash = HASH_L4_PORTS(tcp_hdr);
} else if (ipv6_hdr->proto == IPPROTO_UDP) {
udp_hdr = (struct rte_udp_hdr *)(ipv6_hdr + 1);
l4hash = HASH_L4_PORTS(udp_hdr);
}
}
hash = l3hash ^ l4hash;
hash ^= hash >> 16;
hash ^= hash >> 8;
slaves[i] = hash % slave_count;
}
}
struct bwg_slave {
uint64_t bwg_left_int;
uint64_t bwg_left_remainder;
uint16_t slave;
};
void
bond_tlb_activate_slave(struct bond_dev_private *internals) {
int i;
for (i = 0; i < internals->active_slave_count; i++) {
tlb_last_obytets[internals->active_slaves[i]] = 0;
}
}
static int
bandwidth_cmp(const void *a, const void *b)
{
const struct bwg_slave *bwg_a = a;
const struct bwg_slave *bwg_b = b;
int64_t diff = (int64_t)bwg_b->bwg_left_int - (int64_t)bwg_a->bwg_left_int;
int64_t diff2 = (int64_t)bwg_b->bwg_left_remainder -
(int64_t)bwg_a->bwg_left_remainder;
if (diff > 0)
return 1;
else if (diff < 0)
return -1;
else if (diff2 > 0)
return 1;
else if (diff2 < 0)
return -1;
else
return 0;
}
static void
bandwidth_left(uint16_t port_id, uint64_t load, uint8_t update_idx,
struct bwg_slave *bwg_slave)
{
struct rte_eth_link link_status;
int ret;
ret = rte_eth_link_get_nowait(port_id, &link_status);
if (ret < 0) {
RTE_BOND_LOG(ERR, "Slave (port %u) link get failed: %s",
port_id, rte_strerror(-ret));
return;
}
uint64_t link_bwg = link_status.link_speed * 1000000ULL / 8;
if (link_bwg == 0)
return;
link_bwg = link_bwg * (update_idx+1) * REORDER_PERIOD_MS;
bwg_slave->bwg_left_int = (link_bwg - 1000*load) / link_bwg;
bwg_slave->bwg_left_remainder = (link_bwg - 1000*load) % link_bwg;
}
static void
bond_ethdev_update_tlb_slave_cb(void *arg)
{
struct bond_dev_private *internals = arg;
struct rte_eth_stats slave_stats;
struct bwg_slave bwg_array[RTE_MAX_ETHPORTS];
uint16_t slave_count;
uint64_t tx_bytes;
uint8_t update_stats = 0;
uint16_t slave_id;
uint16_t i;
internals->slave_update_idx++;
if (internals->slave_update_idx >= REORDER_PERIOD_MS)
update_stats = 1;
for (i = 0; i < internals->active_slave_count; i++) {
slave_id = internals->active_slaves[i];
rte_eth_stats_get(slave_id, &slave_stats);
tx_bytes = slave_stats.obytes - tlb_last_obytets[slave_id];
bandwidth_left(slave_id, tx_bytes,
internals->slave_update_idx, &bwg_array[i]);
bwg_array[i].slave = slave_id;
if (update_stats) {
tlb_last_obytets[slave_id] = slave_stats.obytes;
}
}
if (update_stats == 1)
internals->slave_update_idx = 0;
slave_count = i;
qsort(bwg_array, slave_count, sizeof(bwg_array[0]), bandwidth_cmp);
for (i = 0; i < slave_count; i++)
internals->tlb_slaves_order[i] = bwg_array[i].slave;
rte_eal_alarm_set(REORDER_PERIOD_MS * 1000, bond_ethdev_update_tlb_slave_cb,
(struct bond_dev_private *)internals);
}
static uint16_t
bond_ethdev_tx_burst_tlb(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct bond_tx_queue *bd_tx_q = (struct bond_tx_queue *)queue;
struct bond_dev_private *internals = bd_tx_q->dev_private;
struct rte_eth_dev *primary_port =
&rte_eth_devices[internals->primary_port];
uint16_t num_tx_total = 0;
uint16_t i, j;
uint16_t num_of_slaves = internals->active_slave_count;
uint16_t slaves[RTE_MAX_ETHPORTS];
struct rte_ether_hdr *ether_hdr;
struct rte_ether_addr primary_slave_addr;
struct rte_ether_addr active_slave_addr;
if (num_of_slaves < 1)
return num_tx_total;
memcpy(slaves, internals->tlb_slaves_order,
sizeof(internals->tlb_slaves_order[0]) * num_of_slaves);
rte_ether_addr_copy(primary_port->data->mac_addrs, &primary_slave_addr);
if (nb_pkts > 3) {
for (i = 0; i < 3; i++)
rte_prefetch0(rte_pktmbuf_mtod(bufs[i], void*));
}
for (i = 0; i < num_of_slaves; i++) {
rte_eth_macaddr_get(slaves[i], &active_slave_addr);
for (j = num_tx_total; j < nb_pkts; j++) {
if (j + 3 < nb_pkts)
rte_prefetch0(rte_pktmbuf_mtod(bufs[j+3], void*));
ether_hdr = rte_pktmbuf_mtod(bufs[j],
struct rte_ether_hdr *);
if (rte_is_same_ether_addr(&ether_hdr->s_addr,
&primary_slave_addr))
rte_ether_addr_copy(&active_slave_addr,
&ether_hdr->s_addr);
#if defined(RTE_LIBRTE_BOND_DEBUG_ALB) || defined(RTE_LIBRTE_BOND_DEBUG_ALB_L1)
mode6_debug("TX IPv4:", ether_hdr, slaves[i], &burstnumberTX);
#endif
}
num_tx_total += rte_eth_tx_burst(slaves[i], bd_tx_q->queue_id,
bufs + num_tx_total, nb_pkts - num_tx_total);
if (num_tx_total == nb_pkts)
break;
}
return num_tx_total;
}
void
bond_tlb_disable(struct bond_dev_private *internals)
{
rte_eal_alarm_cancel(bond_ethdev_update_tlb_slave_cb, internals);
}
void
bond_tlb_enable(struct bond_dev_private *internals)
{
bond_ethdev_update_tlb_slave_cb(internals);
}
static uint16_t
bond_ethdev_tx_burst_alb(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct bond_tx_queue *bd_tx_q = (struct bond_tx_queue *)queue;
struct bond_dev_private *internals = bd_tx_q->dev_private;
struct rte_ether_hdr *eth_h;
uint16_t ether_type, offset;
struct client_data *client_info;
/*
* We create transmit buffers for every slave and one additional to send
* through tlb. In worst case every packet will be send on one port.
*/
struct rte_mbuf *slave_bufs[RTE_MAX_ETHPORTS + 1][nb_pkts];
uint16_t slave_bufs_pkts[RTE_MAX_ETHPORTS + 1] = { 0 };
/*
* We create separate transmit buffers for update packets as they won't
* be counted in num_tx_total.
*/
struct rte_mbuf *update_bufs[RTE_MAX_ETHPORTS][ALB_HASH_TABLE_SIZE];
uint16_t update_bufs_pkts[RTE_MAX_ETHPORTS] = { 0 };
struct rte_mbuf *upd_pkt;
size_t pkt_size;
uint16_t num_send, num_not_send = 0;
uint16_t num_tx_total = 0;
uint16_t slave_idx;
int i, j;
/* Search tx buffer for ARP packets and forward them to alb */
for (i = 0; i < nb_pkts; i++) {
eth_h = rte_pktmbuf_mtod(bufs[i], struct rte_ether_hdr *);
ether_type = eth_h->ether_type;
offset = get_vlan_offset(eth_h, &ether_type);
if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP)) {
slave_idx = bond_mode_alb_arp_xmit(eth_h, offset, internals);
/* Change src mac in eth header */
rte_eth_macaddr_get(slave_idx, &eth_h->s_addr);
/* Add packet to slave tx buffer */
slave_bufs[slave_idx][slave_bufs_pkts[slave_idx]] = bufs[i];
slave_bufs_pkts[slave_idx]++;
} else {
/* If packet is not ARP, send it with TLB policy */
slave_bufs[RTE_MAX_ETHPORTS][slave_bufs_pkts[RTE_MAX_ETHPORTS]] =
bufs[i];
slave_bufs_pkts[RTE_MAX_ETHPORTS]++;
}
}
/* Update connected client ARP tables */
if (internals->mode6.ntt) {
for (i = 0; i < ALB_HASH_TABLE_SIZE; i++) {
client_info = &internals->mode6.client_table[i];
if (client_info->in_use) {
/* Allocate new packet to send ARP update on current slave */
upd_pkt = rte_pktmbuf_alloc(internals->mode6.mempool);
if (upd_pkt == NULL) {
RTE_BOND_LOG(ERR,
"Failed to allocate ARP packet from pool");
continue;
}
pkt_size = sizeof(struct rte_ether_hdr) +
sizeof(struct rte_arp_hdr) +
client_info->vlan_count *
sizeof(struct rte_vlan_hdr);
upd_pkt->data_len = pkt_size;
upd_pkt->pkt_len = pkt_size;
slave_idx = bond_mode_alb_arp_upd(client_info, upd_pkt,
internals);
/* Add packet to update tx buffer */
update_bufs[slave_idx][update_bufs_pkts[slave_idx]] = upd_pkt;
update_bufs_pkts[slave_idx]++;
}
}
internals->mode6.ntt = 0;
}
/* Send ARP packets on proper slaves */
for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
if (slave_bufs_pkts[i] > 0) {
num_send = rte_eth_tx_burst(i, bd_tx_q->queue_id,
slave_bufs[i], slave_bufs_pkts[i]);
for (j = 0; j < slave_bufs_pkts[i] - num_send; j++) {
bufs[nb_pkts - 1 - num_not_send - j] =
slave_bufs[i][nb_pkts - 1 - j];
}
num_tx_total += num_send;
num_not_send += slave_bufs_pkts[i] - num_send;
#if defined(RTE_LIBRTE_BOND_DEBUG_ALB) || defined(RTE_LIBRTE_BOND_DEBUG_ALB_L1)
/* Print TX stats including update packets */
for (j = 0; j < slave_bufs_pkts[i]; j++) {
eth_h = rte_pktmbuf_mtod(slave_bufs[i][j],
struct rte_ether_hdr *);
mode6_debug("TX ARP:", eth_h, i, &burstnumberTX);
}
#endif
}
}
/* Send update packets on proper slaves */
for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
if (update_bufs_pkts[i] > 0) {
num_send = rte_eth_tx_burst(i, bd_tx_q->queue_id, update_bufs[i],
update_bufs_pkts[i]);
for (j = num_send; j < update_bufs_pkts[i]; j++) {
rte_pktmbuf_free(update_bufs[i][j]);
}
#if defined(RTE_LIBRTE_BOND_DEBUG_ALB) || defined(RTE_LIBRTE_BOND_DEBUG_ALB_L1)
for (j = 0; j < update_bufs_pkts[i]; j++) {
eth_h = rte_pktmbuf_mtod(update_bufs[i][j],
struct rte_ether_hdr *);
mode6_debug("TX ARPupd:", eth_h, i, &burstnumberTX);
}
#endif
}
}
/* Send non-ARP packets using tlb policy */
if (slave_bufs_pkts[RTE_MAX_ETHPORTS] > 0) {
num_send = bond_ethdev_tx_burst_tlb(queue,
slave_bufs[RTE_MAX_ETHPORTS],
slave_bufs_pkts[RTE_MAX_ETHPORTS]);
for (j = 0; j < slave_bufs_pkts[RTE_MAX_ETHPORTS]; j++) {
bufs[nb_pkts - 1 - num_not_send - j] =
slave_bufs[RTE_MAX_ETHPORTS][nb_pkts - 1 - j];
}
num_tx_total += num_send;
}
return num_tx_total;
}
static inline uint16_t
tx_burst_balance(void *queue, struct rte_mbuf **bufs, uint16_t nb_bufs,
uint16_t *slave_port_ids, uint16_t slave_count)
{
struct bond_tx_queue *bd_tx_q = (struct bond_tx_queue *)queue;
struct bond_dev_private *internals = bd_tx_q->dev_private;
/* Array to sort mbufs for transmission on each slave into */
struct rte_mbuf *slave_bufs[RTE_MAX_ETHPORTS][nb_bufs];
/* Number of mbufs for transmission on each slave */
uint16_t slave_nb_bufs[RTE_MAX_ETHPORTS] = { 0 };
/* Mapping array generated by hash function to map mbufs to slaves */
uint16_t bufs_slave_port_idxs[nb_bufs];
uint16_t slave_tx_count;
uint16_t total_tx_count = 0, total_tx_fail_count = 0;
uint16_t i;
/*
* Populate slaves mbuf with the packets which are to be sent on it
* selecting output slave using hash based on xmit policy
*/
internals->burst_xmit_hash(bufs, nb_bufs, slave_count,
bufs_slave_port_idxs);
for (i = 0; i < nb_bufs; i++) {
/* Populate slave mbuf arrays with mbufs for that slave. */
uint16_t slave_idx = bufs_slave_port_idxs[i];
slave_bufs[slave_idx][slave_nb_bufs[slave_idx]++] = bufs[i];
}
/* Send packet burst on each slave device */
for (i = 0; i < slave_count; i++) {
if (slave_nb_bufs[i] == 0)
continue;
slave_tx_count = rte_eth_tx_burst(slave_port_ids[i],
bd_tx_q->queue_id, slave_bufs[i],
slave_nb_bufs[i]);
total_tx_count += slave_tx_count;
/* If tx burst fails move packets to end of bufs */
if (unlikely(slave_tx_count < slave_nb_bufs[i])) {
int slave_tx_fail_count = slave_nb_bufs[i] -
slave_tx_count;
total_tx_fail_count += slave_tx_fail_count;
memcpy(&bufs[nb_bufs - total_tx_fail_count],
&slave_bufs[i][slave_tx_count],
slave_tx_fail_count * sizeof(bufs[0]));
}
}
return total_tx_count;
}
static uint16_t
bond_ethdev_tx_burst_balance(void *queue, struct rte_mbuf **bufs,
uint16_t nb_bufs)
{
struct bond_tx_queue *bd_tx_q = (struct bond_tx_queue *)queue;
struct bond_dev_private *internals = bd_tx_q->dev_private;
uint16_t slave_port_ids[RTE_MAX_ETHPORTS];
uint16_t slave_count;
if (unlikely(nb_bufs == 0))
return 0;
/* Copy slave list to protect against slave up/down changes during tx
* bursting
*/
slave_count = internals->active_slave_count;
if (unlikely(slave_count < 1))
return 0;
memcpy(slave_port_ids, internals->active_slaves,
sizeof(slave_port_ids[0]) * slave_count);
return tx_burst_balance(queue, bufs, nb_bufs, slave_port_ids,
slave_count);
}
static inline uint16_t
tx_burst_8023ad(void *queue, struct rte_mbuf **bufs, uint16_t nb_bufs,
bool dedicated_txq)
{
struct bond_tx_queue *bd_tx_q = (struct bond_tx_queue *)queue;
struct bond_dev_private *internals = bd_tx_q->dev_private;
uint16_t slave_port_ids[RTE_MAX_ETHPORTS];
uint16_t slave_count;
uint16_t dist_slave_port_ids[RTE_MAX_ETHPORTS];
uint16_t dist_slave_count;
uint16_t slave_tx_count;
uint16_t i;
/* Copy slave list to protect against slave up/down changes during tx
* bursting */
slave_count = internals->active_slave_count;
if (unlikely(slave_count < 1))
return 0;
memcpy(slave_port_ids, internals->active_slaves,
sizeof(slave_port_ids[0]) * slave_count);
if (dedicated_txq)
goto skip_tx_ring;
/* Check for LACP control packets and send if available */
for (i = 0; i < slave_count; i++) {
struct port *port = &bond_mode_8023ad_ports[slave_port_ids[i]];
struct rte_mbuf *ctrl_pkt = NULL;
if (likely(rte_ring_empty(port->tx_ring)))
continue;
if (rte_ring_dequeue(port->tx_ring,
(void **)&ctrl_pkt) != -ENOENT) {
slave_tx_count = rte_eth_tx_burst(slave_port_ids[i],
bd_tx_q->queue_id, &ctrl_pkt, 1);
/*
* re-enqueue LAG control plane packets to buffering
* ring if transmission fails so the packet isn't lost.
*/
if (slave_tx_count != 1)
rte_ring_enqueue(port->tx_ring, ctrl_pkt);
}
}
skip_tx_ring:
if (unlikely(nb_bufs == 0))
return 0;
dist_slave_count = 0;
for (i = 0; i < slave_count; i++) {
struct port *port = &bond_mode_8023ad_ports[slave_port_ids[i]];
if (ACTOR_STATE(port, DISTRIBUTING))
dist_slave_port_ids[dist_slave_count++] =
slave_port_ids[i];
}
if (unlikely(dist_slave_count < 1))
return 0;
return tx_burst_balance(queue, bufs, nb_bufs, dist_slave_port_ids,
dist_slave_count);
}
static uint16_t
bond_ethdev_tx_burst_8023ad(void *queue, struct rte_mbuf **bufs,
uint16_t nb_bufs)
{
return tx_burst_8023ad(queue, bufs, nb_bufs, false);
}
static uint16_t
bond_ethdev_tx_burst_8023ad_fast_queue(void *queue, struct rte_mbuf **bufs,
uint16_t nb_bufs)
{
return tx_burst_8023ad(queue, bufs, nb_bufs, true);
}
static uint16_t
bond_ethdev_tx_burst_broadcast(void *queue, struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
struct bond_dev_private *internals;
struct bond_tx_queue *bd_tx_q;
uint16_t slaves[RTE_MAX_ETHPORTS];
uint8_t tx_failed_flag = 0;
uint16_t num_of_slaves;
uint16_t max_nb_of_tx_pkts = 0;
int slave_tx_total[RTE_MAX_ETHPORTS];
int i, most_successful_tx_slave = -1;
bd_tx_q = (struct bond_tx_queue *)queue;
internals = bd_tx_q->dev_private;
/* Copy slave list to protect against slave up/down changes during tx
* bursting */
num_of_slaves = internals->active_slave_count;
memcpy(slaves, internals->active_slaves,
sizeof(internals->active_slaves[0]) * num_of_slaves);
if (num_of_slaves < 1)
return 0;
/* Increment reference count on mbufs */
for (i = 0; i < nb_pkts; i++)
rte_mbuf_refcnt_update(bufs[i], num_of_slaves - 1);
/* Transmit burst on each active slave */
for (i = 0; i < num_of_slaves; i++) {
slave_tx_total[i] = rte_eth_tx_burst(slaves[i], bd_tx_q->queue_id,
bufs, nb_pkts);
if (unlikely(slave_tx_total[i] < nb_pkts))
tx_failed_flag = 1;
/* record the value and slave index for the slave which transmits the
* maximum number of packets */
if (slave_tx_total[i] > max_nb_of_tx_pkts) {
max_nb_of_tx_pkts = slave_tx_total[i];
most_successful_tx_slave = i;
}
}
/* if slaves fail to transmit packets from burst, the calling application
* is not expected to know about multiple references to packets so we must
* handle failures of all packets except those of the most successful slave
*/
if (unlikely(tx_failed_flag))
for (i = 0; i < num_of_slaves; i++)
if (i != most_successful_tx_slave)
while (slave_tx_total[i] < nb_pkts)
rte_pktmbuf_free(bufs[slave_tx_total[i]++]);
return max_nb_of_tx_pkts;
}
static void
link_properties_set(struct rte_eth_dev *ethdev, struct rte_eth_link *slave_link)
{
struct bond_dev_private *bond_ctx = ethdev->data->dev_private;
if (bond_ctx->mode == BONDING_MODE_8023AD) {
/**
* If in mode 4 then save the link properties of the first
* slave, all subsequent slaves must match these properties
*/
struct rte_eth_link *bond_link = &bond_ctx->mode4.slave_link;
bond_link->link_autoneg = slave_link->link_autoneg;
bond_link->link_duplex = slave_link->link_duplex;
bond_link->link_speed = slave_link->link_speed;
} else {
/**
* In any other mode the link properties are set to default
* values of AUTONEG/DUPLEX
*/
ethdev->data->dev_link.link_autoneg = ETH_LINK_AUTONEG;
ethdev->data->dev_link.link_duplex = ETH_LINK_FULL_DUPLEX;
}
}
static int
link_properties_valid(struct rte_eth_dev *ethdev,
struct rte_eth_link *slave_link)
{
struct bond_dev_private *bond_ctx = ethdev->data->dev_private;
if (bond_ctx->mode == BONDING_MODE_8023AD) {
struct rte_eth_link *bond_link = &bond_ctx->mode4.slave_link;
if (bond_link->link_duplex != slave_link->link_duplex ||
bond_link->link_autoneg != slave_link->link_autoneg ||
bond_link->link_speed != slave_link->link_speed)
return -1;
}
return 0;
}
int
mac_address_get(struct rte_eth_dev *eth_dev,
struct rte_ether_addr *dst_mac_addr)
{
struct rte_ether_addr *mac_addr;
if (eth_dev == NULL) {
RTE_BOND_LOG(ERR, "NULL pointer eth_dev specified");
return -1;
}
if (dst_mac_addr == NULL) {
RTE_BOND_LOG(ERR, "NULL pointer MAC specified");
return -1;
}
mac_addr = eth_dev->data->mac_addrs;
rte_ether_addr_copy(mac_addr, dst_mac_addr);
return 0;
}
int
mac_address_set(struct rte_eth_dev *eth_dev,
struct rte_ether_addr *new_mac_addr)
{
struct rte_ether_addr *mac_addr;
if (eth_dev == NULL) {
RTE_BOND_LOG(ERR, "NULL pointer eth_dev specified");
return -1;
}
if (new_mac_addr == NULL) {
RTE_BOND_LOG(ERR, "NULL pointer MAC specified");
return -1;
}
mac_addr = eth_dev->data->mac_addrs;
/* If new MAC is different to current MAC then update */
if (memcmp(mac_addr, new_mac_addr, sizeof(*mac_addr)) != 0)
memcpy(mac_addr, new_mac_addr, sizeof(*mac_addr));
return 0;
}
static const struct rte_ether_addr null_mac_addr;
/*
* Add additional MAC addresses to the slave
*/
int
slave_add_mac_addresses(struct rte_eth_dev *bonded_eth_dev,
uint16_t slave_port_id)
{
int i, ret;
struct rte_ether_addr *mac_addr;
for (i = 1; i < BOND_MAX_MAC_ADDRS; i++) {
mac_addr = &bonded_eth_dev->data->mac_addrs[i];
if (rte_is_same_ether_addr(mac_addr, &null_mac_addr))
break;
ret = rte_eth_dev_mac_addr_add(slave_port_id, mac_addr, 0);
if (ret < 0) {
/* rollback */
for (i--; i > 0; i--)
rte_eth_dev_mac_addr_remove(slave_port_id,
&bonded_eth_dev->data->mac_addrs[i]);
return ret;
}
}
return 0;
}
/*
* Remove additional MAC addresses from the slave
*/
int
slave_remove_mac_addresses(struct rte_eth_dev *bonded_eth_dev,
uint16_t slave_port_id)
{
int i, rc, ret;
struct rte_ether_addr *mac_addr;
rc = 0;
for (i = 1; i < BOND_MAX_MAC_ADDRS; i++) {
mac_addr = &bonded_eth_dev->data->mac_addrs[i];
if (rte_is_same_ether_addr(mac_addr, &null_mac_addr))
break;
ret = rte_eth_dev_mac_addr_remove(slave_port_id, mac_addr);
/* save only the first error */
if (ret < 0 && rc == 0)
rc = ret;
}
return rc;
}
int
mac_address_slaves_update(struct rte_eth_dev *bonded_eth_dev)
{
struct bond_dev_private *internals = bonded_eth_dev->data->dev_private;
int i;
/* Update slave devices MAC addresses */
if (internals->slave_count < 1)
return -1;
switch (internals->mode) {
case BONDING_MODE_ROUND_ROBIN:
case BONDING_MODE_BALANCE:
case BONDING_MODE_BROADCAST:
for (i = 0; i < internals->slave_count; i++) {
if (rte_eth_dev_default_mac_addr_set(
internals->slaves[i].port_id,
bonded_eth_dev->data->mac_addrs)) {
RTE_BOND_LOG(ERR, "Failed to update port Id %d MAC address",
internals->slaves[i].port_id);
return -1;
}
}
break;
case BONDING_MODE_8023AD:
bond_mode_8023ad_mac_address_update(bonded_eth_dev);
break;
case BONDING_MODE_ACTIVE_BACKUP:
case BONDING_MODE_TLB:
case BONDING_MODE_ALB:
default:
for (i = 0; i < internals->slave_count; i++) {
if (internals->slaves[i].port_id ==
internals->current_primary_port) {
if (rte_eth_dev_default_mac_addr_set(
internals->primary_port,
bonded_eth_dev->data->mac_addrs)) {
RTE_BOND_LOG(ERR, "Failed to update port Id %d MAC address",
internals->current_primary_port);
return -1;
}
} else {
if (rte_eth_dev_default_mac_addr_set(
internals->slaves[i].port_id,
&internals->slaves[i].persisted_mac_addr)) {
RTE_BOND_LOG(ERR, "Failed to update port Id %d MAC address",
internals->slaves[i].port_id);
return -1;
}
}
}
}
return 0;
}
int
bond_ethdev_mode_set(struct rte_eth_dev *eth_dev, int mode)
{
struct bond_dev_private *internals;
internals = eth_dev->data->dev_private;
switch (mode) {
case BONDING_MODE_ROUND_ROBIN:
eth_dev->tx_pkt_burst = bond_ethdev_tx_burst_round_robin;
eth_dev->rx_pkt_burst = bond_ethdev_rx_burst;
break;
case BONDING_MODE_ACTIVE_BACKUP:
eth_dev->tx_pkt_burst = bond_ethdev_tx_burst_active_backup;
eth_dev->rx_pkt_burst = bond_ethdev_rx_burst_active_backup;
break;
case BONDING_MODE_BALANCE:
eth_dev->tx_pkt_burst = bond_ethdev_tx_burst_balance;
eth_dev->rx_pkt_burst = bond_ethdev_rx_burst;
break;
case BONDING_MODE_BROADCAST:
eth_dev->tx_pkt_burst = bond_ethdev_tx_burst_broadcast;
eth_dev->rx_pkt_burst = bond_ethdev_rx_burst;
break;
case BONDING_MODE_8023AD:
if (bond_mode_8023ad_enable(eth_dev) != 0)
return -1;
if (internals->mode4.dedicated_queues.enabled == 0) {
eth_dev->rx_pkt_burst = bond_ethdev_rx_burst_8023ad;
eth_dev->tx_pkt_burst = bond_ethdev_tx_burst_8023ad;
RTE_BOND_LOG(WARNING,
"Using mode 4, it is necessary to do TX burst "
"and RX burst at least every 100ms.");
} else {
/* Use flow director's optimization */
eth_dev->rx_pkt_burst =
bond_ethdev_rx_burst_8023ad_fast_queue;
eth_dev->tx_pkt_burst =
bond_ethdev_tx_burst_8023ad_fast_queue;
}
break;
case BONDING_MODE_TLB:
eth_dev->tx_pkt_burst = bond_ethdev_tx_burst_tlb;
eth_dev->rx_pkt_burst = bond_ethdev_rx_burst_active_backup;
break;
case BONDING_MODE_ALB:
if (bond_mode_alb_enable(eth_dev) != 0)
return -1;
eth_dev->tx_pkt_burst = bond_ethdev_tx_burst_alb;
eth_dev->rx_pkt_burst = bond_ethdev_rx_burst_alb;
break;
default:
return -1;
}
internals->mode = mode;
return 0;
}
static int
slave_configure_slow_queue(struct rte_eth_dev *bonded_eth_dev,
struct rte_eth_dev *slave_eth_dev)
{
int errval = 0;
struct bond_dev_private *internals = bonded_eth_dev->data->dev_private;
struct port *port = &bond_mode_8023ad_ports[slave_eth_dev->data->port_id];
if (port->slow_pool == NULL) {
char mem_name[256];
int slave_id = slave_eth_dev->data->port_id;
snprintf(mem_name, RTE_DIM(mem_name), "slave_port%u_slow_pool",
slave_id);
port->slow_pool = rte_pktmbuf_pool_create(mem_name, 8191,
250, 0, RTE_MBUF_DEFAULT_BUF_SIZE,
slave_eth_dev->data->numa_node);
/* Any memory allocation failure in initialization is critical because
* resources can't be free, so reinitialization is impossible. */
if (port->slow_pool == NULL) {
rte_panic("Slave %u: Failed to create memory pool '%s': %s\n",
slave_id, mem_name, rte_strerror(rte_errno));
}
}
if (internals->mode4.dedicated_queues.enabled == 1) {
/* Configure slow Rx queue */
errval = rte_eth_rx_queue_setup(slave_eth_dev->data->port_id,
internals->mode4.dedicated_queues.rx_qid, 128,
rte_eth_dev_socket_id(slave_eth_dev->data->port_id),
NULL, port->slow_pool);
if (errval != 0) {
RTE_BOND_LOG(ERR,
"rte_eth_rx_queue_setup: port=%d queue_id %d, err (%d)",
slave_eth_dev->data->port_id,
internals->mode4.dedicated_queues.rx_qid,
errval);
return errval;
}
errval = rte_eth_tx_queue_setup(slave_eth_dev->data->port_id,
internals->mode4.dedicated_queues.tx_qid, 512,
rte_eth_dev_socket_id(slave_eth_dev->data->port_id),
NULL);
if (errval != 0) {
RTE_BOND_LOG(ERR,
"rte_eth_tx_queue_setup: port=%d queue_id %d, err (%d)",
slave_eth_dev->data->port_id,
internals->mode4.dedicated_queues.tx_qid,
errval);
return errval;
}
}
return 0;
}
int
slave_configure(struct rte_eth_dev *bonded_eth_dev,
struct rte_eth_dev *slave_eth_dev)
{
struct bond_rx_queue *bd_rx_q;
struct bond_tx_queue *bd_tx_q;
uint16_t nb_rx_queues;
uint16_t nb_tx_queues;
int errval;
uint16_t q_id;
struct rte_flow_error flow_error;
struct bond_dev_private *internals = bonded_eth_dev->data->dev_private;
/* Stop slave */
rte_eth_dev_stop(slave_eth_dev->data->port_id);
/* Enable interrupts on slave device if supported */
if (slave_eth_dev->data->dev_flags & RTE_ETH_DEV_INTR_LSC)
slave_eth_dev->data->dev_conf.intr_conf.lsc = 1;
/* If RSS is enabled for bonding, try to enable it for slaves */
if (bonded_eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
if (internals->rss_key_len != 0) {
slave_eth_dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key_len =
internals->rss_key_len;
slave_eth_dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key =
internals->rss_key;
} else {
slave_eth_dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL;
}
slave_eth_dev->data->dev_conf.rx_adv_conf.rss_conf.rss_hf =
bonded_eth_dev->data->dev_conf.rx_adv_conf.rss_conf.rss_hf;
slave_eth_dev->data->dev_conf.rxmode.mq_mode =
bonded_eth_dev->data->dev_conf.rxmode.mq_mode;
}
if (bonded_eth_dev->data->dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_VLAN_FILTER)
slave_eth_dev->data->dev_conf.rxmode.offloads |=
DEV_RX_OFFLOAD_VLAN_FILTER;
else
slave_eth_dev->data->dev_conf.rxmode.offloads &=
~DEV_RX_OFFLOAD_VLAN_FILTER;
nb_rx_queues = bonded_eth_dev->data->nb_rx_queues;
nb_tx_queues = bonded_eth_dev->data->nb_tx_queues;
if (internals->mode == BONDING_MODE_8023AD) {
if (internals->mode4.dedicated_queues.enabled == 1) {
nb_rx_queues++;
nb_tx_queues++;
}
}
errval = rte_eth_dev_set_mtu(slave_eth_dev->data->port_id,
bonded_eth_dev->data->mtu);
if (errval != 0 && errval != -ENOTSUP) {
RTE_BOND_LOG(ERR, "rte_eth_dev_set_mtu: port %u, err (%d)",
slave_eth_dev->data->port_id, errval);
return errval;
}
/* Configure device */
errval = rte_eth_dev_configure(slave_eth_dev->data->port_id,
nb_rx_queues, nb_tx_queues,
&(slave_eth_dev->data->dev_conf));
if (errval != 0) {
RTE_BOND_LOG(ERR, "Cannot configure slave device: port %u, err (%d)",
slave_eth_dev->data->port_id, errval);
return errval;
}
/* Setup Rx Queues */
for (q_id = 0; q_id < bonded_eth_dev->data->nb_rx_queues; q_id++) {
bd_rx_q = (struct bond_rx_queue *)bonded_eth_dev->data->rx_queues[q_id];
errval = rte_eth_rx_queue_setup(slave_eth_dev->data->port_id, q_id,
bd_rx_q->nb_rx_desc,
rte_eth_dev_socket_id(slave_eth_dev->data->port_id),
&(bd_rx_q->rx_conf), bd_rx_q->mb_pool);
if (errval != 0) {
RTE_BOND_LOG(ERR,
"rte_eth_rx_queue_setup: port=%d queue_id %d, err (%d)",
slave_eth_dev->data->port_id, q_id, errval);
return errval;
}
}
/* Setup Tx Queues */
for (q_id = 0; q_id < bonded_eth_dev->data->nb_tx_queues; q_id++) {
bd_tx_q = (struct bond_tx_queue *)bonded_eth_dev->data->tx_queues[q_id];
errval = rte_eth_tx_queue_setup(slave_eth_dev->data->port_id, q_id,
bd_tx_q->nb_tx_desc,
rte_eth_dev_socket_id(slave_eth_dev->data->port_id),
&bd_tx_q->tx_conf);
if (errval != 0) {
RTE_BOND_LOG(ERR,
"rte_eth_tx_queue_setup: port=%d queue_id %d, err (%d)",
slave_eth_dev->data->port_id, q_id, errval);
return errval;
}
}
if (internals->mode == BONDING_MODE_8023AD &&
internals->mode4.dedicated_queues.enabled == 1) {
if (slave_configure_slow_queue(bonded_eth_dev, slave_eth_dev)
!= 0)
return errval;
if (bond_ethdev_8023ad_flow_verify(bonded_eth_dev,
slave_eth_dev->data->port_id) != 0) {
RTE_BOND_LOG(ERR,
"rte_eth_tx_queue_setup: port=%d queue_id %d, err (%d)",
slave_eth_dev->data->port_id, q_id, errval);
return -1;
}
if (internals->mode4.dedicated_queues.flow[slave_eth_dev->data->port_id] != NULL)
rte_flow_destroy(slave_eth_dev->data->port_id,
internals->mode4.dedicated_queues.flow[slave_eth_dev->data->port_id],
&flow_error);
bond_ethdev_8023ad_flow_set(bonded_eth_dev,
slave_eth_dev->data->port_id);
}
/* Start device */
errval = rte_eth_dev_start(slave_eth_dev->data->port_id);
if (errval != 0) {
RTE_BOND_LOG(ERR, "rte_eth_dev_start: port=%u, err (%d)",
slave_eth_dev->data->port_id, errval);
return -1;
}
/* If RSS is enabled for bonding, synchronize RETA */
if (bonded_eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) {
int i;
struct bond_dev_private *internals;
internals = bonded_eth_dev->data->dev_private;
for (i = 0; i < internals->slave_count; i++) {
if (internals->slaves[i].port_id == slave_eth_dev->data->port_id) {
errval = rte_eth_dev_rss_reta_update(
slave_eth_dev->data->port_id,
&internals->reta_conf[0],
internals->slaves[i].reta_size);
if (errval != 0) {
RTE_BOND_LOG(WARNING,
"rte_eth_dev_rss_reta_update on slave port %d fails (err %d)."
" RSS Configuration for bonding may be inconsistent.",
slave_eth_dev->data->port_id, errval);
}
break;
}
}
}
/* If lsc interrupt is set, check initial slave's link status */
if (slave_eth_dev->data->dev_flags & RTE_ETH_DEV_INTR_LSC) {
slave_eth_dev->dev_ops->link_update(slave_eth_dev, 0);
bond_ethdev_lsc_event_callback(slave_eth_dev->data->port_id,
RTE_ETH_EVENT_INTR_LSC, &bonded_eth_dev->data->port_id,
NULL);
}
return 0;
}
void
slave_remove(struct bond_dev_private *internals,
struct rte_eth_dev *slave_eth_dev)
{
uint16_t i;
for (i = 0; i < internals->slave_count; i++)
if (internals->slaves[i].port_id ==
slave_eth_dev->data->port_id)
break;
if (i < (internals->slave_count - 1)) {
struct rte_flow *flow;
memmove(&internals->slaves[i], &internals->slaves[i + 1],
sizeof(internals->slaves[0]) *
(internals->slave_count - i - 1));
TAILQ_FOREACH(flow, &internals->flow_list, next) {
memmove(&flow->flows[i], &flow->flows[i + 1],
sizeof(flow->flows[0]) *
(internals->slave_count - i - 1));
flow->flows[internals->slave_count - 1] = NULL;
}
}
internals->slave_count--;
/* force reconfiguration of slave interfaces */
_rte_eth_dev_reset(slave_eth_dev);
}
static void
bond_ethdev_slave_link_status_change_monitor(void *cb_arg);
void
slave_add(struct bond_dev_private *internals,
struct rte_eth_dev *slave_eth_dev)
{
struct bond_slave_details *slave_details =
&internals->slaves[internals->slave_count];
slave_details->port_id = slave_eth_dev->data->port_id;
slave_details->last_link_status = 0;
/* Mark slave devices that don't support interrupts so we can
* compensate when we start the bond
*/
if (!(slave_eth_dev->data->dev_flags & RTE_ETH_DEV_INTR_LSC)) {
slave_details->link_status_poll_enabled = 1;
}
slave_details->link_status_wait_to_complete = 0;
/* clean tlb_last_obytes when adding port for bonding device */
memcpy(&(slave_details->persisted_mac_addr), slave_eth_dev->data->mac_addrs,
sizeof(struct rte_ether_addr));
}
void
bond_ethdev_primary_set(struct bond_dev_private *internals,
uint16_t slave_port_id)
{
int i;
if (internals->active_slave_count < 1)
internals->current_primary_port = slave_port_id;
else
/* Search bonded device slave ports for new proposed primary port */
for (i = 0; i < internals->active_slave_count; i++) {
if (internals->active_slaves[i] == slave_port_id)
internals->current_primary_port = slave_port_id;
}
}
static int
bond_ethdev_promiscuous_enable(struct rte_eth_dev *eth_dev);
static int
bond_ethdev_start(struct rte_eth_dev *eth_dev)
{
struct bond_dev_private *internals;
int i;
/* slave eth dev will be started by bonded device */
if (check_for_bonded_ethdev(eth_dev)) {
RTE_BOND_LOG(ERR, "User tried to explicitly start a slave eth_dev (%d)",
eth_dev->data->port_id);
return -1;
}
eth_dev->data->dev_link.link_status = ETH_LINK_DOWN;
eth_dev->data->dev_started = 1;
internals = eth_dev->data->dev_private;
if (internals->slave_count == 0) {
RTE_BOND_LOG(ERR, "Cannot start port since there are no slave devices");
goto out_err;
}
if (internals->user_defined_mac == 0) {
struct rte_ether_addr *new_mac_addr = NULL;
for (i = 0; i < internals->slave_count; i++)
if (internals->slaves[i].port_id == internals->primary_port)
new_mac_addr = &internals->slaves[i].persisted_mac_addr;
if (new_mac_addr == NULL)
goto out_err;
if (mac_address_set(eth_dev, new_mac_addr) != 0) {
RTE_BOND_LOG(ERR, "bonded port (%d) failed to update MAC address",
eth_dev->data->port_id);
goto out_err;
}
}
if (internals->mode == BONDING_MODE_8023AD) {
if (internals->mode4.dedicated_queues.enabled == 1) {
internals->mode4.dedicated_queues.rx_qid =
eth_dev->data->nb_rx_queues;
internals->mode4.dedicated_queues.tx_qid =
eth_dev->data->nb_tx_queues;
}
}
/* Reconfigure each slave device if starting bonded device */
for (i = 0; i < internals->slave_count; i++) {
struct rte_eth_dev *slave_ethdev =
&(rte_eth_devices[internals->slaves[i].port_id]);
if (slave_configure(eth_dev, slave_ethdev) != 0) {
RTE_BOND_LOG(ERR,
"bonded port (%d) failed to reconfigure slave device (%d)",
eth_dev->data->port_id,
internals->slaves[i].port_id);
goto out_err;
}
/* We will need to poll for link status if any slave doesn't
* support interrupts
*/
if (internals->slaves[i].link_status_poll_enabled)
internals->link_status_polling_enabled = 1;
}
/* start polling if needed */
if (internals->link_status_polling_enabled) {
rte_eal_alarm_set(
internals->link_status_polling_interval_ms * 1000,
bond_ethdev_slave_link_status_change_monitor,
(void *)&rte_eth_devices[internals->port_id]);
}
/* Update all slave devices MACs*/
if (mac_address_slaves_update(eth_dev) != 0)
goto out_err;
if (internals->user_defined_primary_port)
bond_ethdev_primary_set(internals, internals->primary_port);
if (internals->mode == BONDING_MODE_8023AD)
bond_mode_8023ad_start(eth_dev);
if (internals->mode == BONDING_MODE_TLB ||
internals->mode == BONDING_MODE_ALB)
bond_tlb_enable(internals);
return 0;
out_err:
eth_dev->data->dev_started = 0;
return -1;
}
static void
bond_ethdev_free_queues(struct rte_eth_dev *dev)
{
uint16_t i;
if (dev->data->rx_queues != NULL) {
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rte_free(dev->data->rx_queues[i]);
dev->data->rx_queues[i] = NULL;
}
dev->data->nb_rx_queues = 0;
}
if (dev->data->tx_queues != NULL) {
for (i = 0; i < dev->data->nb_tx_queues; i++) {
rte_free(dev->data->tx_queues[i]);
dev->data->tx_queues[i] = NULL;
}
dev->data->nb_tx_queues = 0;
}
}
void
bond_ethdev_stop(struct rte_eth_dev *eth_dev)
{
struct bond_dev_private *internals = eth_dev->data->dev_private;
uint16_t i;
if (internals->mode == BONDING_MODE_8023AD) {
struct port *port;
void *pkt = NULL;
bond_mode_8023ad_stop(eth_dev);
/* Discard all messages to/from mode 4 state machines */
for (i = 0; i < internals->active_slave_count; i++) {
port = &bond_mode_8023ad_ports[internals->active_slaves[i]];
RTE_ASSERT(port->rx_ring != NULL);
while (rte_ring_dequeue(port->rx_ring, &pkt) != -ENOENT)
rte_pktmbuf_free(pkt);
RTE_ASSERT(port->tx_ring != NULL);
while (rte_ring_dequeue(port->tx_ring, &pkt) != -ENOENT)
rte_pktmbuf_free(pkt);
}
}
if (internals->mode == BONDING_MODE_TLB ||
internals->mode == BONDING_MODE_ALB) {
bond_tlb_disable(internals);
for (i = 0; i < internals->active_slave_count; i++)
tlb_last_obytets[internals->active_slaves[i]] = 0;
}
eth_dev->data->dev_link.link_status = ETH_LINK_DOWN;
eth_dev->data->dev_started = 0;
internals->link_status_polling_enabled = 0;
for (i = 0; i < internals->slave_count; i++) {
uint16_t slave_id = internals->slaves[i].port_id;
if (find_slave_by_id(internals->active_slaves,
internals->active_slave_count, slave_id) !=
internals->active_slave_count) {
internals->slaves[i].last_link_status = 0;
rte_eth_dev_stop(slave_id);
deactivate_slave(eth_dev, slave_id);
}
}
}
void
bond_ethdev_close(struct rte_eth_dev *dev)
{
struct bond_dev_private *internals = dev->data->dev_private;
uint16_t bond_port_id = internals->port_id;
int skipped = 0;
struct rte_flow_error ferror;
RTE_BOND_LOG(INFO, "Closing bonded device %s", dev->device->name);
while (internals->slave_count != skipped) {
uint16_t port_id = internals->slaves[skipped].port_id;
rte_eth_dev_stop(port_id);
if (rte_eth_bond_slave_remove(bond_port_id, port_id) != 0) {
RTE_BOND_LOG(ERR,
"Failed to remove port %d from bonded device %s",
port_id, dev->device->name);
skipped++;
}
}
bond_flow_ops.flush(dev, &ferror);
bond_ethdev_free_queues(dev);
rte_bitmap_reset(internals->vlan_filter_bmp);
}
/* forward declaration */
static int bond_ethdev_configure(struct rte_eth_dev *dev);
static int
bond_ethdev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct bond_dev_private *internals = dev->data->dev_private;
struct bond_slave_details slave;
int ret;
uint16_t max_nb_rx_queues = UINT16_MAX;
uint16_t max_nb_tx_queues = UINT16_MAX;
uint16_t max_rx_desc_lim = UINT16_MAX;
uint16_t max_tx_desc_lim = UINT16_MAX;
dev_info->max_mac_addrs = BOND_MAX_MAC_ADDRS;
dev_info->max_rx_pktlen = internals->candidate_max_rx_pktlen ?
internals->candidate_max_rx_pktlen :
RTE_ETHER_MAX_JUMBO_FRAME_LEN;
/* Max number of tx/rx queues that the bonded device can support is the
* minimum values of the bonded slaves, as all slaves must be capable
* of supporting the same number of tx/rx queues.
*/
if (internals->slave_count > 0) {
struct rte_eth_dev_info slave_info;
uint16_t idx;
for (idx = 0; idx < internals->slave_count; idx++) {
slave = internals->slaves[idx];
ret = rte_eth_dev_info_get(slave.port_id, &slave_info);
if (ret != 0) {
RTE_BOND_LOG(ERR,
"%s: Error during getting device (port %u) info: %s\n",
__func__,
slave.port_id,
strerror(-ret));
return ret;
}
if (slave_info.max_rx_queues < max_nb_rx_queues)
max_nb_rx_queues = slave_info.max_rx_queues;
if (slave_info.max_tx_queues < max_nb_tx_queues)
max_nb_tx_queues = slave_info.max_tx_queues;
if (slave_info.rx_desc_lim.nb_max < max_rx_desc_lim)
max_rx_desc_lim = slave_info.rx_desc_lim.nb_max;
if (slave_info.tx_desc_lim.nb_max < max_tx_desc_lim)
max_tx_desc_lim = slave_info.tx_desc_lim.nb_max;
}
}
dev_info->max_rx_queues = max_nb_rx_queues;
dev_info->max_tx_queues = max_nb_tx_queues;
memcpy(&dev_info->default_rxconf, &internals->default_rxconf,
sizeof(dev_info->default_rxconf));
memcpy(&dev_info->default_txconf, &internals->default_txconf,
sizeof(dev_info->default_txconf));
dev_info->rx_desc_lim.nb_max = max_rx_desc_lim;
dev_info->tx_desc_lim.nb_max = max_tx_desc_lim;
/**
* If dedicated hw queues enabled for link bonding device in LACP mode
* then we need to reduce the maximum number of data path queues by 1.
*/
if (internals->mode == BONDING_MODE_8023AD &&
internals->mode4.dedicated_queues.enabled == 1) {
dev_info->max_rx_queues--;
dev_info->max_tx_queues--;
}
dev_info->min_rx_bufsize = 0;
dev_info->rx_offload_capa = internals->rx_offload_capa;
dev_info->tx_offload_capa = internals->tx_offload_capa;
dev_info->rx_queue_offload_capa = internals->rx_queue_offload_capa;
dev_info->tx_queue_offload_capa = internals->tx_queue_offload_capa;
dev_info->flow_type_rss_offloads = internals->flow_type_rss_offloads;
dev_info->reta_size = internals->reta_size;
return 0;
}
static int
bond_ethdev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
int res;
uint16_t i;
struct bond_dev_private *internals = dev->data->dev_private;
/* don't do this while a slave is being added */
rte_spinlock_lock(&internals->lock);
if (on)
rte_bitmap_set(internals->vlan_filter_bmp, vlan_id);
else
rte_bitmap_clear(internals->vlan_filter_bmp, vlan_id);
for (i = 0; i < internals->slave_count; i++) {
uint16_t port_id = internals->slaves[i].port_id;
res = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
if (res == ENOTSUP)
RTE_BOND_LOG(WARNING,
"Setting VLAN filter on slave port %u not supported.",
port_id);
}
rte_spinlock_unlock(&internals->lock);
return 0;
}
static int
bond_ethdev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
uint16_t nb_rx_desc, unsigned int socket_id __rte_unused,
const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mb_pool)
{
struct bond_rx_queue *bd_rx_q = (struct bond_rx_queue *)
rte_zmalloc_socket(NULL, sizeof(struct bond_rx_queue),
0, dev->data->numa_node);
if (bd_rx_q == NULL)
return -1;
bd_rx_q->queue_id = rx_queue_id;
bd_rx_q->dev_private = dev->data->dev_private;
bd_rx_q->nb_rx_desc = nb_rx_desc;
memcpy(&(bd_rx_q->rx_conf), rx_conf, sizeof(struct rte_eth_rxconf));
bd_rx_q->mb_pool = mb_pool;
dev->data->rx_queues[rx_queue_id] = bd_rx_q;
return 0;
}
static int
bond_ethdev_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
uint16_t nb_tx_desc, unsigned int socket_id __rte_unused,
const struct rte_eth_txconf *tx_conf)
{
struct bond_tx_queue *bd_tx_q = (struct bond_tx_queue *)
rte_zmalloc_socket(NULL, sizeof(struct bond_tx_queue),
0, dev->data->numa_node);
if (bd_tx_q == NULL)
return -1;
bd_tx_q->queue_id = tx_queue_id;
bd_tx_q->dev_private = dev->data->dev_private;
bd_tx_q->nb_tx_desc = nb_tx_desc;
memcpy(&(bd_tx_q->tx_conf), tx_conf, sizeof(bd_tx_q->tx_conf));
dev->data->tx_queues[tx_queue_id] = bd_tx_q;
return 0;
}
static void
bond_ethdev_rx_queue_release(void *queue)
{
if (queue == NULL)
return;
rte_free(queue);
}
static void
bond_ethdev_tx_queue_release(void *queue)
{
if (queue == NULL)
return;
rte_free(queue);
}
static void
bond_ethdev_slave_link_status_change_monitor(void *cb_arg)
{
struct rte_eth_dev *bonded_ethdev, *slave_ethdev;
struct bond_dev_private *internals;
/* Default value for polling slave found is true as we don't want to
* disable the polling thread if we cannot get the lock */
int i, polling_slave_found = 1;
if (cb_arg == NULL)
return;
bonded_ethdev = cb_arg;
internals = bonded_ethdev->data->dev_private;
if (!bonded_ethdev->data->dev_started ||
!internals->link_status_polling_enabled)
return;
/* If device is currently being configured then don't check slaves link
* status, wait until next period */
if (rte_spinlock_trylock(&internals->lock)) {
if (internals->slave_count > 0)
polling_slave_found = 0;
for (i = 0; i < internals->slave_count; i++) {
if (!internals->slaves[i].link_status_poll_enabled)
continue;
slave_ethdev = &rte_eth_devices[internals->slaves[i].port_id];
polling_slave_found = 1;
/* Update slave link status */
(*slave_ethdev->dev_ops->link_update)(slave_ethdev,
internals->slaves[i].link_status_wait_to_complete);
/* if link status has changed since last checked then call lsc
* event callback */
if (slave_ethdev->data->dev_link.link_status !=
internals->slaves[i].last_link_status) {
internals->slaves[i].last_link_status =
slave_ethdev->data->dev_link.link_status;
bond_ethdev_lsc_event_callback(internals->slaves[i].port_id,
RTE_ETH_EVENT_INTR_LSC,
&bonded_ethdev->data->port_id,
NULL);
}
}
rte_spinlock_unlock(&internals->lock);
}
if (polling_slave_found)
/* Set alarm to continue monitoring link status of slave ethdev's */
rte_eal_alarm_set(internals->link_status_polling_interval_ms * 1000,
bond_ethdev_slave_link_status_change_monitor, cb_arg);
}
static int
bond_ethdev_link_update(struct rte_eth_dev *ethdev, int wait_to_complete)
{
int (*link_update)(uint16_t port_id, struct rte_eth_link *eth_link);
struct bond_dev_private *bond_ctx;
struct rte_eth_link slave_link;
bool one_link_update_succeeded;
uint32_t idx;
int ret;
bond_ctx = ethdev->data->dev_private;
ethdev->data->dev_link.link_speed = ETH_SPEED_NUM_NONE;
if (ethdev->data->dev_started == 0 ||
bond_ctx->active_slave_count == 0) {
ethdev->data->dev_link.link_status = ETH_LINK_DOWN;
return 0;
}
ethdev->data->dev_link.link_status = ETH_LINK_UP;
if (wait_to_complete)
link_update = rte_eth_link_get;
else
link_update = rte_eth_link_get_nowait;
switch (bond_ctx->mode) {
case BONDING_MODE_BROADCAST:
/**
* Setting link speed to UINT32_MAX to ensure we pick up the
* value of the first active slave
*/
ethdev->data->dev_link.link_speed = UINT32_MAX;
/**
* link speed is minimum value of all the slaves link speed as
* packet loss will occur on this slave if transmission at rates
* greater than this are attempted
*/
for (idx = 0; idx < bond_ctx->active_slave_count; idx++) {
ret = link_update(bond_ctx->active_slaves[idx],
&slave_link);
if (ret < 0) {
ethdev->data->dev_link.link_speed =
ETH_SPEED_NUM_NONE;
RTE_BOND_LOG(ERR,
"Slave (port %u) link get failed: %s",
bond_ctx->active_slaves[idx],
rte_strerror(-ret));
return 0;
}
if (slave_link.link_speed <
ethdev->data->dev_link.link_speed)
ethdev->data->dev_link.link_speed =
slave_link.link_speed;
}
break;
case BONDING_MODE_ACTIVE_BACKUP:
/* Current primary slave */
ret = link_update(bond_ctx->current_primary_port, &slave_link);
if (ret < 0) {
RTE_BOND_LOG(ERR, "Slave (port %u) link get failed: %s",
bond_ctx->current_primary_port,
rte_strerror(-ret));
return 0;
}
ethdev->data->dev_link.link_speed = slave_link.link_speed;
break;
case BONDING_MODE_8023AD:
ethdev->data->dev_link.link_autoneg =
bond_ctx->mode4.slave_link.link_autoneg;
ethdev->data->dev_link.link_duplex =
bond_ctx->mode4.slave_link.link_duplex;
/* fall through */
/* to update link speed */
case BONDING_MODE_ROUND_ROBIN:
case BONDING_MODE_BALANCE:
case BONDING_MODE_TLB:
case BONDING_MODE_ALB:
default:
/**
* In theses mode the maximum theoretical link speed is the sum
* of all the slaves
*/
ethdev->data->dev_link.link_speed = ETH_SPEED_NUM_NONE;
one_link_update_succeeded = false;
for (idx = 0; idx < bond_ctx->active_slave_count; idx++) {
ret = link_update(bond_ctx->active_slaves[idx],
&slave_link);
if (ret < 0) {
RTE_BOND_LOG(ERR,
"Slave (port %u) link get failed: %s",
bond_ctx->active_slaves[idx],
rte_strerror(-ret));
continue;
}
one_link_update_succeeded = true;
ethdev->data->dev_link.link_speed +=
slave_link.link_speed;
}
if (!one_link_update_succeeded) {
RTE_BOND_LOG(ERR, "All slaves link get failed");
return 0;
}
}
return 0;
}
static int
bond_ethdev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
struct bond_dev_private *internals = dev->data->dev_private;
struct rte_eth_stats slave_stats;
int i, j;
for (i = 0; i < internals->slave_count; i++) {
rte_eth_stats_get(internals->slaves[i].port_id, &slave_stats);
stats->ipackets += slave_stats.ipackets;
stats->opackets += slave_stats.opackets;
stats->ibytes += slave_stats.ibytes;
stats->obytes += slave_stats.obytes;
stats->imissed += slave_stats.imissed;
stats->ierrors += slave_stats.ierrors;
stats->oerrors += slave_stats.oerrors;
stats->rx_nombuf += slave_stats.rx_nombuf;
for (j = 0; j < RTE_ETHDEV_QUEUE_STAT_CNTRS; j++) {
stats->q_ipackets[j] += slave_stats.q_ipackets[j];
stats->q_opackets[j] += slave_stats.q_opackets[j];
stats->q_ibytes[j] += slave_stats.q_ibytes[j];
stats->q_obytes[j] += slave_stats.q_obytes[j];
stats->q_errors[j] += slave_stats.q_errors[j];
}
}
return 0;
}
static int
bond_ethdev_stats_reset(struct rte_eth_dev *dev)
{
struct bond_dev_private *internals = dev->data->dev_private;
int i;
int err;
int ret;
for (i = 0, err = 0; i < internals->slave_count; i++) {
ret = rte_eth_stats_reset(internals->slaves[i].port_id);
if (ret != 0)
err = ret;
}
return err;
}
static int
bond_ethdev_promiscuous_enable(struct rte_eth_dev *eth_dev)
{
struct bond_dev_private *internals = eth_dev->data->dev_private;
int i;
int ret = 0;
uint16_t port_id;
switch (internals->mode) {
/* Promiscuous mode is propagated to all slaves */
case BONDING_MODE_ROUND_ROBIN:
case BONDING_MODE_BALANCE:
case BONDING_MODE_BROADCAST:
case BONDING_MODE_8023AD: {
unsigned int slave_ok = 0;
for (i = 0; i < internals->slave_count; i++) {
port_id = internals->slaves[i].port_id;
ret = rte_eth_promiscuous_enable(port_id);
if (ret != 0)
RTE_BOND_LOG(ERR,
"Failed to enable promiscuous mode for port %u: %s",
port_id, rte_strerror(-ret));
else
slave_ok++;
}
/*
* Report success if operation is successful on at least
* on one slave. Otherwise return last error code.
*/
if (slave_ok > 0)
ret = 0;
break;
}
/* Promiscuous mode is propagated only to primary slave */
case BONDING_MODE_ACTIVE_BACKUP:
case BONDING_MODE_TLB:
case BONDING_MODE_ALB:
default:
/* Do not touch promisc when there cannot be primary ports */
if (internals->slave_count == 0)
break;
port_id = internals->current_primary_port;
ret = rte_eth_promiscuous_enable(port_id);
if (ret != 0)
RTE_BOND_LOG(ERR,
"Failed to enable promiscuous mode for port %u: %s",
port_id, rte_strerror(-ret));
}
return ret;
}
static int
bond_ethdev_promiscuous_disable(struct rte_eth_dev *dev)
{
struct bond_dev_private *internals = dev->data->dev_private;
int i;
int ret = 0;
uint16_t port_id;
switch (internals->mode) {
/* Promiscuous mode is propagated to all slaves */
case BONDING_MODE_ROUND_ROBIN:
case BONDING_MODE_BALANCE:
case BONDING_MODE_BROADCAST:
case BONDING_MODE_8023AD: {
unsigned int slave_ok = 0;
for (i = 0; i < internals->slave_count; i++) {
port_id = internals->slaves[i].port_id;
if (internals->mode == BONDING_MODE_8023AD &&
bond_mode_8023ad_ports[port_id].forced_rx_flags ==
BOND_8023AD_FORCED_PROMISC) {
slave_ok++;
continue;
}
ret = rte_eth_promiscuous_disable(port_id);
if (ret != 0)
RTE_BOND_LOG(ERR,
"Failed to disable promiscuous mode for port %u: %s",
port_id, rte_strerror(-ret));
else
slave_ok++;
}
/*
* Report success if operation is successful on at least
* on one slave. Otherwise return last error code.
*/
if (slave_ok > 0)
ret = 0;
break;
}
/* Promiscuous mode is propagated only to primary slave */
case BONDING_MODE_ACTIVE_BACKUP:
case BONDING_MODE_TLB:
case BONDING_MODE_ALB:
default:
/* Do not touch promisc when there cannot be primary ports */
if (internals->slave_count == 0)
break;
port_id = internals->current_primary_port;
ret = rte_eth_promiscuous_disable(port_id);
if (ret != 0)
RTE_BOND_LOG(ERR,
"Failed to disable promiscuous mode for port %u: %s",
port_id, rte_strerror(-ret));
}
return ret;
}
static int
bond_ethdev_allmulticast_enable(struct rte_eth_dev *eth_dev)
{
struct bond_dev_private *internals = eth_dev->data->dev_private;
int i;
int ret = 0;
uint16_t port_id;
switch (internals->mode) {
/* allmulti mode is propagated to all slaves */
case BONDING_MODE_ROUND_ROBIN:
case BONDING_MODE_BALANCE:
case BONDING_MODE_BROADCAST:
case BONDING_MODE_8023AD: {
unsigned int slave_ok = 0;
for (i = 0; i < internals->slave_count; i++) {
port_id = internals->slaves[i].port_id;
ret = rte_eth_allmulticast_enable(port_id);
if (ret != 0)
RTE_BOND_LOG(ERR,
"Failed to enable allmulti mode for port %u: %s",
port_id, rte_strerror(-ret));
else
slave_ok++;
}
/*
* Report success if operation is successful on at least
* on one slave. Otherwise return last error code.
*/
if (slave_ok > 0)
ret = 0;
break;
}
/* allmulti mode is propagated only to primary slave */
case BONDING_MODE_ACTIVE_BACKUP:
case BONDING_MODE_TLB:
case BONDING_MODE_ALB:
default:
/* Do not touch allmulti when there cannot be primary ports */
if (internals->slave_count == 0)
break;
port_id = internals->current_primary_port;
ret = rte_eth_allmulticast_enable(port_id);
if (ret != 0)
RTE_BOND_LOG(ERR,
"Failed to enable allmulti mode for port %u: %s",
port_id, rte_strerror(-ret));
}
return ret;
}
static int
bond_ethdev_allmulticast_disable(struct rte_eth_dev *eth_dev)
{
struct bond_dev_private *internals = eth_dev->data->dev_private;
int i;
int ret = 0;
uint16_t port_id;
switch (internals->mode) {
/* allmulti mode is propagated to all slaves */
case BONDING_MODE_ROUND_ROBIN:
case BONDING_MODE_BALANCE:
case BONDING_MODE_BROADCAST:
case BONDING_MODE_8023AD: {
unsigned int slave_ok = 0;
for (i = 0; i < internals->slave_count; i++) {
uint16_t port_id = internals->slaves[i].port_id;
if (internals->mode == BONDING_MODE_8023AD &&
bond_mode_8023ad_ports[port_id].forced_rx_flags ==
BOND_8023AD_FORCED_ALLMULTI)
continue;
ret = rte_eth_allmulticast_disable(port_id);
if (ret != 0)
RTE_BOND_LOG(ERR,
"Failed to disable allmulti mode for port %u: %s",
port_id, rte_strerror(-ret));
else
slave_ok++;
}
/*
* Report success if operation is successful on at least
* on one slave. Otherwise return last error code.
*/
if (slave_ok > 0)
ret = 0;
break;
}
/* allmulti mode is propagated only to primary slave */
case BONDING_MODE_ACTIVE_BACKUP:
case BONDING_MODE_TLB:
case BONDING_MODE_ALB:
default:
/* Do not touch allmulti when there cannot be primary ports */
if (internals->slave_count == 0)
break;
port_id = internals->current_primary_port;
ret = rte_eth_allmulticast_disable(port_id);
if (ret != 0)
RTE_BOND_LOG(ERR,
"Failed to disable allmulti mode for port %u: %s",
port_id, rte_strerror(-ret));
}
return ret;
}
static void
bond_ethdev_delayed_lsc_propagation(void *arg)
{
if (arg == NULL)
return;
_rte_eth_dev_callback_process((struct rte_eth_dev *)arg,
RTE_ETH_EVENT_INTR_LSC, NULL);
}
int
bond_ethdev_lsc_event_callback(uint16_t port_id, enum rte_eth_event_type type,
void *param, void *ret_param __rte_unused)
{
struct rte_eth_dev *bonded_eth_dev;
struct bond_dev_private *internals;
struct rte_eth_link link;
int rc = -1;
int ret;
uint8_t lsc_flag = 0;
int valid_slave = 0;
uint16_t active_pos;
uint16_t i;
if (type != RTE_ETH_EVENT_INTR_LSC || param == NULL)
return rc;
bonded_eth_dev = &rte_eth_devices[*(uint16_t *)param];
if (check_for_bonded_ethdev(bonded_eth_dev))
return rc;
internals = bonded_eth_dev->data->dev_private;
/* If the device isn't started don't handle interrupts */
if (!bonded_eth_dev->data->dev_started)
return rc;
/* verify that port_id is a valid slave of bonded port */
for (i = 0; i < internals->slave_count; i++) {
if (internals->slaves[i].port_id == port_id) {
valid_slave = 1;
break;
}
}
if (!valid_slave)
return rc;
/* Synchronize lsc callback parallel calls either by real link event
* from the slaves PMDs or by the bonding PMD itself.
*/
rte_spinlock_lock(&internals->lsc_lock);
/* Search for port in active port list */
active_pos = find_slave_by_id(internals->active_slaves,
internals->active_slave_count, port_id);
ret = rte_eth_link_get_nowait(port_id, &link);
if (ret < 0)
RTE_BOND_LOG(ERR, "Slave (port %u) link get failed", port_id);
if (ret == 0 && link.link_status) {
if (active_pos < internals->active_slave_count)
goto link_update;
/* check link state properties if bonded link is up*/
if (bonded_eth_dev->data->dev_link.link_status == ETH_LINK_UP) {
if (link_properties_valid(bonded_eth_dev, &link) != 0)
RTE_BOND_LOG(ERR, "Invalid link properties "
"for slave %d in bonding mode %d",
port_id, internals->mode);
} else {
/* inherit slave link properties */
link_properties_set(bonded_eth_dev, &link);
}
/* If no active slave ports then set this port to be
* the primary port.
*/
if (internals->active_slave_count < 1) {
/* If first active slave, then change link status */
bonded_eth_dev->data->dev_link.link_status =
ETH_LINK_UP;
internals->current_primary_port = port_id;
lsc_flag = 1;
mac_address_slaves_update(bonded_eth_dev);
}
activate_slave(bonded_eth_dev, port_id);
/* If the user has defined the primary port then default to
* using it.
*/
if (internals->user_defined_primary_port &&
internals->primary_port == port_id)
bond_ethdev_primary_set(internals, port_id);
} else {
if (active_pos == internals->active_slave_count)
goto link_update;
/* Remove from active slave list */
deactivate_slave(bonded_eth_dev, port_id);
if (internals->active_slave_count < 1)
lsc_flag = 1;
/* Update primary id, take first active slave from list or if none
* available set to -1 */
if (port_id == internals->current_primary_port) {
if (internals->active_slave_count > 0)
bond_ethdev_primary_set(internals,
internals->active_slaves[0]);
else
internals->current_primary_port = internals->primary_port;
}
}
link_update:
/**
* Update bonded device link properties after any change to active
* slaves
*/
bond_ethdev_link_update(bonded_eth_dev, 0);
if (lsc_flag) {
/* Cancel any possible outstanding interrupts if delays are enabled */
if (internals->link_up_delay_ms > 0 ||
internals->link_down_delay_ms > 0)
rte_eal_alarm_cancel(bond_ethdev_delayed_lsc_propagation,
bonded_eth_dev);
if (bonded_eth_dev->data->dev_link.link_status) {
if (internals->link_up_delay_ms > 0)
rte_eal_alarm_set(internals->link_up_delay_ms * 1000,
bond_ethdev_delayed_lsc_propagation,
(void *)bonded_eth_dev);
else
_rte_eth_dev_callback_process(bonded_eth_dev,
RTE_ETH_EVENT_INTR_LSC,
NULL);
} else {
if (internals->link_down_delay_ms > 0)
rte_eal_alarm_set(internals->link_down_delay_ms * 1000,
bond_ethdev_delayed_lsc_propagation,
(void *)bonded_eth_dev);
else
_rte_eth_dev_callback_process(bonded_eth_dev,
RTE_ETH_EVENT_INTR_LSC,
NULL);
}
}
rte_spinlock_unlock(&internals->lsc_lock);
return rc;
}
static int
bond_ethdev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size)
{
unsigned i, j;
int result = 0;
int slave_reta_size;
unsigned reta_count;
struct bond_dev_private *internals = dev->data->dev_private;
if (reta_size != internals->reta_size)
return -EINVAL;
/* Copy RETA table */
reta_count = reta_size / RTE_RETA_GROUP_SIZE;
for (i = 0; i < reta_count; i++) {
internals->reta_conf[i].mask = reta_conf[i].mask;
for (j = 0; j < RTE_RETA_GROUP_SIZE; j++)
if ((reta_conf[i].mask >> j) & 0x01)
internals->reta_conf[i].reta[j] = reta_conf[i].reta[j];
}
/* Fill rest of array */
for (; i < RTE_DIM(internals->reta_conf); i += reta_count)
memcpy(&internals->reta_conf[i], &internals->reta_conf[0],
sizeof(internals->reta_conf[0]) * reta_count);
/* Propagate RETA over slaves */
for (i = 0; i < internals->slave_count; i++) {
slave_reta_size = internals->slaves[i].reta_size;
result = rte_eth_dev_rss_reta_update(internals->slaves[i].port_id,
&internals->reta_conf[0], slave_reta_size);
if (result < 0)
return result;
}
return 0;
}
static int
bond_ethdev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size)
{
int i, j;
struct bond_dev_private *internals = dev->data->dev_private;
if (reta_size != internals->reta_size)
return -EINVAL;
/* Copy RETA table */
for (i = 0; i < reta_size / RTE_RETA_GROUP_SIZE; i++)
for (j = 0; j < RTE_RETA_GROUP_SIZE; j++)
if ((reta_conf[i].mask >> j) & 0x01)
reta_conf[i].reta[j] = internals->reta_conf[i].reta[j];
return 0;
}
static int
bond_ethdev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
int i, result = 0;
struct bond_dev_private *internals = dev->data->dev_private;
struct rte_eth_rss_conf bond_rss_conf;
memcpy(&bond_rss_conf, rss_conf, sizeof(struct rte_eth_rss_conf));
bond_rss_conf.rss_hf &= internals->flow_type_rss_offloads;
if (bond_rss_conf.rss_hf != 0)
dev->data->dev_conf.rx_adv_conf.rss_conf.rss_hf = bond_rss_conf.rss_hf;
if (bond_rss_conf.rss_key && bond_rss_conf.rss_key_len <
sizeof(internals->rss_key)) {
if (bond_rss_conf.rss_key_len == 0)
bond_rss_conf.rss_key_len = 40;
internals->rss_key_len = bond_rss_conf.rss_key_len;
memcpy(internals->rss_key, bond_rss_conf.rss_key,
internals->rss_key_len);
}
for (i = 0; i < internals->slave_count; i++) {
result = rte_eth_dev_rss_hash_update(internals->slaves[i].port_id,
&bond_rss_conf);
if (result < 0)
return result;
}
return 0;
}
static int
bond_ethdev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct bond_dev_private *internals = dev->data->dev_private;
rss_conf->rss_hf = dev->data->dev_conf.rx_adv_conf.rss_conf.rss_hf;
rss_conf->rss_key_len = internals->rss_key_len;
if (rss_conf->rss_key)
memcpy(rss_conf->rss_key, internals->rss_key, internals->rss_key_len);
return 0;
}
static int
bond_ethdev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct rte_eth_dev *slave_eth_dev;
struct bond_dev_private *internals = dev->data->dev_private;
int ret, i;
rte_spinlock_lock(&internals->lock);
for (i = 0; i < internals->slave_count; i++) {
slave_eth_dev = &rte_eth_devices[internals->slaves[i].port_id];
if (*slave_eth_dev->dev_ops->mtu_set == NULL) {
rte_spinlock_unlock(&internals->lock);
return -ENOTSUP;
}
}
for (i = 0; i < internals->slave_count; i++) {
ret = rte_eth_dev_set_mtu(internals->slaves[i].port_id, mtu);
if (ret < 0) {
rte_spinlock_unlock(&internals->lock);
return ret;
}
}
rte_spinlock_unlock(&internals->lock);
return 0;
}
static int
bond_ethdev_mac_address_set(struct rte_eth_dev *dev,
struct rte_ether_addr *addr)
{
if (mac_address_set(dev, addr)) {
RTE_BOND_LOG(ERR, "Failed to update MAC address");
return -EINVAL;
}
return 0;
}
static int
bond_filter_ctrl(struct rte_eth_dev *dev __rte_unused,
enum rte_filter_type type, enum rte_filter_op op, void *arg)
{
if (type == RTE_ETH_FILTER_GENERIC && op == RTE_ETH_FILTER_GET) {
*(const void **)arg = &bond_flow_ops;
return 0;
}
return -ENOTSUP;
}
static int
bond_ethdev_mac_addr_add(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr,
__rte_unused uint32_t index, uint32_t vmdq)
{
struct rte_eth_dev *slave_eth_dev;
struct bond_dev_private *internals = dev->data->dev_private;
int ret, i;
rte_spinlock_lock(&internals->lock);
for (i = 0; i < internals->slave_count; i++) {
slave_eth_dev = &rte_eth_devices[internals->slaves[i].port_id];
if (*slave_eth_dev->dev_ops->mac_addr_add == NULL ||
*slave_eth_dev->dev_ops->mac_addr_remove == NULL) {
ret = -ENOTSUP;
goto end;
}
}
for (i = 0; i < internals->slave_count; i++) {
ret = rte_eth_dev_mac_addr_add(internals->slaves[i].port_id,
mac_addr, vmdq);
if (ret < 0) {
/* rollback */
for (i--; i >= 0; i--)
rte_eth_dev_mac_addr_remove(
internals->slaves[i].port_id, mac_addr);
goto end;
}
}
ret = 0;
end:
rte_spinlock_unlock(&internals->lock);
return ret;
}
static void
bond_ethdev_mac_addr_remove(struct rte_eth_dev *dev, uint32_t index)
{
struct rte_eth_dev *slave_eth_dev;
struct bond_dev_private *internals = dev->data->dev_private;
int i;
rte_spinlock_lock(&internals->lock);
for (i = 0; i < internals->slave_count; i++) {
slave_eth_dev = &rte_eth_devices[internals->slaves[i].port_id];
if (*slave_eth_dev->dev_ops->mac_addr_remove == NULL)
goto end;
}
struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[index];
for (i = 0; i < internals->slave_count; i++)
rte_eth_dev_mac_addr_remove(internals->slaves[i].port_id,
mac_addr);
end:
rte_spinlock_unlock(&internals->lock);
}
const struct eth_dev_ops default_dev_ops = {
.dev_start = bond_ethdev_start,
.dev_stop = bond_ethdev_stop,
.dev_close = bond_ethdev_close,
.dev_configure = bond_ethdev_configure,
.dev_infos_get = bond_ethdev_info,
.vlan_filter_set = bond_ethdev_vlan_filter_set,
.rx_queue_setup = bond_ethdev_rx_queue_setup,
.tx_queue_setup = bond_ethdev_tx_queue_setup,
.rx_queue_release = bond_ethdev_rx_queue_release,
.tx_queue_release = bond_ethdev_tx_queue_release,
.link_update = bond_ethdev_link_update,
.stats_get = bond_ethdev_stats_get,
.stats_reset = bond_ethdev_stats_reset,
.promiscuous_enable = bond_ethdev_promiscuous_enable,
.promiscuous_disable = bond_ethdev_promiscuous_disable,
.allmulticast_enable = bond_ethdev_allmulticast_enable,
.allmulticast_disable = bond_ethdev_allmulticast_disable,
.reta_update = bond_ethdev_rss_reta_update,
.reta_query = bond_ethdev_rss_reta_query,
.rss_hash_update = bond_ethdev_rss_hash_update,
.rss_hash_conf_get = bond_ethdev_rss_hash_conf_get,
.mtu_set = bond_ethdev_mtu_set,
.mac_addr_set = bond_ethdev_mac_address_set,
.mac_addr_add = bond_ethdev_mac_addr_add,
.mac_addr_remove = bond_ethdev_mac_addr_remove,
.filter_ctrl = bond_filter_ctrl
};
static int
bond_alloc(struct rte_vdev_device *dev, uint8_t mode)
{
const char *name = rte_vdev_device_name(dev);
uint8_t socket_id = dev->device.numa_node;
struct bond_dev_private *internals = NULL;
struct rte_eth_dev *eth_dev = NULL;
uint32_t vlan_filter_bmp_size;
/* now do all data allocation - for eth_dev structure, dummy pci driver
* and internal (private) data
*/
/* reserve an ethdev entry */
eth_dev = rte_eth_vdev_allocate(dev, sizeof(*internals));
if (eth_dev == NULL) {
RTE_BOND_LOG(ERR, "Unable to allocate rte_eth_dev");
goto err;
}
internals = eth_dev->data->dev_private;
eth_dev->data->nb_rx_queues = (uint16_t)1;
eth_dev->data->nb_tx_queues = (uint16_t)1;
/* Allocate memory for storing MAC addresses */
eth_dev->data->mac_addrs = rte_zmalloc_socket(name, RTE_ETHER_ADDR_LEN *
BOND_MAX_MAC_ADDRS, 0, socket_id);
if (eth_dev->data->mac_addrs == NULL) {
RTE_BOND_LOG(ERR,
"Failed to allocate %u bytes needed to store MAC addresses",
RTE_ETHER_ADDR_LEN * BOND_MAX_MAC_ADDRS);
goto err;
}
eth_dev->dev_ops = &default_dev_ops;
eth_dev->data->dev_flags = RTE_ETH_DEV_INTR_LSC;
rte_spinlock_init(&internals->lock);
rte_spinlock_init(&internals->lsc_lock);
internals->port_id = eth_dev->data->port_id;
internals->mode = BONDING_MODE_INVALID;
internals->current_primary_port = RTE_MAX_ETHPORTS + 1;
internals->balance_xmit_policy = BALANCE_XMIT_POLICY_LAYER2;
internals->burst_xmit_hash = burst_xmit_l2_hash;
internals->user_defined_mac = 0;
internals->link_status_polling_enabled = 0;
internals->link_status_polling_interval_ms =
DEFAULT_POLLING_INTERVAL_10_MS;
internals->link_down_delay_ms = 0;
internals->link_up_delay_ms = 0;
internals->slave_count = 0;
internals->active_slave_count = 0;
internals->rx_offload_capa = 0;
internals->tx_offload_capa = 0;
internals->rx_queue_offload_capa = 0;
internals->tx_queue_offload_capa = 0;
internals->candidate_max_rx_pktlen = 0;
internals->max_rx_pktlen = 0;
/* Initially allow to choose any offload type */
internals->flow_type_rss_offloads = ETH_RSS_PROTO_MASK;
memset(&internals->default_rxconf, 0,
sizeof(internals->default_rxconf));
memset(&internals->default_txconf, 0,
sizeof(internals->default_txconf));
memset(&internals->rx_desc_lim, 0, sizeof(internals->rx_desc_lim));
memset(&internals->tx_desc_lim, 0, sizeof(internals->tx_desc_lim));
memset(internals->active_slaves, 0, sizeof(internals->active_slaves));
memset(internals->slaves, 0, sizeof(internals->slaves));
TAILQ_INIT(&internals->flow_list);
internals->flow_isolated_valid = 0;
/* Set mode 4 default configuration */
bond_mode_8023ad_setup(eth_dev, NULL);
if (bond_ethdev_mode_set(eth_dev, mode)) {
RTE_BOND_LOG(ERR, "Failed to set bonded device %d mode to %d",
eth_dev->data->port_id, mode);
goto err;
}
vlan_filter_bmp_size =
rte_bitmap_get_memory_footprint(RTE_ETHER_MAX_VLAN_ID + 1);
internals->vlan_filter_bmpmem = rte_malloc(name, vlan_filter_bmp_size,
RTE_CACHE_LINE_SIZE);
if (internals->vlan_filter_bmpmem == NULL) {
RTE_BOND_LOG(ERR,
"Failed to allocate vlan bitmap for bonded device %u",
eth_dev->data->port_id);
goto err;
}
internals->vlan_filter_bmp = rte_bitmap_init(RTE_ETHER_MAX_VLAN_ID + 1,
internals->vlan_filter_bmpmem, vlan_filter_bmp_size);
if (internals->vlan_filter_bmp == NULL) {
RTE_BOND_LOG(ERR,
"Failed to init vlan bitmap for bonded device %u",
eth_dev->data->port_id);
rte_free(internals->vlan_filter_bmpmem);
goto err;
}
return eth_dev->data->port_id;
err:
rte_free(internals);
if (eth_dev != NULL)
eth_dev->data->dev_private = NULL;
rte_eth_dev_release_port(eth_dev);
return -1;
}
static int
bond_probe(struct rte_vdev_device *dev)
{
const char *name;
struct bond_dev_private *internals;
struct rte_kvargs *kvlist;
uint8_t bonding_mode, socket_id/*, agg_mode*/;
int arg_count, port_id;
uint8_t agg_mode;
struct rte_eth_dev *eth_dev;
if (!dev)
return -EINVAL;
name = rte_vdev_device_name(dev);
RTE_BOND_LOG(INFO, "Initializing pmd_bond for %s", name);
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
eth_dev = rte_eth_dev_attach_secondary(name);
if (!eth_dev) {
RTE_BOND_LOG(ERR, "Failed to probe %s", name);
return -1;
}
/* TODO: request info from primary to set up Rx and Tx */
eth_dev->dev_ops = &default_dev_ops;
eth_dev->device = &dev->device;
rte_eth_dev_probing_finish(eth_dev);
return 0;
}
kvlist = rte_kvargs_parse(rte_vdev_device_args(dev),
pmd_bond_init_valid_arguments);
if (kvlist == NULL)
return -1;
/* Parse link bonding mode */
if (rte_kvargs_count(kvlist, PMD_BOND_MODE_KVARG) == 1) {
if (rte_kvargs_process(kvlist, PMD_BOND_MODE_KVARG,
&bond_ethdev_parse_slave_mode_kvarg,
&bonding_mode) != 0) {
RTE_BOND_LOG(ERR, "Invalid mode for bonded device %s",
name);
goto parse_error;
}
} else {
RTE_BOND_LOG(ERR, "Mode must be specified only once for bonded "
"device %s", name);
goto parse_error;
}
/* Parse socket id to create bonding device on */
arg_count = rte_kvargs_count(kvlist, PMD_BOND_SOCKET_ID_KVARG);
if (arg_count == 1) {
if (rte_kvargs_process(kvlist, PMD_BOND_SOCKET_ID_KVARG,
&bond_ethdev_parse_socket_id_kvarg, &socket_id)
!= 0) {
RTE_BOND_LOG(ERR, "Invalid socket Id specified for "
"bonded device %s", name);
goto parse_error;
}
} else if (arg_count > 1) {
RTE_BOND_LOG(ERR, "Socket Id can be specified only once for "
"bonded device %s", name);
goto parse_error;
} else {
socket_id = rte_socket_id();
}
dev->device.numa_node = socket_id;
/* Create link bonding eth device */
port_id = bond_alloc(dev, bonding_mode);
if (port_id < 0) {
RTE_BOND_LOG(ERR, "Failed to create socket %s in mode %u on "
"socket %u.", name, bonding_mode, socket_id);
goto parse_error;
}
internals = rte_eth_devices[port_id].data->dev_private;
internals->kvlist = kvlist;
if (rte_kvargs_count(kvlist, PMD_BOND_AGG_MODE_KVARG) == 1) {
if (rte_kvargs_process(kvlist,
PMD_BOND_AGG_MODE_KVARG,
&bond_ethdev_parse_slave_agg_mode_kvarg,
&agg_mode) != 0) {
RTE_BOND_LOG(ERR,
"Failed to parse agg selection mode for bonded device %s",
name);
goto parse_error;
}
if (internals->mode == BONDING_MODE_8023AD)
internals->mode4.agg_selection = agg_mode;
} else {
internals->mode4.agg_selection = AGG_STABLE;
}
rte_eth_dev_probing_finish(&rte_eth_devices[port_id]);
RTE_BOND_LOG(INFO, "Create bonded device %s on port %d in mode %u on "
"socket %u.", name, port_id, bonding_mode, socket_id);
return 0;
parse_error:
rte_kvargs_free(kvlist);
return -1;
}
static int
bond_remove(struct rte_vdev_device *dev)
{
struct rte_eth_dev *eth_dev;
struct bond_dev_private *internals;
const char *name;
if (!dev)
return -EINVAL;
name = rte_vdev_device_name(dev);
RTE_BOND_LOG(INFO, "Uninitializing pmd_bond for %s", name);
/* now free all data allocation - for eth_dev structure,
* dummy pci driver and internal (private) data
*/
/* find an ethdev entry */
eth_dev = rte_eth_dev_allocated(name);
if (eth_dev == NULL)
return -ENODEV;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return rte_eth_dev_release_port(eth_dev);
RTE_ASSERT(eth_dev->device == &dev->device);
internals = eth_dev->data->dev_private;
if (internals->slave_count != 0)
return -EBUSY;
if (eth_dev->data->dev_started == 1) {
bond_ethdev_stop(eth_dev);
bond_ethdev_close(eth_dev);
}
eth_dev->dev_ops = NULL;
eth_dev->rx_pkt_burst = NULL;
eth_dev->tx_pkt_burst = NULL;
internals = eth_dev->data->dev_private;
/* Try to release mempool used in mode6. If the bond
* device is not mode6, free the NULL is not problem.
*/
rte_mempool_free(internals->mode6.mempool);
rte_bitmap_free(internals->vlan_filter_bmp);
rte_free(internals->vlan_filter_bmpmem);
rte_eth_dev_release_port(eth_dev);
return 0;
}
/* this part will resolve the slave portids after all the other pdev and vdev
* have been allocated */
static int
bond_ethdev_configure(struct rte_eth_dev *dev)
{
const char *name = dev->device->name;
struct bond_dev_private *internals = dev->data->dev_private;
struct rte_kvargs *kvlist = internals->kvlist;
int arg_count;
uint16_t port_id = dev - rte_eth_devices;
uint8_t agg_mode;
static const uint8_t default_rss_key[40] = {
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2, 0x41, 0x67, 0x25, 0x3D,
0x43, 0xA3, 0x8F, 0xB0, 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C, 0x6A, 0x42, 0xB7, 0x3B,
0xBE, 0xAC, 0x01, 0xFA
};
unsigned i, j;
/*
* If RSS is enabled, fill table with default values and
* set key to the the value specified in port RSS configuration.
* Fall back to default RSS key if the key is not specified
*/
if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) {
if (dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key != NULL) {
internals->rss_key_len =
dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key_len;
memcpy(internals->rss_key,
dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key,
internals->rss_key_len);
} else {
internals->rss_key_len = sizeof(default_rss_key);
memcpy(internals->rss_key, default_rss_key,
internals->rss_key_len);
}
for (i = 0; i < RTE_DIM(internals->reta_conf); i++) {
internals->reta_conf[i].mask = ~0LL;
for (j = 0; j < RTE_RETA_GROUP_SIZE; j++)
internals->reta_conf[i].reta[j] =
(i * RTE_RETA_GROUP_SIZE + j) %
dev->data->nb_rx_queues;
}
}
/* set the max_rx_pktlen */
internals->max_rx_pktlen = internals->candidate_max_rx_pktlen;
/*
* if no kvlist, it means that this bonded device has been created
* through the bonding api.
*/
if (!kvlist)
return 0;
/* Parse MAC address for bonded device */
arg_count = rte_kvargs_count(kvlist, PMD_BOND_MAC_ADDR_KVARG);
if (arg_count == 1) {
struct rte_ether_addr bond_mac;
if (rte_kvargs_process(kvlist, PMD_BOND_MAC_ADDR_KVARG,
&bond_ethdev_parse_bond_mac_addr_kvarg, &bond_mac) < 0) {
RTE_BOND_LOG(INFO, "Invalid mac address for bonded device %s",
name);
return -1;
}
/* Set MAC address */
if (rte_eth_bond_mac_address_set(port_id, &bond_mac) != 0) {
RTE_BOND_LOG(ERR,
"Failed to set mac address on bonded device %s",
name);
return -1;
}
} else if (arg_count > 1) {
RTE_BOND_LOG(ERR,
"MAC address can be specified only once for bonded device %s",
name);
return -1;
}
/* Parse/set balance mode transmit policy */
arg_count = rte_kvargs_count(kvlist, PMD_BOND_XMIT_POLICY_KVARG);
if (arg_count == 1) {
uint8_t xmit_policy;
if (rte_kvargs_process(kvlist, PMD_BOND_XMIT_POLICY_KVARG,
&bond_ethdev_parse_balance_xmit_policy_kvarg, &xmit_policy) !=
0) {
RTE_BOND_LOG(INFO,
"Invalid xmit policy specified for bonded device %s",
name);
return -1;
}
/* Set balance mode transmit policy*/
if (rte_eth_bond_xmit_policy_set(port_id, xmit_policy) != 0) {
RTE_BOND_LOG(ERR,
"Failed to set balance xmit policy on bonded device %s",
name);
return -1;
}
} else if (arg_count > 1) {
RTE_BOND_LOG(ERR,
"Transmit policy can be specified only once for bonded device %s",
name);
return -1;
}
if (rte_kvargs_count(kvlist, PMD_BOND_AGG_MODE_KVARG) == 1) {
if (rte_kvargs_process(kvlist,
PMD_BOND_AGG_MODE_KVARG,
&bond_ethdev_parse_slave_agg_mode_kvarg,
&agg_mode) != 0) {
RTE_BOND_LOG(ERR,
"Failed to parse agg selection mode for bonded device %s",
name);
}
if (internals->mode == BONDING_MODE_8023AD) {
int ret = rte_eth_bond_8023ad_agg_selection_set(port_id,
agg_mode);
if (ret < 0) {
RTE_BOND_LOG(ERR,
"Invalid args for agg selection set for bonded device %s",
name);
return -1;
}
}
}
/* Parse/add slave ports to bonded device */
if (rte_kvargs_count(kvlist, PMD_BOND_SLAVE_PORT_KVARG) > 0) {
struct bond_ethdev_slave_ports slave_ports;
unsigned i;
memset(&slave_ports, 0, sizeof(slave_ports));
if (rte_kvargs_process(kvlist, PMD_BOND_SLAVE_PORT_KVARG,
&bond_ethdev_parse_slave_port_kvarg, &slave_ports) != 0) {
RTE_BOND_LOG(ERR,
"Failed to parse slave ports for bonded device %s",
name);
return -1;
}
for (i = 0; i < slave_ports.slave_count; i++) {
if (rte_eth_bond_slave_add(port_id, slave_ports.slaves[i]) != 0) {
RTE_BOND_LOG(ERR,
"Failed to add port %d as slave to bonded device %s",
slave_ports.slaves[i], name);
}
}
} else {
RTE_BOND_LOG(INFO, "No slaves specified for bonded device %s", name);
return -1;
}
/* Parse/set primary slave port id*/
arg_count = rte_kvargs_count(kvlist, PMD_BOND_PRIMARY_SLAVE_KVARG);
if (arg_count == 1) {
uint16_t primary_slave_port_id;
if (rte_kvargs_process(kvlist,
PMD_BOND_PRIMARY_SLAVE_KVARG,
&bond_ethdev_parse_primary_slave_port_id_kvarg,
&primary_slave_port_id) < 0) {
RTE_BOND_LOG(INFO,
"Invalid primary slave port id specified for bonded device %s",
name);
return -1;
}
/* Set balance mode transmit policy*/
if (rte_eth_bond_primary_set(port_id, primary_slave_port_id)
!= 0) {
RTE_BOND_LOG(ERR,
"Failed to set primary slave port %d on bonded device %s",
primary_slave_port_id, name);
return -1;
}
} else if (arg_count > 1) {
RTE_BOND_LOG(INFO,
"Primary slave can be specified only once for bonded device %s",
name);
return -1;
}
/* Parse link status monitor polling interval */
arg_count = rte_kvargs_count(kvlist, PMD_BOND_LSC_POLL_PERIOD_KVARG);
if (arg_count == 1) {
uint32_t lsc_poll_interval_ms;
if (rte_kvargs_process(kvlist,
PMD_BOND_LSC_POLL_PERIOD_KVARG,
&bond_ethdev_parse_time_ms_kvarg,
&lsc_poll_interval_ms) < 0) {
RTE_BOND_LOG(INFO,
"Invalid lsc polling interval value specified for bonded"
" device %s", name);
return -1;
}
if (rte_eth_bond_link_monitoring_set(port_id, lsc_poll_interval_ms)
!= 0) {
RTE_BOND_LOG(ERR,
"Failed to set lsc monitor polling interval (%u ms) on bonded device %s",
lsc_poll_interval_ms, name);
return -1;
}
} else if (arg_count > 1) {
RTE_BOND_LOG(INFO,
"LSC polling interval can be specified only once for bonded"
" device %s", name);
return -1;
}
/* Parse link up interrupt propagation delay */
arg_count = rte_kvargs_count(kvlist, PMD_BOND_LINK_UP_PROP_DELAY_KVARG);
if (arg_count == 1) {
uint32_t link_up_delay_ms;
if (rte_kvargs_process(kvlist,
PMD_BOND_LINK_UP_PROP_DELAY_KVARG,
&bond_ethdev_parse_time_ms_kvarg,
&link_up_delay_ms) < 0) {
RTE_BOND_LOG(INFO,
"Invalid link up propagation delay value specified for"
" bonded device %s", name);
return -1;
}
/* Set balance mode transmit policy*/
if (rte_eth_bond_link_up_prop_delay_set(port_id, link_up_delay_ms)
!= 0) {
RTE_BOND_LOG(ERR,
"Failed to set link up propagation delay (%u ms) on bonded"
" device %s", link_up_delay_ms, name);
return -1;
}
} else if (arg_count > 1) {
RTE_BOND_LOG(INFO,
"Link up propagation delay can be specified only once for"
" bonded device %s", name);
return -1;
}
/* Parse link down interrupt propagation delay */
arg_count = rte_kvargs_count(kvlist, PMD_BOND_LINK_DOWN_PROP_DELAY_KVARG);
if (arg_count == 1) {
uint32_t link_down_delay_ms;
if (rte_kvargs_process(kvlist,
PMD_BOND_LINK_DOWN_PROP_DELAY_KVARG,
&bond_ethdev_parse_time_ms_kvarg,
&link_down_delay_ms) < 0) {
RTE_BOND_LOG(INFO,
"Invalid link down propagation delay value specified for"
" bonded device %s", name);
return -1;
}
/* Set balance mode transmit policy*/
if (rte_eth_bond_link_down_prop_delay_set(port_id, link_down_delay_ms)
!= 0) {
RTE_BOND_LOG(ERR,
"Failed to set link down propagation delay (%u ms) on bonded device %s",
link_down_delay_ms, name);
return -1;
}
} else if (arg_count > 1) {
RTE_BOND_LOG(INFO,
"Link down propagation delay can be specified only once for bonded device %s",
name);
return -1;
}
return 0;
}
struct rte_vdev_driver pmd_bond_drv = {
.probe = bond_probe,
.remove = bond_remove,
};
RTE_PMD_REGISTER_VDEV(net_bonding, pmd_bond_drv);
RTE_PMD_REGISTER_ALIAS(net_bonding, eth_bond);
RTE_PMD_REGISTER_PARAM_STRING(net_bonding,
"slave=<ifc> "
"primary=<ifc> "
"mode=[0-6] "
"xmit_policy=[l2 | l23 | l34] "
"agg_mode=[count | stable | bandwidth] "
"socket_id=<int> "
"mac=<mac addr> "
"lsc_poll_period_ms=<int> "
"up_delay=<int> "
"down_delay=<int>");
int bond_logtype;
RTE_INIT(bond_init_log)
{
bond_logtype = rte_log_register("pmd.net.bond");
if (bond_logtype >= 0)
rte_log_set_level(bond_logtype, RTE_LOG_NOTICE);
}