f-stack/dpdk/drivers/event/octeontx2/otx2_tim_worker.h

584 lines
14 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#ifndef __OTX2_TIM_WORKER_H__
#define __OTX2_TIM_WORKER_H__
#include "otx2_tim_evdev.h"
static inline uint8_t
tim_bkt_fetch_lock(uint64_t w1)
{
return (w1 >> TIM_BUCKET_W1_S_LOCK) &
TIM_BUCKET_W1_M_LOCK;
}
static inline int16_t
tim_bkt_fetch_rem(uint64_t w1)
{
return (w1 >> TIM_BUCKET_W1_S_CHUNK_REMAINDER) &
TIM_BUCKET_W1_M_CHUNK_REMAINDER;
}
static inline int16_t
tim_bkt_get_rem(struct otx2_tim_bkt *bktp)
{
return __atomic_load_n(&bktp->chunk_remainder, __ATOMIC_ACQUIRE);
}
static inline void
tim_bkt_set_rem(struct otx2_tim_bkt *bktp, uint16_t v)
{
__atomic_store_n(&bktp->chunk_remainder, v, __ATOMIC_RELAXED);
}
static inline void
tim_bkt_sub_rem(struct otx2_tim_bkt *bktp, uint16_t v)
{
__atomic_fetch_sub(&bktp->chunk_remainder, v, __ATOMIC_RELAXED);
}
static inline uint8_t
tim_bkt_get_hbt(uint64_t w1)
{
return (w1 >> TIM_BUCKET_W1_S_HBT) & TIM_BUCKET_W1_M_HBT;
}
static inline uint8_t
tim_bkt_get_bsk(uint64_t w1)
{
return (w1 >> TIM_BUCKET_W1_S_BSK) & TIM_BUCKET_W1_M_BSK;
}
static inline uint64_t
tim_bkt_clr_bsk(struct otx2_tim_bkt *bktp)
{
/* Clear everything except lock. */
const uint64_t v = TIM_BUCKET_W1_M_LOCK << TIM_BUCKET_W1_S_LOCK;
return __atomic_fetch_and(&bktp->w1, v, __ATOMIC_ACQ_REL);
}
static inline uint64_t
tim_bkt_fetch_sema_lock(struct otx2_tim_bkt *bktp)
{
return __atomic_fetch_add(&bktp->w1, TIM_BUCKET_SEMA_WLOCK,
__ATOMIC_ACQUIRE);
}
static inline uint64_t
tim_bkt_fetch_sema(struct otx2_tim_bkt *bktp)
{
return __atomic_fetch_add(&bktp->w1, TIM_BUCKET_SEMA, __ATOMIC_RELAXED);
}
static inline uint64_t
tim_bkt_inc_lock(struct otx2_tim_bkt *bktp)
{
const uint64_t v = 1ull << TIM_BUCKET_W1_S_LOCK;
return __atomic_fetch_add(&bktp->w1, v, __ATOMIC_ACQUIRE);
}
static inline void
tim_bkt_dec_lock(struct otx2_tim_bkt *bktp)
{
__atomic_add_fetch(&bktp->lock, 0xff, __ATOMIC_RELEASE);
}
static inline uint32_t
tim_bkt_get_nent(uint64_t w1)
{
return (w1 >> TIM_BUCKET_W1_S_NUM_ENTRIES) &
TIM_BUCKET_W1_M_NUM_ENTRIES;
}
static inline void
tim_bkt_inc_nent(struct otx2_tim_bkt *bktp)
{
__atomic_add_fetch(&bktp->nb_entry, 1, __ATOMIC_RELAXED);
}
static inline void
tim_bkt_add_nent(struct otx2_tim_bkt *bktp, uint32_t v)
{
__atomic_add_fetch(&bktp->nb_entry, v, __ATOMIC_RELAXED);
}
static inline uint64_t
tim_bkt_clr_nent(struct otx2_tim_bkt *bktp)
{
const uint64_t v = ~(TIM_BUCKET_W1_M_NUM_ENTRIES <<
TIM_BUCKET_W1_S_NUM_ENTRIES);
return __atomic_and_fetch(&bktp->w1, v, __ATOMIC_ACQ_REL);
}
static __rte_always_inline void
tim_get_target_bucket(struct otx2_tim_ring * const tim_ring,
const uint32_t rel_bkt, struct otx2_tim_bkt **bkt,
struct otx2_tim_bkt **mirr_bkt, const uint8_t flag)
{
const uint64_t bkt_cyc = rte_rdtsc() - tim_ring->ring_start_cyc;
uint32_t bucket = rte_reciprocal_divide_u64(bkt_cyc,
&tim_ring->fast_div) + rel_bkt;
uint32_t mirr_bucket = 0;
if (flag & OTX2_TIM_BKT_MOD) {
bucket = bucket % tim_ring->nb_bkts;
mirr_bucket = (bucket + (tim_ring->nb_bkts >> 1)) %
tim_ring->nb_bkts;
}
if (flag & OTX2_TIM_BKT_AND) {
bucket = bucket & (tim_ring->nb_bkts - 1);
mirr_bucket = (bucket + (tim_ring->nb_bkts >> 1)) &
(tim_ring->nb_bkts - 1);
}
*bkt = &tim_ring->bkt[bucket];
*mirr_bkt = &tim_ring->bkt[mirr_bucket];
}
static struct otx2_tim_ent *
tim_clr_bkt(struct otx2_tim_ring * const tim_ring,
struct otx2_tim_bkt * const bkt)
{
#define TIM_MAX_OUTSTANDING_OBJ 64
void *pend_chunks[TIM_MAX_OUTSTANDING_OBJ];
struct otx2_tim_ent *chunk;
struct otx2_tim_ent *pnext;
uint8_t objs = 0;
chunk = ((struct otx2_tim_ent *)(uintptr_t)bkt->first_chunk);
chunk = (struct otx2_tim_ent *)(uintptr_t)(chunk +
tim_ring->nb_chunk_slots)->w0;
while (chunk) {
pnext = (struct otx2_tim_ent *)(uintptr_t)
((chunk + tim_ring->nb_chunk_slots)->w0);
if (objs == TIM_MAX_OUTSTANDING_OBJ) {
rte_mempool_put_bulk(tim_ring->chunk_pool, pend_chunks,
objs);
objs = 0;
}
pend_chunks[objs++] = chunk;
chunk = pnext;
}
if (objs)
rte_mempool_put_bulk(tim_ring->chunk_pool, pend_chunks,
objs);
return (struct otx2_tim_ent *)(uintptr_t)bkt->first_chunk;
}
static struct otx2_tim_ent *
tim_refill_chunk(struct otx2_tim_bkt * const bkt,
struct otx2_tim_bkt * const mirr_bkt,
struct otx2_tim_ring * const tim_ring)
{
struct otx2_tim_ent *chunk;
if (bkt->nb_entry || !bkt->first_chunk) {
if (unlikely(rte_mempool_get(tim_ring->chunk_pool,
(void **)&chunk)))
return NULL;
if (bkt->nb_entry) {
*(uint64_t *)(((struct otx2_tim_ent *)
mirr_bkt->current_chunk) +
tim_ring->nb_chunk_slots) =
(uintptr_t)chunk;
} else {
bkt->first_chunk = (uintptr_t)chunk;
}
} else {
chunk = tim_clr_bkt(tim_ring, bkt);
bkt->first_chunk = (uintptr_t)chunk;
}
*(uint64_t *)(chunk + tim_ring->nb_chunk_slots) = 0;
return chunk;
}
static struct otx2_tim_ent *
tim_insert_chunk(struct otx2_tim_bkt * const bkt,
struct otx2_tim_bkt * const mirr_bkt,
struct otx2_tim_ring * const tim_ring)
{
struct otx2_tim_ent *chunk;
if (unlikely(rte_mempool_get(tim_ring->chunk_pool, (void **)&chunk)))
return NULL;
*(uint64_t *)(chunk + tim_ring->nb_chunk_slots) = 0;
if (bkt->nb_entry) {
*(uint64_t *)(((struct otx2_tim_ent *)(uintptr_t)
mirr_bkt->current_chunk) +
tim_ring->nb_chunk_slots) = (uintptr_t)chunk;
} else {
bkt->first_chunk = (uintptr_t)chunk;
}
return chunk;
}
static __rte_always_inline int
tim_add_entry_sp(struct otx2_tim_ring * const tim_ring,
const uint32_t rel_bkt,
struct rte_event_timer * const tim,
const struct otx2_tim_ent * const pent,
const uint8_t flags)
{
struct otx2_tim_bkt *mirr_bkt;
struct otx2_tim_ent *chunk;
struct otx2_tim_bkt *bkt;
uint64_t lock_sema;
int16_t rem;
__retry:
tim_get_target_bucket(tim_ring, rel_bkt, &bkt, &mirr_bkt, flags);
/* Get Bucket sema*/
lock_sema = tim_bkt_fetch_sema_lock(bkt);
/* Bucket related checks. */
if (unlikely(tim_bkt_get_hbt(lock_sema))) {
if (tim_bkt_get_nent(lock_sema) != 0) {
uint64_t hbt_state;
#ifdef RTE_ARCH_ARM64
asm volatile(
" ldaxr %[hbt], [%[w1]] \n"
" tbz %[hbt], 33, dne%= \n"
" sevl \n"
"rty%=: wfe \n"
" ldaxr %[hbt], [%[w1]] \n"
" tbnz %[hbt], 33, rty%= \n"
"dne%=: \n"
: [hbt] "=&r" (hbt_state)
: [w1] "r" ((&bkt->w1))
: "memory"
);
#else
do {
hbt_state = __atomic_load_n(&bkt->w1,
__ATOMIC_ACQUIRE);
} while (hbt_state & BIT_ULL(33));
#endif
if (!(hbt_state & BIT_ULL(34))) {
tim_bkt_dec_lock(bkt);
goto __retry;
}
}
}
/* Insert the work. */
rem = tim_bkt_fetch_rem(lock_sema);
if (!rem) {
if (flags & OTX2_TIM_ENA_FB)
chunk = tim_refill_chunk(bkt, mirr_bkt, tim_ring);
if (flags & OTX2_TIM_ENA_DFB)
chunk = tim_insert_chunk(bkt, mirr_bkt, tim_ring);
if (unlikely(chunk == NULL)) {
bkt->chunk_remainder = 0;
tim_bkt_dec_lock(bkt);
tim->impl_opaque[0] = 0;
tim->impl_opaque[1] = 0;
tim->state = RTE_EVENT_TIMER_ERROR;
return -ENOMEM;
}
mirr_bkt->current_chunk = (uintptr_t)chunk;
bkt->chunk_remainder = tim_ring->nb_chunk_slots - 1;
} else {
chunk = (struct otx2_tim_ent *)mirr_bkt->current_chunk;
chunk += tim_ring->nb_chunk_slots - rem;
}
/* Copy work entry. */
*chunk = *pent;
tim_bkt_inc_nent(bkt);
tim_bkt_dec_lock(bkt);
tim->impl_opaque[0] = (uintptr_t)chunk;
tim->impl_opaque[1] = (uintptr_t)bkt;
tim->state = RTE_EVENT_TIMER_ARMED;
return 0;
}
static __rte_always_inline int
tim_add_entry_mp(struct otx2_tim_ring * const tim_ring,
const uint32_t rel_bkt,
struct rte_event_timer * const tim,
const struct otx2_tim_ent * const pent,
const uint8_t flags)
{
struct otx2_tim_bkt *mirr_bkt;
struct otx2_tim_ent *chunk;
struct otx2_tim_bkt *bkt;
uint64_t lock_sema;
int16_t rem;
__retry:
tim_get_target_bucket(tim_ring, rel_bkt, &bkt, &mirr_bkt, flags);
/* Get Bucket sema*/
lock_sema = tim_bkt_fetch_sema_lock(bkt);
/* Bucket related checks. */
if (unlikely(tim_bkt_get_hbt(lock_sema))) {
if (tim_bkt_get_nent(lock_sema) != 0) {
uint64_t hbt_state;
#ifdef RTE_ARCH_ARM64
asm volatile(
" ldaxr %[hbt], [%[w1]] \n"
" tbz %[hbt], 33, dne%= \n"
" sevl \n"
"rty%=: wfe \n"
" ldaxr %[hbt], [%[w1]] \n"
" tbnz %[hbt], 33, rty%= \n"
"dne%=: \n"
: [hbt] "=&r" (hbt_state)
: [w1] "r" ((&bkt->w1))
: "memory"
);
#else
do {
hbt_state = __atomic_load_n(&bkt->w1,
__ATOMIC_ACQUIRE);
} while (hbt_state & BIT_ULL(33));
#endif
if (!(hbt_state & BIT_ULL(34))) {
tim_bkt_dec_lock(bkt);
goto __retry;
}
}
}
rem = tim_bkt_fetch_rem(lock_sema);
if (rem < 0) {
#ifdef RTE_ARCH_ARM64
asm volatile(
" ldaxrh %w[rem], [%[crem]] \n"
" tbz %w[rem], 15, dne%= \n"
" sevl \n"
"rty%=: wfe \n"
" ldaxrh %w[rem], [%[crem]] \n"
" tbnz %w[rem], 15, rty%= \n"
"dne%=: \n"
: [rem] "=&r" (rem)
: [crem] "r" (&bkt->chunk_remainder)
: "memory"
);
#else
while (__atomic_load_n(&bkt->chunk_remainder,
__ATOMIC_ACQUIRE) < 0)
;
#endif
/* Goto diff bucket. */
tim_bkt_dec_lock(bkt);
goto __retry;
} else if (!rem) {
/* Only one thread can be here*/
if (flags & OTX2_TIM_ENA_FB)
chunk = tim_refill_chunk(bkt, mirr_bkt, tim_ring);
if (flags & OTX2_TIM_ENA_DFB)
chunk = tim_insert_chunk(bkt, mirr_bkt, tim_ring);
if (unlikely(chunk == NULL)) {
tim_bkt_set_rem(bkt, 0);
tim_bkt_dec_lock(bkt);
tim->impl_opaque[0] = 0;
tim->impl_opaque[1] = 0;
tim->state = RTE_EVENT_TIMER_ERROR;
return -ENOMEM;
}
*chunk = *pent;
while (tim_bkt_fetch_lock(lock_sema) !=
(-tim_bkt_fetch_rem(lock_sema)))
lock_sema = __atomic_load_n(&bkt->w1, __ATOMIC_ACQUIRE);
mirr_bkt->current_chunk = (uintptr_t)chunk;
__atomic_store_n(&bkt->chunk_remainder,
tim_ring->nb_chunk_slots - 1, __ATOMIC_RELEASE);
} else {
chunk = (struct otx2_tim_ent *)mirr_bkt->current_chunk;
chunk += tim_ring->nb_chunk_slots - rem;
*chunk = *pent;
}
/* Copy work entry. */
tim_bkt_inc_nent(bkt);
tim_bkt_dec_lock(bkt);
tim->impl_opaque[0] = (uintptr_t)chunk;
tim->impl_opaque[1] = (uintptr_t)bkt;
tim->state = RTE_EVENT_TIMER_ARMED;
return 0;
}
static inline uint16_t
tim_cpy_wrk(uint16_t index, uint16_t cpy_lmt,
struct otx2_tim_ent *chunk,
struct rte_event_timer ** const tim,
const struct otx2_tim_ent * const ents,
const struct otx2_tim_bkt * const bkt)
{
for (; index < cpy_lmt; index++) {
*chunk = *(ents + index);
tim[index]->impl_opaque[0] = (uintptr_t)chunk++;
tim[index]->impl_opaque[1] = (uintptr_t)bkt;
tim[index]->state = RTE_EVENT_TIMER_ARMED;
}
return index;
}
/* Burst mode functions */
static inline int
tim_add_entry_brst(struct otx2_tim_ring * const tim_ring,
const uint16_t rel_bkt,
struct rte_event_timer ** const tim,
const struct otx2_tim_ent *ents,
const uint16_t nb_timers, const uint8_t flags)
{
struct otx2_tim_ent *chunk = NULL;
struct otx2_tim_bkt *mirr_bkt;
struct otx2_tim_bkt *bkt;
uint16_t chunk_remainder;
uint16_t index = 0;
uint64_t lock_sema;
int16_t rem, crem;
uint8_t lock_cnt;
__retry:
tim_get_target_bucket(tim_ring, rel_bkt, &bkt, &mirr_bkt, flags);
/* Only one thread beyond this. */
lock_sema = tim_bkt_inc_lock(bkt);
lock_cnt = (uint8_t)
((lock_sema >> TIM_BUCKET_W1_S_LOCK) & TIM_BUCKET_W1_M_LOCK);
if (lock_cnt) {
tim_bkt_dec_lock(bkt);
goto __retry;
}
/* Bucket related checks. */
if (unlikely(tim_bkt_get_hbt(lock_sema))) {
if (tim_bkt_get_nent(lock_sema) != 0) {
uint64_t hbt_state;
#ifdef RTE_ARCH_ARM64
asm volatile(
" ldaxr %[hbt], [%[w1]] \n"
" tbz %[hbt], 33, dne%= \n"
" sevl \n"
"rty%=: wfe \n"
" ldaxr %[hbt], [%[w1]] \n"
" tbnz %[hbt], 33, rty%= \n"
"dne%=: \n"
: [hbt] "=&r" (hbt_state)
: [w1] "r" ((&bkt->w1))
: "memory"
);
#else
do {
hbt_state = __atomic_load_n(&bkt->w1,
__ATOMIC_ACQUIRE);
} while (hbt_state & BIT_ULL(33));
#endif
if (!(hbt_state & BIT_ULL(34))) {
tim_bkt_dec_lock(bkt);
goto __retry;
}
}
}
chunk_remainder = tim_bkt_fetch_rem(lock_sema);
rem = chunk_remainder - nb_timers;
if (rem < 0) {
crem = tim_ring->nb_chunk_slots - chunk_remainder;
if (chunk_remainder && crem) {
chunk = ((struct otx2_tim_ent *)
mirr_bkt->current_chunk) + crem;
index = tim_cpy_wrk(index, chunk_remainder, chunk, tim,
ents, bkt);
tim_bkt_sub_rem(bkt, chunk_remainder);
tim_bkt_add_nent(bkt, chunk_remainder);
}
if (flags & OTX2_TIM_ENA_FB)
chunk = tim_refill_chunk(bkt, mirr_bkt, tim_ring);
if (flags & OTX2_TIM_ENA_DFB)
chunk = tim_insert_chunk(bkt, mirr_bkt, tim_ring);
if (unlikely(chunk == NULL)) {
tim_bkt_dec_lock(bkt);
rte_errno = ENOMEM;
tim[index]->state = RTE_EVENT_TIMER_ERROR;
return crem;
}
*(uint64_t *)(chunk + tim_ring->nb_chunk_slots) = 0;
mirr_bkt->current_chunk = (uintptr_t)chunk;
tim_cpy_wrk(index, nb_timers, chunk, tim, ents, bkt);
rem = nb_timers - chunk_remainder;
tim_bkt_set_rem(bkt, tim_ring->nb_chunk_slots - rem);
tim_bkt_add_nent(bkt, rem);
} else {
chunk = (struct otx2_tim_ent *)mirr_bkt->current_chunk;
chunk += (tim_ring->nb_chunk_slots - chunk_remainder);
tim_cpy_wrk(index, nb_timers, chunk, tim, ents, bkt);
tim_bkt_sub_rem(bkt, nb_timers);
tim_bkt_add_nent(bkt, nb_timers);
}
tim_bkt_dec_lock(bkt);
return nb_timers;
}
static int
tim_rm_entry(struct rte_event_timer *tim)
{
struct otx2_tim_ent *entry;
struct otx2_tim_bkt *bkt;
uint64_t lock_sema;
if (tim->impl_opaque[1] == 0 || tim->impl_opaque[0] == 0)
return -ENOENT;
entry = (struct otx2_tim_ent *)(uintptr_t)tim->impl_opaque[0];
if (entry->wqe != tim->ev.u64) {
tim->impl_opaque[0] = 0;
tim->impl_opaque[1] = 0;
return -ENOENT;
}
bkt = (struct otx2_tim_bkt *)(uintptr_t)tim->impl_opaque[1];
lock_sema = tim_bkt_inc_lock(bkt);
if (tim_bkt_get_hbt(lock_sema) || !tim_bkt_get_nent(lock_sema)) {
tim_bkt_dec_lock(bkt);
tim->impl_opaque[0] = 0;
tim->impl_opaque[1] = 0;
return -ENOENT;
}
entry->w0 = 0;
entry->wqe = 0;
tim_bkt_dec_lock(bkt);
tim->state = RTE_EVENT_TIMER_CANCELED;
tim->impl_opaque[0] = 0;
tim->impl_opaque[1] = 0;
return 0;
}
#endif /* __OTX2_TIM_WORKER_H__ */