f-stack/freebsd/mips/cavium/octeon_ebt3000_cf.c

739 lines
21 KiB
C

/***********************license start***************
* Copyright (c) 2003-2008 Cavium Networks (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* * Neither the name of Cavium Networks nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS
* OR WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH
* RESPECT TO THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY
* REPRESENTATION OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT
* DEFECTS, AND CAVIUM SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES
* OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR
* PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET
* POSSESSION OR CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT
* OF USE OR PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
*
*
* For any questions regarding licensing please contact marketing@caviumnetworks.com
*
***********************license end**************************************/
/*
* octeon_ebt3000_cf.c
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/ata.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/power.h>
#include <sys/smp.h>
#include <sys/time.h>
#include <sys/timetc.h>
#include <sys/malloc.h>
#include <geom/geom.h>
#include <machine/clock.h>
#include <machine/locore.h>
#include <machine/md_var.h>
#include <machine/cpuregs.h>
#include <mips/cavium/octeon_pcmap_regs.h>
#include <contrib/octeon-sdk/cvmx.h>
/* ATA Commands */
#define CMD_READ_SECTOR 0x20
#define CMD_WRITE_SECTOR 0x30
#define CMD_IDENTIFY 0xEC
/* The ATA Task File */
#define TF_DATA 0x00
#define TF_ERROR 0x01
#define TF_PRECOMP 0x01
#define TF_SECTOR_COUNT 0x02
#define TF_SECTOR_NUMBER 0x03
#define TF_CYL_LSB 0x04
#define TF_CYL_MSB 0x05
#define TF_DRV_HEAD 0x06
#define TF_STATUS 0x07
#define TF_COMMAND 0x07
/* Status Register */
#define STATUS_BSY 0x80 /* Drive is busy */
#define STATUS_RDY 0x40 /* Drive is ready */
#define STATUS_DF 0x20 /* Device fault */
#define STATUS_DRQ 0x08 /* Data can be transferred */
/* Miscelaneous */
#define SECTOR_SIZE 512
#define WAIT_DELAY 1000
#define NR_TRIES 1000
#define SWAP_SHORT(x) ((x << 8) | (x >> 8))
#define MODEL_STR_SIZE 40
/* Globals */
/*
* There's three bus types supported by this driver.
*
* CF_8 -- Traditional PC Card IDE interface on an 8-bit wide bus. We assume
* the bool loader has configure attribute memory properly. We then access
* the device like old-school 8-bit IDE card (which is all a traditional PC Card
* interface really is).
* CF_16 -- Traditional PC Card IDE interface on a 16-bit wide bus. Registers on
* this bus are 16-bits wide too. When accessing registers in the task file, you
* have to do it in 16-bit chunks, and worry about masking out what you don't want
* or ORing together the traditional 8-bit values. We assume the bootloader does
* the right attribute memory initialization dance.
* CF_TRUE_IDE_8 - CF Card wired to True IDE mode. There's no Attribute memory
* space at all. Instead all the traditional 8-bit registers are there, but
* on a 16-bit bus where addr0 isn't wired. This means we need to read/write them
* 16-bit chunks, but only the lower 8 bits are valid. We do not (and can not)
* access this like CF_16 with the comingled registers. Yet we can't access
* this like CF_8 because of the register offset. Except the TF_DATA register
* appears to be full width?
*/
void *base_addr;
int bus_type;
#define CF_8 1 /* 8-bit bus, no offsets - PC Card */
#define CF_16 2 /* 16-bit bus, registers shared - PC Card */
#define CF_TRUE_IDE_8 3 /* 16-bit bus, only lower 8-bits, TrueIDE */
const char *const cf_type[] = {
"impossible type",
"CF 8-bit",
"CF 16-bit",
"True IDE"
};
/* Device parameters */
struct drive_param{
union {
char buf[SECTOR_SIZE];
struct ata_params driveid;
} u;
char model[MODEL_STR_SIZE];
uint32_t nr_sectors;
uint16_t sector_size;
uint16_t heads;
uint16_t tracks;
uint16_t sec_track;
};
/* Device softc */
struct cf_priv {
device_t dev;
struct drive_param drive_param;
struct bio_queue_head cf_bq;
struct g_geom *cf_geom;
struct g_provider *cf_provider;
};
/* GEOM class implementation */
static g_access_t cf_access;
static g_start_t cf_start;
static g_ioctl_t cf_ioctl;
struct g_class g_cf_class = {
.name = "CF",
.version = G_VERSION,
.start = cf_start,
.access = cf_access,
.ioctl = cf_ioctl,
};
DECLARE_GEOM_CLASS(g_cf_class, g_cf);
/* Device methods */
static int cf_probe(device_t);
static void cf_identify(driver_t *, device_t);
static int cf_attach(device_t);
static void cf_attach_geom(void *, int);
/* ATA methods */
static int cf_cmd_identify(struct cf_priv *);
static int cf_cmd_write(uint32_t, uint32_t, void *);
static int cf_cmd_read(uint32_t, uint32_t, void *);
static int cf_wait_busy(void);
static int cf_send_cmd(uint32_t, uint8_t);
/* Miscelenous */
static void cf_swap_ascii(unsigned char[], char[]);
/* ------------------------------------------------------------------- *
* cf_access() *
* ------------------------------------------------------------------- */
static int cf_access (struct g_provider *pp, int r, int w, int e)
{
return (0);
}
/* ------------------------------------------------------------------- *
* cf_start() *
* ------------------------------------------------------------------- */
static void cf_start (struct bio *bp)
{
struct cf_priv *cf_priv;
int error;
cf_priv = bp->bio_to->geom->softc;
/*
* Handle actual I/O requests. The request is passed down through
* the bio struct.
*/
switch (bp->bio_cmd) {
case BIO_GETATTR:
if (g_handleattr_int(bp, "GEOM::fwsectors", cf_priv->drive_param.sec_track))
return;
if (g_handleattr_int(bp, "GEOM::fwheads", cf_priv->drive_param.heads))
return;
g_io_deliver(bp, ENOIOCTL);
return;
case BIO_READ:
error = cf_cmd_read(bp->bio_length / cf_priv->drive_param.sector_size,
bp->bio_offset / cf_priv->drive_param.sector_size, bp->bio_data);
break;
case BIO_WRITE:
error = cf_cmd_write(bp->bio_length / cf_priv->drive_param.sector_size,
bp->bio_offset/cf_priv->drive_param.sector_size, bp->bio_data);
break;
default:
printf("%s: unrecognized bio_cmd %x.\n", __func__, bp->bio_cmd);
error = ENOTSUP;
break;
}
if (error != 0) {
g_io_deliver(bp, error);
return;
}
bp->bio_resid = 0;
bp->bio_completed = bp->bio_length;
g_io_deliver(bp, 0);
}
static int cf_ioctl (struct g_provider *pp, u_long cmd, void *data, int fflag, struct thread *td)
{
return (0);
}
static uint8_t cf_inb_8(int port)
{
/*
* Traditional 8-bit PC Card/CF bus access.
*/
if (bus_type == CF_8) {
volatile uint8_t *task_file = (volatile uint8_t *)base_addr;
return task_file[port];
}
/*
* True IDE access. lower 8 bits on a 16-bit bus (see above).
*/
volatile uint16_t *task_file = (volatile uint16_t *)base_addr;
return task_file[port] & 0xff;
}
static void cf_outb_8(int port, uint8_t val)
{
/*
* Traditional 8-bit PC Card/CF bus access.
*/
if (bus_type == CF_8) {
volatile uint8_t *task_file = (volatile uint8_t *)base_addr;
task_file[port] = val;
return;
}
/*
* True IDE access. lower 8 bits on a 16-bit bus (see above).
*/
volatile uint16_t *task_file = (volatile uint16_t *)base_addr;
task_file[port] = val & 0xff;
}
static uint8_t cf_inb_16(int port)
{
volatile uint16_t *task_file = (volatile uint16_t *)base_addr;
uint16_t val = task_file[port / 2];
if (port & 1)
return (val >> 8) & 0xff;
return val & 0xff;
}
static uint16_t cf_inw_16(int port)
{
volatile uint16_t *task_file = (volatile uint16_t *)base_addr;
uint16_t val = task_file[port / 2];
return val;
}
static void cf_outw_16(int port, uint16_t val)
{
volatile uint16_t *task_file = (volatile uint16_t *)base_addr;
task_file[port / 2] = val;
}
/* ------------------------------------------------------------------- *
* cf_cmd_read() *
* ------------------------------------------------------------------- *
*
* Read nr_sectors from the device starting from start_sector.
*/
static int cf_cmd_read (uint32_t nr_sectors, uint32_t start_sector, void *buf)
{
unsigned long lba;
uint32_t count;
uint16_t *ptr_16;
uint8_t *ptr_8;
int error;
ptr_8 = (uint8_t*)buf;
ptr_16 = (uint16_t*)buf;
lba = start_sector;
while (nr_sectors--) {
error = cf_send_cmd(lba, CMD_READ_SECTOR);
if (error != 0) {
printf("%s: cf_send_cmd(CMD_READ_SECTOR) failed: %d\n", __func__, error);
return (error);
}
switch (bus_type)
{
case CF_8:
for (count = 0; count < SECTOR_SIZE; count++) {
*ptr_8++ = cf_inb_8(TF_DATA);
if ((count & 0xf) == 0)
(void)cf_inb_8(TF_STATUS);
}
break;
case CF_TRUE_IDE_8:
case CF_16:
default:
for (count = 0; count < SECTOR_SIZE; count+=2) {
uint16_t temp;
temp = cf_inw_16(TF_DATA);
*ptr_16++ = SWAP_SHORT(temp);
if ((count & 0xf) == 0)
(void)cf_inb_16(TF_STATUS);
}
break;
}
lba++;
}
return (0);
}
/* ------------------------------------------------------------------- *
* cf_cmd_write() *
* ------------------------------------------------------------------- *
*
* Write nr_sectors to the device starting from start_sector.
*/
static int cf_cmd_write (uint32_t nr_sectors, uint32_t start_sector, void *buf)
{
uint32_t lba;
uint32_t count;
uint16_t *ptr_16;
uint8_t *ptr_8;
int error;
lba = start_sector;
ptr_8 = (uint8_t*)buf;
ptr_16 = (uint16_t*)buf;
while (nr_sectors--) {
error = cf_send_cmd(lba, CMD_WRITE_SECTOR);
if (error != 0) {
printf("%s: cf_send_cmd(CMD_WRITE_SECTOR) failed: %d\n", __func__, error);
return (error);
}
switch (bus_type)
{
case CF_8:
for (count = 0; count < SECTOR_SIZE; count++) {
cf_outb_8(TF_DATA, *ptr_8++);
if ((count & 0xf) == 0)
(void)cf_inb_8(TF_STATUS);
}
break;
case CF_TRUE_IDE_8:
case CF_16:
default:
for (count = 0; count < SECTOR_SIZE; count+=2) {
uint16_t temp = *ptr_16++;
cf_outw_16(TF_DATA, SWAP_SHORT(temp));
if ((count & 0xf) == 0)
(void)cf_inb_16(TF_STATUS);
}
break;
}
lba++;
}
return (0);
}
/* ------------------------------------------------------------------- *
* cf_cmd_identify() *
* ------------------------------------------------------------------- *
*
* Read parameters and other information from the drive and store
* it in the drive_param structure
*
*/
static int cf_cmd_identify(struct cf_priv *cf_priv)
{
int count;
int error;
error = cf_send_cmd(0, CMD_IDENTIFY);
if (error != 0) {
printf("%s: identify failed: %d\n", __func__, error);
return (error);
}
switch (bus_type)
{
case CF_8:
for (count = 0; count < SECTOR_SIZE; count++)
cf_priv->drive_param.u.buf[count] = cf_inb_8(TF_DATA);
break;
case CF_TRUE_IDE_8:
case CF_16:
default:
for (count = 0; count < SECTOR_SIZE; count += 2) {
uint16_t temp;
temp = cf_inw_16(TF_DATA);
/* endianess will be swapped below */
cf_priv->drive_param.u.buf[count] = (temp & 0xff);
cf_priv->drive_param.u.buf[count + 1] = (temp & 0xff00) >> 8;
}
break;
}
cf_swap_ascii(cf_priv->drive_param.u.driveid.model, cf_priv->drive_param.model);
cf_priv->drive_param.sector_size = 512; //= SWAP_SHORT (cf_priv->drive_param.u.driveid.sector_bytes);
cf_priv->drive_param.heads = SWAP_SHORT (cf_priv->drive_param.u.driveid.current_heads);
cf_priv->drive_param.tracks = SWAP_SHORT (cf_priv->drive_param.u.driveid.current_cylinders);
cf_priv->drive_param.sec_track = SWAP_SHORT (cf_priv->drive_param.u.driveid.current_sectors);
cf_priv->drive_param.nr_sectors = (uint32_t)SWAP_SHORT (cf_priv->drive_param.u.driveid.lba_size_1) |
((uint32_t)SWAP_SHORT (cf_priv->drive_param.u.driveid.lba_size_2));
if (bootverbose) {
printf(" model %s\n", cf_priv->drive_param.model);
printf(" heads %d tracks %d sec_tracks %d sectors %d\n",
cf_priv->drive_param.heads, cf_priv->drive_param.tracks,
cf_priv->drive_param.sec_track, cf_priv->drive_param.nr_sectors);
}
return (0);
}
/* ------------------------------------------------------------------- *
* cf_send_cmd() *
* ------------------------------------------------------------------- *
*
* Send command to read/write one sector specified by lba.
*
*/
static int cf_send_cmd (uint32_t lba, uint8_t cmd)
{
switch (bus_type)
{
case CF_8:
case CF_TRUE_IDE_8:
while (cf_inb_8(TF_STATUS) & STATUS_BSY)
DELAY(WAIT_DELAY);
cf_outb_8(TF_SECTOR_COUNT, 1);
cf_outb_8(TF_SECTOR_NUMBER, lba & 0xff);
cf_outb_8(TF_CYL_LSB, (lba >> 8) & 0xff);
cf_outb_8(TF_CYL_MSB, (lba >> 16) & 0xff);
cf_outb_8(TF_DRV_HEAD, ((lba >> 24) & 0xff) | 0xe0);
cf_outb_8(TF_COMMAND, cmd);
break;
case CF_16:
default:
while (cf_inb_16(TF_STATUS) & STATUS_BSY)
DELAY(WAIT_DELAY);
cf_outw_16(TF_SECTOR_COUNT, 1 | ((lba & 0xff) << 8));
cf_outw_16(TF_CYL_LSB, ((lba >> 8) & 0xff) | (((lba >> 16) & 0xff) << 8));
cf_outw_16(TF_DRV_HEAD, (((lba >> 24) & 0xff) | 0xe0) | (cmd << 8));
break;
}
return (cf_wait_busy());
}
/* ------------------------------------------------------------------- *
* cf_wait_busy() *
* ------------------------------------------------------------------- *
*
* Wait until the drive finishes a given command and data is
* ready to be transferred. This is done by repeatedly checking
* the BSY bit of the status register. When the controller is ready for
* data transfer, it clears the BSY bit and sets the DRQ bit.
*
* If the DF bit is ever set, we return error.
*
* This code originally spun on DRQ. If that behavior turns out to be
* necessary, a flag can be added or this function can be called
* repeatedly as long as it is returning ENXIO.
*/
static int cf_wait_busy (void)
{
uint8_t status;
switch (bus_type)
{
case CF_8:
case CF_TRUE_IDE_8:
status = cf_inb_8(TF_STATUS);
while ((status & STATUS_BSY) == STATUS_BSY) {
if ((status & STATUS_DF) != 0) {
printf("%s: device fault (status=%x)\n", __func__, status);
return (EIO);
}
DELAY(WAIT_DELAY);
status = cf_inb_8(TF_STATUS);
}
break;
case CF_16:
default:
status = cf_inb_16(TF_STATUS);
while ((status & STATUS_BSY) == STATUS_BSY) {
if ((status & STATUS_DF) != 0) {
printf("%s: device fault (status=%x)\n", __func__, status);
return (EIO);
}
DELAY(WAIT_DELAY);
status = cf_inb_16(TF_STATUS);
}
break;
}
/* DRQ is only for when read data is actually available; check BSY */
/* Some vendors do assert DRQ, but not all. Check BSY instead. */
if (status & STATUS_BSY) {
printf("%s: device not ready (status=%x)\n", __func__, status);
return (ENXIO);
}
return (0);
}
/* ------------------------------------------------------------------- *
* cf_swap_ascii() *
* ------------------------------------------------------------------- *
*
* The ascii string returned by the controller specifying
* the model of the drive is byte-swaped. This routine
* corrects the byte ordering.
*
*/
static void cf_swap_ascii (unsigned char str1[], char str2[])
{
int i;
for(i = 0; i < MODEL_STR_SIZE; i++)
str2[i] = str1[i ^ 1];
}
/* ------------------------------------------------------------------- *
* cf_probe() *
* ------------------------------------------------------------------- */
static int cf_probe (device_t dev)
{
if (cvmx_sysinfo_get()->board_type == CVMX_BOARD_TYPE_SIM)
return (ENXIO);
if (device_get_unit(dev) != 0) {
panic("can't attach more devices\n");
}
device_set_desc(dev, "Octeon Compact Flash Driver");
return (BUS_PROBE_NOWILDCARD);
}
/* ------------------------------------------------------------------- *
* cf_identify() *
* ------------------------------------------------------------------- *
*
* Find the bootbus region for the CF to determine
* 16 or 8 bit and check to see if device is
* inserted.
*
*/
static void cf_identify (driver_t *drv, device_t parent)
{
int bus_region;
int count = 0;
cvmx_mio_boot_reg_cfgx_t cfg;
uint64_t phys_base;
if (cvmx_sysinfo_get()->board_type == CVMX_BOARD_TYPE_SIM)
return;
phys_base = cvmx_sysinfo_get()->compact_flash_common_base_addr;
if (phys_base == 0)
return;
base_addr = cvmx_phys_to_ptr(phys_base);
for (bus_region = 0; bus_region < 8; bus_region++)
{
cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(bus_region));
if (cfg.s.base == phys_base >> 16)
{
if (cvmx_sysinfo_get()->compact_flash_attribute_base_addr == 0)
bus_type = CF_TRUE_IDE_8;
else
bus_type = (cfg.s.width) ? CF_16 : CF_8;
printf("Compact flash found in bootbus region %d (%s).\n", bus_region, cf_type[bus_type]);
break;
}
}
switch (bus_type)
{
case CF_8:
case CF_TRUE_IDE_8:
/* Check if CF is inserted */
while (cf_inb_8(TF_STATUS) & STATUS_BSY) {
if ((count++) == NR_TRIES ) {
printf("Compact Flash not present\n");
return;
}
DELAY(WAIT_DELAY);
}
break;
case CF_16:
default:
/* Check if CF is inserted */
while (cf_inb_16(TF_STATUS) & STATUS_BSY) {
if ((count++) == NR_TRIES ) {
printf("Compact Flash not present\n");
return;
}
DELAY(WAIT_DELAY);
}
break;
}
BUS_ADD_CHILD(parent, 0, "cf", 0);
}
/* ------------------------------------------------------------------- *
* cf_attach_geom() *
* ------------------------------------------------------------------- */
static void cf_attach_geom (void *arg, int flag)
{
struct cf_priv *cf_priv;
cf_priv = (struct cf_priv *) arg;
cf_priv->cf_geom = g_new_geomf(&g_cf_class, "cf%d", device_get_unit(cf_priv->dev));
cf_priv->cf_geom->softc = cf_priv;
cf_priv->cf_provider = g_new_providerf(cf_priv->cf_geom, cf_priv->cf_geom->name);
cf_priv->cf_provider->sectorsize = cf_priv->drive_param.sector_size;
cf_priv->cf_provider->mediasize = cf_priv->drive_param.nr_sectors * cf_priv->cf_provider->sectorsize;
g_error_provider(cf_priv->cf_provider, 0);
}
/* ------------------------------------------------------------------- *
* cf_attach() *
* ------------------------------------------------------------------- */
static int cf_attach (device_t dev)
{
struct cf_priv *cf_priv;
int error;
if (cvmx_sysinfo_get()->board_type == CVMX_BOARD_TYPE_SIM)
return (ENXIO);
cf_priv = device_get_softc(dev);
cf_priv->dev = dev;
error = cf_cmd_identify(cf_priv);
if (error != 0) {
device_printf(dev, "cf_cmd_identify failed: %d\n", error);
return (error);
}
g_post_event(cf_attach_geom, cf_priv, M_WAITOK, NULL);
bioq_init(&cf_priv->cf_bq);
return 0;
}
static device_method_t cf_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, cf_probe),
DEVMETHOD(device_identify, cf_identify),
DEVMETHOD(device_attach, cf_attach),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
{ 0, 0 }
};
static driver_t cf_driver = {
"cf",
cf_methods,
sizeof(struct cf_priv)
};
static devclass_t cf_devclass;
DRIVER_MODULE(cf, nexus, cf_driver, cf_devclass, 0, 0);