f-stack/dpdk/drivers/event/sw/sw_evdev_scheduler.c

569 lines
15 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2017 Intel Corporation
*/
#include <rte_ring.h>
#include <rte_hash_crc.h>
#include <rte_event_ring.h>
#include "sw_evdev.h"
#include "iq_chunk.h"
#define SW_IQS_MASK (SW_IQS_MAX-1)
/* Retrieve the highest priority IQ or -1 if no pkts available. Doing the
* CLZ twice is faster than caching the value due to data dependencies
*/
#define PKT_MASK_TO_IQ(pkts) \
(__builtin_ctz(pkts | (1 << SW_IQS_MAX)))
#if SW_IQS_MAX != 4
#error Misconfigured PRIO_TO_IQ caused by SW_IQS_MAX value change
#endif
#define PRIO_TO_IQ(prio) (prio >> 6)
#define MAX_PER_IQ_DEQUEUE 48
#define FLOWID_MASK (SW_QID_NUM_FIDS-1)
/* use cheap bit mixing, we only need to lose a few bits */
#define SW_HASH_FLOWID(f) (((f) ^ (f >> 10)) & FLOWID_MASK)
static inline uint32_t
sw_schedule_atomic_to_cq(struct sw_evdev *sw, struct sw_qid * const qid,
uint32_t iq_num, unsigned int count)
{
struct rte_event qes[MAX_PER_IQ_DEQUEUE]; /* count <= MAX */
struct rte_event blocked_qes[MAX_PER_IQ_DEQUEUE];
uint32_t nb_blocked = 0;
uint32_t i;
if (count > MAX_PER_IQ_DEQUEUE)
count = MAX_PER_IQ_DEQUEUE;
/* This is the QID ID. The QID ID is static, hence it can be
* used to identify the stage of processing in history lists etc
*/
uint32_t qid_id = qid->id;
iq_dequeue_burst(sw, &qid->iq[iq_num], qes, count);
for (i = 0; i < count; i++) {
const struct rte_event *qe = &qes[i];
const uint16_t flow_id = SW_HASH_FLOWID(qes[i].flow_id);
struct sw_fid_t *fid = &qid->fids[flow_id];
int cq = fid->cq;
if (cq < 0) {
uint32_t cq_idx;
if (qid->cq_next_tx >= qid->cq_num_mapped_cqs)
qid->cq_next_tx = 0;
cq_idx = qid->cq_next_tx++;
cq = qid->cq_map[cq_idx];
/* find least used */
int cq_free_cnt = sw->cq_ring_space[cq];
for (cq_idx = 0; cq_idx < qid->cq_num_mapped_cqs;
cq_idx++) {
int test_cq = qid->cq_map[cq_idx];
int test_cq_free = sw->cq_ring_space[test_cq];
if (test_cq_free > cq_free_cnt) {
cq = test_cq;
cq_free_cnt = test_cq_free;
}
}
fid->cq = cq; /* this pins early */
}
if (sw->cq_ring_space[cq] == 0 ||
sw->ports[cq].inflights == SW_PORT_HIST_LIST) {
blocked_qes[nb_blocked++] = *qe;
continue;
}
struct sw_port *p = &sw->ports[cq];
/* at this point we can queue up the packet on the cq_buf */
fid->pcount++;
p->cq_buf[p->cq_buf_count++] = *qe;
p->inflights++;
sw->cq_ring_space[cq]--;
int head = (p->hist_head++ & (SW_PORT_HIST_LIST-1));
p->hist_list[head].fid = flow_id;
p->hist_list[head].qid = qid_id;
p->stats.tx_pkts++;
qid->stats.tx_pkts++;
qid->to_port[cq]++;
/* if we just filled in the last slot, flush the buffer */
if (sw->cq_ring_space[cq] == 0) {
struct rte_event_ring *worker = p->cq_worker_ring;
rte_event_ring_enqueue_burst(worker, p->cq_buf,
p->cq_buf_count,
&sw->cq_ring_space[cq]);
p->cq_buf_count = 0;
}
}
iq_put_back(sw, &qid->iq[iq_num], blocked_qes, nb_blocked);
return count - nb_blocked;
}
static inline uint32_t
sw_schedule_parallel_to_cq(struct sw_evdev *sw, struct sw_qid * const qid,
uint32_t iq_num, unsigned int count, int keep_order)
{
uint32_t i;
uint32_t cq_idx = qid->cq_next_tx;
/* This is the QID ID. The QID ID is static, hence it can be
* used to identify the stage of processing in history lists etc
*/
uint32_t qid_id = qid->id;
if (count > MAX_PER_IQ_DEQUEUE)
count = MAX_PER_IQ_DEQUEUE;
if (keep_order)
/* only schedule as many as we have reorder buffer entries */
count = RTE_MIN(count,
rte_ring_count(qid->reorder_buffer_freelist));
for (i = 0; i < count; i++) {
const struct rte_event *qe = iq_peek(&qid->iq[iq_num]);
uint32_t cq_check_count = 0;
uint32_t cq;
/*
* for parallel, just send to next available CQ in round-robin
* fashion. So scan for an available CQ. If all CQs are full
* just return and move on to next QID
*/
do {
if (++cq_check_count > qid->cq_num_mapped_cqs)
goto exit;
if (cq_idx >= qid->cq_num_mapped_cqs)
cq_idx = 0;
cq = qid->cq_map[cq_idx++];
} while (rte_event_ring_free_count(
sw->ports[cq].cq_worker_ring) == 0 ||
sw->ports[cq].inflights == SW_PORT_HIST_LIST);
struct sw_port *p = &sw->ports[cq];
if (sw->cq_ring_space[cq] == 0 ||
p->inflights == SW_PORT_HIST_LIST)
break;
sw->cq_ring_space[cq]--;
qid->stats.tx_pkts++;
const int head = (p->hist_head & (SW_PORT_HIST_LIST-1));
p->hist_list[head].fid = SW_HASH_FLOWID(qe->flow_id);
p->hist_list[head].qid = qid_id;
if (keep_order)
rte_ring_sc_dequeue(qid->reorder_buffer_freelist,
(void *)&p->hist_list[head].rob_entry);
sw->ports[cq].cq_buf[sw->ports[cq].cq_buf_count++] = *qe;
iq_pop(sw, &qid->iq[iq_num]);
rte_compiler_barrier();
p->inflights++;
p->stats.tx_pkts++;
p->hist_head++;
}
exit:
qid->cq_next_tx = cq_idx;
return i;
}
static uint32_t
sw_schedule_dir_to_cq(struct sw_evdev *sw, struct sw_qid * const qid,
uint32_t iq_num, unsigned int count __rte_unused)
{
uint32_t cq_id = qid->cq_map[0];
struct sw_port *port = &sw->ports[cq_id];
/* get max burst enq size for cq_ring */
uint32_t count_free = sw->cq_ring_space[cq_id];
if (count_free == 0)
return 0;
/* burst dequeue from the QID IQ ring */
struct sw_iq *iq = &qid->iq[iq_num];
uint32_t ret = iq_dequeue_burst(sw, iq,
&port->cq_buf[port->cq_buf_count], count_free);
port->cq_buf_count += ret;
/* Update QID, Port and Total TX stats */
qid->stats.tx_pkts += ret;
port->stats.tx_pkts += ret;
/* Subtract credits from cached value */
sw->cq_ring_space[cq_id] -= ret;
return ret;
}
static uint32_t
sw_schedule_qid_to_cq(struct sw_evdev *sw)
{
uint32_t pkts = 0;
uint32_t qid_idx;
sw->sched_cq_qid_called++;
for (qid_idx = 0; qid_idx < sw->qid_count; qid_idx++) {
struct sw_qid *qid = sw->qids_prioritized[qid_idx];
int type = qid->type;
int iq_num = PKT_MASK_TO_IQ(qid->iq_pkt_mask);
/* zero mapped CQs indicates directed */
if (iq_num >= SW_IQS_MAX || qid->cq_num_mapped_cqs == 0)
continue;
uint32_t pkts_done = 0;
uint32_t count = iq_count(&qid->iq[iq_num]);
if (count > 0) {
if (type == SW_SCHED_TYPE_DIRECT)
pkts_done += sw_schedule_dir_to_cq(sw, qid,
iq_num, count);
else if (type == RTE_SCHED_TYPE_ATOMIC)
pkts_done += sw_schedule_atomic_to_cq(sw, qid,
iq_num, count);
else
pkts_done += sw_schedule_parallel_to_cq(sw, qid,
iq_num, count,
type == RTE_SCHED_TYPE_ORDERED);
}
/* Check if the IQ that was polled is now empty, and unset it
* in the IQ mask if its empty.
*/
int all_done = (pkts_done == count);
qid->iq_pkt_mask &= ~(all_done << (iq_num));
pkts += pkts_done;
}
return pkts;
}
/* This function will perform re-ordering of packets, and injecting into
* the appropriate QID IQ. As LB and DIR QIDs are in the same array, but *NOT*
* contiguous in that array, this function accepts a "range" of QIDs to scan.
*/
static uint16_t
sw_schedule_reorder(struct sw_evdev *sw, int qid_start, int qid_end)
{
/* Perform egress reordering */
struct rte_event *qe;
uint32_t pkts_iter = 0;
for (; qid_start < qid_end; qid_start++) {
struct sw_qid *qid = &sw->qids[qid_start];
int i, num_entries_in_use;
if (qid->type != RTE_SCHED_TYPE_ORDERED)
continue;
num_entries_in_use = rte_ring_free_count(
qid->reorder_buffer_freelist);
for (i = 0; i < num_entries_in_use; i++) {
struct reorder_buffer_entry *entry;
int j;
entry = &qid->reorder_buffer[qid->reorder_buffer_index];
if (!entry->ready)
break;
for (j = 0; j < entry->num_fragments; j++) {
uint16_t dest_qid;
uint16_t dest_iq;
int idx = entry->fragment_index + j;
qe = &entry->fragments[idx];
dest_qid = qe->queue_id;
dest_iq = PRIO_TO_IQ(qe->priority);
if (dest_qid >= sw->qid_count) {
sw->stats.rx_dropped++;
continue;
}
pkts_iter++;
struct sw_qid *q = &sw->qids[dest_qid];
struct sw_iq *iq = &q->iq[dest_iq];
/* we checked for space above, so enqueue must
* succeed
*/
iq_enqueue(sw, iq, qe);
q->iq_pkt_mask |= (1 << (dest_iq));
q->iq_pkt_count[dest_iq]++;
q->stats.rx_pkts++;
}
entry->ready = (j != entry->num_fragments);
entry->num_fragments -= j;
entry->fragment_index += j;
if (!entry->ready) {
entry->fragment_index = 0;
rte_ring_sp_enqueue(
qid->reorder_buffer_freelist,
entry);
qid->reorder_buffer_index++;
qid->reorder_buffer_index %= qid->window_size;
}
}
}
return pkts_iter;
}
static __rte_always_inline void
sw_refill_pp_buf(struct sw_evdev *sw, struct sw_port *port)
{
RTE_SET_USED(sw);
struct rte_event_ring *worker = port->rx_worker_ring;
port->pp_buf_start = 0;
port->pp_buf_count = rte_event_ring_dequeue_burst(worker, port->pp_buf,
RTE_DIM(port->pp_buf), NULL);
}
static __rte_always_inline uint32_t
__pull_port_lb(struct sw_evdev *sw, uint32_t port_id, int allow_reorder)
{
static struct reorder_buffer_entry dummy_rob;
uint32_t pkts_iter = 0;
struct sw_port *port = &sw->ports[port_id];
/* If shadow ring has 0 pkts, pull from worker ring */
if (port->pp_buf_count == 0)
sw_refill_pp_buf(sw, port);
while (port->pp_buf_count) {
const struct rte_event *qe = &port->pp_buf[port->pp_buf_start];
struct sw_hist_list_entry *hist_entry = NULL;
uint8_t flags = qe->op;
const uint16_t eop = !(flags & QE_FLAG_NOT_EOP);
int needs_reorder = 0;
/* if no-reordering, having PARTIAL == NEW */
if (!allow_reorder && !eop)
flags = QE_FLAG_VALID;
/*
* if we don't have space for this packet in an IQ,
* then move on to next queue. Technically, for a
* packet that needs reordering, we don't need to check
* here, but it simplifies things not to special-case
*/
uint32_t iq_num = PRIO_TO_IQ(qe->priority);
struct sw_qid *qid = &sw->qids[qe->queue_id];
/* now process based on flags. Note that for directed
* queues, the enqueue_flush masks off all but the
* valid flag. This makes FWD and PARTIAL enqueues just
* NEW type, and makes DROPS no-op calls.
*/
if ((flags & QE_FLAG_COMPLETE) && port->inflights > 0) {
const uint32_t hist_tail = port->hist_tail &
(SW_PORT_HIST_LIST - 1);
hist_entry = &port->hist_list[hist_tail];
const uint32_t hist_qid = hist_entry->qid;
const uint32_t hist_fid = hist_entry->fid;
struct sw_fid_t *fid =
&sw->qids[hist_qid].fids[hist_fid];
fid->pcount -= eop;
if (fid->pcount == 0)
fid->cq = -1;
if (allow_reorder) {
/* set reorder ready if an ordered QID */
uintptr_t rob_ptr =
(uintptr_t)hist_entry->rob_entry;
const uintptr_t valid = (rob_ptr != 0);
needs_reorder = valid;
rob_ptr |=
((valid - 1) & (uintptr_t)&dummy_rob);
struct reorder_buffer_entry *tmp_rob_ptr =
(struct reorder_buffer_entry *)rob_ptr;
tmp_rob_ptr->ready = eop * needs_reorder;
}
port->inflights -= eop;
port->hist_tail += eop;
}
if (flags & QE_FLAG_VALID) {
port->stats.rx_pkts++;
if (allow_reorder && needs_reorder) {
struct reorder_buffer_entry *rob_entry =
hist_entry->rob_entry;
hist_entry->rob_entry = NULL;
/* Although fragmentation not currently
* supported by eventdev API, we support it
* here. Open: How do we alert the user that
* they've exceeded max frags?
*/
int num_frag = rob_entry->num_fragments;
if (num_frag == SW_FRAGMENTS_MAX)
sw->stats.rx_dropped++;
else {
int idx = rob_entry->num_fragments++;
rob_entry->fragments[idx] = *qe;
}
goto end_qe;
}
/* Use the iq_num from above to push the QE
* into the qid at the right priority
*/
qid->iq_pkt_mask |= (1 << (iq_num));
iq_enqueue(sw, &qid->iq[iq_num], qe);
qid->iq_pkt_count[iq_num]++;
qid->stats.rx_pkts++;
pkts_iter++;
}
end_qe:
port->pp_buf_start++;
port->pp_buf_count--;
} /* while (avail_qes) */
return pkts_iter;
}
static uint32_t
sw_schedule_pull_port_lb(struct sw_evdev *sw, uint32_t port_id)
{
return __pull_port_lb(sw, port_id, 1);
}
static uint32_t
sw_schedule_pull_port_no_reorder(struct sw_evdev *sw, uint32_t port_id)
{
return __pull_port_lb(sw, port_id, 0);
}
static uint32_t
sw_schedule_pull_port_dir(struct sw_evdev *sw, uint32_t port_id)
{
uint32_t pkts_iter = 0;
struct sw_port *port = &sw->ports[port_id];
/* If shadow ring has 0 pkts, pull from worker ring */
if (port->pp_buf_count == 0)
sw_refill_pp_buf(sw, port);
while (port->pp_buf_count) {
const struct rte_event *qe = &port->pp_buf[port->pp_buf_start];
uint8_t flags = qe->op;
if ((flags & QE_FLAG_VALID) == 0)
goto end_qe;
uint32_t iq_num = PRIO_TO_IQ(qe->priority);
struct sw_qid *qid = &sw->qids[qe->queue_id];
struct sw_iq *iq = &qid->iq[iq_num];
port->stats.rx_pkts++;
/* Use the iq_num from above to push the QE
* into the qid at the right priority
*/
qid->iq_pkt_mask |= (1 << (iq_num));
iq_enqueue(sw, iq, qe);
qid->iq_pkt_count[iq_num]++;
qid->stats.rx_pkts++;
pkts_iter++;
end_qe:
port->pp_buf_start++;
port->pp_buf_count--;
} /* while port->pp_buf_count */
return pkts_iter;
}
void
sw_event_schedule(struct rte_eventdev *dev)
{
struct sw_evdev *sw = sw_pmd_priv(dev);
uint32_t in_pkts, out_pkts;
uint32_t out_pkts_total = 0, in_pkts_total = 0;
int32_t sched_quanta = sw->sched_quanta;
uint32_t i;
sw->sched_called++;
if (unlikely(!sw->started))
return;
do {
uint32_t in_pkts_this_iteration = 0;
/* Pull from rx_ring for ports */
do {
in_pkts = 0;
for (i = 0; i < sw->port_count; i++) {
/* ack the unlinks in progress as done */
if (sw->ports[i].unlinks_in_progress)
sw->ports[i].unlinks_in_progress = 0;
if (sw->ports[i].is_directed)
in_pkts += sw_schedule_pull_port_dir(sw, i);
else if (sw->ports[i].num_ordered_qids > 0)
in_pkts += sw_schedule_pull_port_lb(sw, i);
else
in_pkts += sw_schedule_pull_port_no_reorder(sw, i);
}
/* QID scan for re-ordered */
in_pkts += sw_schedule_reorder(sw, 0,
sw->qid_count);
in_pkts_this_iteration += in_pkts;
} while (in_pkts > 4 &&
(int)in_pkts_this_iteration < sched_quanta);
out_pkts = sw_schedule_qid_to_cq(sw);
out_pkts_total += out_pkts;
in_pkts_total += in_pkts_this_iteration;
if (in_pkts == 0 && out_pkts == 0)
break;
} while ((int)out_pkts_total < sched_quanta);
sw->stats.tx_pkts += out_pkts_total;
sw->stats.rx_pkts += in_pkts_total;
sw->sched_no_iq_enqueues += (in_pkts_total == 0);
sw->sched_no_cq_enqueues += (out_pkts_total == 0);
/* push all the internal buffered QEs in port->cq_ring to the
* worker cores: aka, do the ring transfers batched.
*/
for (i = 0; i < sw->port_count; i++) {
struct rte_event_ring *worker = sw->ports[i].cq_worker_ring;
rte_event_ring_enqueue_burst(worker, sw->ports[i].cq_buf,
sw->ports[i].cq_buf_count,
&sw->cq_ring_space[i]);
sw->ports[i].cq_buf_count = 0;
}
}