f-stack/freebsd/contrib/ncsw/Peripherals/FM/Rtc/fm_rtc.c

892 lines
31 KiB
C

/* Copyright (c) 2008-2011 Freescale Semiconductor, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Freescale Semiconductor nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation, either version 2 of that License or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/******************************************************************************
@File fm_rtc.c
@Description FM RTC driver implementation.
@Cautions None
*//***************************************************************************/
#include "error_ext.h"
#include "debug_ext.h"
#include "string_ext.h"
#include "part_ext.h"
#include "xx_ext.h"
#include "ncsw_ext.h"
#include "fm_rtc.h"
#include "fm_common.h"
/*****************************************************************************/
static void SetDefaultParam(t_FmRtc *p_Rtc)
{
t_FmRtcDriverParam *p_RtcDriverParam = p_Rtc->p_RtcDriverParam;
int i;
p_Rtc->outputClockDivisor = DEFAULT_outputClockDivisor;
p_Rtc->p_RtcDriverParam->bypass = DEFAULT_bypass;
p_RtcDriverParam->srcClk = DEFAULT_srcClock;
p_RtcDriverParam->invertInputClkPhase = DEFAULT_invertInputClkPhase;
p_RtcDriverParam->invertOutputClkPhase = DEFAULT_invertOutputClkPhase;
p_RtcDriverParam->pulseRealign = DEFAULT_pulseRealign;
for (i=0; i < FM_RTC_NUM_OF_ALARMS; i++)
{
p_RtcDriverParam->alarmPolarity[i] = DEFAULT_alarmPolarity;
}
for (i=0; i < FM_RTC_NUM_OF_EXT_TRIGGERS; i++)
{
p_RtcDriverParam->triggerPolarity[i] = DEFAULT_triggerPolarity;
}
p_Rtc->clockPeriodNanoSec = DEFAULT_clockPeriod; /* 1 usec */
}
/*****************************************************************************/
static t_Error CheckInitParameters(t_FmRtc *p_Rtc)
{
t_FmRtcDriverParam *p_RtcDriverParam = p_Rtc->p_RtcDriverParam;
int i;
if ((p_RtcDriverParam->srcClk != e_FM_RTC_SOURCE_CLOCK_EXTERNAL) &&
(p_RtcDriverParam->srcClk != e_FM_RTC_SOURCE_CLOCK_SYSTEM) &&
(p_RtcDriverParam->srcClk != e_FM_RTC_SOURCE_CLOCK_OSCILATOR))
RETURN_ERROR(MAJOR, E_INVALID_CLOCK, ("Source clock undefined"));
if (p_Rtc->outputClockDivisor == 0)
{
RETURN_ERROR(MAJOR, E_INVALID_VALUE,
("Divisor for output clock (should be positive)"));
}
for (i=0; i < FM_RTC_NUM_OF_ALARMS; i++)
{
if ((p_RtcDriverParam->alarmPolarity[i] != e_FM_RTC_ALARM_POLARITY_ACTIVE_LOW) &&
(p_RtcDriverParam->alarmPolarity[i] != e_FM_RTC_ALARM_POLARITY_ACTIVE_HIGH))
{
RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Alarm %d signal polarity", i));
}
}
for (i=0; i < FM_RTC_NUM_OF_EXT_TRIGGERS; i++)
{
if ((p_RtcDriverParam->triggerPolarity[i] != e_FM_RTC_TRIGGER_ON_FALLING_EDGE) &&
(p_RtcDriverParam->triggerPolarity[i] != e_FM_RTC_TRIGGER_ON_RISING_EDGE))
{
RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Trigger %d signal polarity", i));
}
}
#ifdef FM_1588_SRC_CLK_ERRATA_FMAN1
{
t_FmRevisionInfo revInfo;
FM_GetRevision(p_Rtc->h_Fm, &revInfo);
if ((revInfo.majorRev == 1) && (revInfo.minorRev == 0)&&
((p_RtcDriverParam->srcClk==e_FM_RTC_SOURCE_CLOCK_SYSTEM) && p_RtcDriverParam->invertInputClkPhase))
RETURN_ERROR(MAJOR, E_NOT_SUPPORTED, ("Can not use invertInputClkPhase when source clock is e_FM_RTC_SOURCE_CLOCK_SYSTEM"));
}
#endif /* FM_1588_SRC_CLK_ERRATA_FMAN1 */
return E_OK;
}
/*****************************************************************************/
static void RtcExceptions(t_Handle h_FmRtc)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
t_FmRtcMemMap *p_MemMap;
register uint32_t events;
ASSERT_COND(p_Rtc);
p_MemMap = p_Rtc->p_MemMap;
/* Get valid events */
events = GET_UINT32(p_MemMap->tmr_tevent);
events &= GET_UINT32(p_MemMap->tmr_temask);
/* Clear event bits */
WRITE_UINT32(p_MemMap->tmr_tevent, events);
if (events & TMR_TEVENT_ALM1)
{
if(p_Rtc->alarmParams[0].clearOnExpiration)
{
WRITE_UINT32(p_MemMap->tmr_alarm[0].tmr_alarm_l, 0);
WRITE_UINT32(p_MemMap->tmr_temask, GET_UINT32(p_MemMap->tmr_temask) & ~TMR_TEVENT_ALM1);
}
ASSERT_COND(p_Rtc->alarmParams[0].f_AlarmCallback);
p_Rtc->alarmParams[0].f_AlarmCallback(p_Rtc->h_App, 0);
}
if (events & TMR_TEVENT_ALM2)
{
if(p_Rtc->alarmParams[1].clearOnExpiration)
{
WRITE_UINT32(p_MemMap->tmr_alarm[1].tmr_alarm_l, 0);
WRITE_UINT32(p_MemMap->tmr_temask, GET_UINT32(p_MemMap->tmr_temask) & ~TMR_TEVENT_ALM2);
}
ASSERT_COND(p_Rtc->alarmParams[1].f_AlarmCallback);
p_Rtc->alarmParams[1].f_AlarmCallback(p_Rtc->h_App, 1);
}
if (events & TMR_TEVENT_PP1)
{
ASSERT_COND(p_Rtc->periodicPulseParams[0].f_PeriodicPulseCallback);
p_Rtc->periodicPulseParams[0].f_PeriodicPulseCallback(p_Rtc->h_App, 0);
}
if (events & TMR_TEVENT_PP2)
{
ASSERT_COND(p_Rtc->periodicPulseParams[1].f_PeriodicPulseCallback);
p_Rtc->periodicPulseParams[1].f_PeriodicPulseCallback(p_Rtc->h_App, 1);
}
if (events & TMR_TEVENT_ETS1)
{
ASSERT_COND(p_Rtc->externalTriggerParams[0].f_ExternalTriggerCallback);
p_Rtc->externalTriggerParams[0].f_ExternalTriggerCallback(p_Rtc->h_App, 0);
}
if (events & TMR_TEVENT_ETS2)
{
ASSERT_COND(p_Rtc->externalTriggerParams[1].f_ExternalTriggerCallback);
p_Rtc->externalTriggerParams[1].f_ExternalTriggerCallback(p_Rtc->h_App, 1);
}
}
/*****************************************************************************/
t_Handle FM_RTC_Config(t_FmRtcParams *p_FmRtcParam)
{
t_FmRtc *p_Rtc;
SANITY_CHECK_RETURN_VALUE(p_FmRtcParam, E_NULL_POINTER, NULL);
/* Allocate memory for the FM RTC driver parameters */
p_Rtc = (t_FmRtc *)XX_Malloc(sizeof(t_FmRtc));
if (!p_Rtc)
{
REPORT_ERROR(MAJOR, E_NO_MEMORY, ("FM RTC driver structure"));
return NULL;
}
memset(p_Rtc, 0, sizeof(t_FmRtc));
/* Allocate memory for the FM RTC driver parameters */
p_Rtc->p_RtcDriverParam = (t_FmRtcDriverParam *)XX_Malloc(sizeof(t_FmRtcDriverParam));
if (!p_Rtc->p_RtcDriverParam)
{
REPORT_ERROR(MAJOR, E_NO_MEMORY, ("FM RTC driver parameters"));
XX_Free(p_Rtc);
return NULL;
}
memset(p_Rtc->p_RtcDriverParam, 0, sizeof(t_FmRtcDriverParam));
/* Store RTC configuration parameters */
p_Rtc->h_Fm = p_FmRtcParam->h_Fm;
/* Set default RTC configuration parameters */
SetDefaultParam(p_Rtc);
/* Store RTC parameters in the RTC control structure */
p_Rtc->p_MemMap = (t_FmRtcMemMap *)UINT_TO_PTR(p_FmRtcParam->baseAddress);
p_Rtc->h_App = p_FmRtcParam->h_App;
return p_Rtc;
}
/*****************************************************************************/
t_Error FM_RTC_Init(t_Handle h_FmRtc)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
t_FmRtcDriverParam *p_RtcDriverParam;
t_FmRtcMemMap *p_MemMap;
uint32_t freqCompensation;
uint32_t tmrCtrl;
int i;
uint64_t tmpDouble;
p_RtcDriverParam = p_Rtc->p_RtcDriverParam;
p_MemMap = p_Rtc->p_MemMap;
if(CheckInitParameters(p_Rtc)!=E_OK)
RETURN_ERROR(MAJOR, E_CONFLICT,
("Init Parameters are not Valid"));
/* TODO A check must be added here, that no timestamping MAC's
* are working in this stage. */
WRITE_UINT32(p_MemMap->tmr_ctrl, TMR_CTRL_TMSR);
XX_UDelay(10);
WRITE_UINT32(p_MemMap->tmr_ctrl, 0);
/* Set the source clock */
switch (p_RtcDriverParam->srcClk)
{
case e_FM_RTC_SOURCE_CLOCK_SYSTEM:
tmrCtrl = TMR_CTRL_CKSEL_MAC_CLK;
break;
case e_FM_RTC_SOURCE_CLOCK_OSCILATOR:
tmrCtrl = TMR_CTRL_CKSEL_OSC_CLK;
break;
default:
/* Use a clock from the External TMR reference clock.*/
tmrCtrl = TMR_CTRL_CKSEL_EXT_CLK;
break;
}
/* whatever period the user picked, the timestamp will advance in '1' every time
* the period passed. */
tmrCtrl |= ((1 << TMR_CTRL_TCLK_PERIOD_SHIFT) & TMR_CTRL_TCLK_PERIOD_MASK);
if (p_RtcDriverParam->invertInputClkPhase)
tmrCtrl |= TMR_CTRL_CIPH;
if (p_RtcDriverParam->invertOutputClkPhase)
tmrCtrl |= TMR_CTRL_COPH;
for (i=0; i < FM_RTC_NUM_OF_ALARMS; i++)
{
if (p_RtcDriverParam->alarmPolarity[i] == e_FM_RTC_ALARM_POLARITY_ACTIVE_LOW)
tmrCtrl |= (TMR_CTRL_ALMP1 >> i);
}
for (i=0; i < FM_RTC_NUM_OF_EXT_TRIGGERS; i++)
if (p_RtcDriverParam->triggerPolarity[i] == e_FM_RTC_TRIGGER_ON_FALLING_EDGE)
tmrCtrl |= (TMR_CTRL_ETEP1 << i);
if (!p_RtcDriverParam->timerSlaveMode && p_Rtc->p_RtcDriverParam->bypass)
tmrCtrl |= TMR_CTRL_BYP;
WRITE_UINT32(p_MemMap->tmr_ctrl, tmrCtrl);
for (i=0; i < FM_RTC_NUM_OF_ALARMS; i++)
{
/* Clear TMR_ALARM registers */
WRITE_UINT32(p_MemMap->tmr_alarm[i].tmr_alarm_l, 0xFFFFFFFF);
WRITE_UINT32(p_MemMap->tmr_alarm[i].tmr_alarm_h, 0xFFFFFFFF);
}
/* Clear TMR_TEVENT */
WRITE_UINT32(p_MemMap->tmr_tevent, TMR_TEVENT_ALL);
/* Initialize TMR_TEMASK */
WRITE_UINT32(p_MemMap->tmr_temask, 0);
/* find source clock frequency in Mhz */
if (p_Rtc->p_RtcDriverParam->srcClk != e_FM_RTC_SOURCE_CLOCK_SYSTEM)
p_Rtc->srcClkFreqMhz = p_Rtc->p_RtcDriverParam->extSrcClkFreq;
else
p_Rtc->srcClkFreqMhz = (uint32_t)(FmGetClockFreq(p_Rtc->h_Fm)/2);
/* if timer in Master mode Initialize TMR_CTRL */
/* We want the counter (TMR_CNT) to count in nano-seconds */
if (!p_RtcDriverParam->timerSlaveMode && p_Rtc->p_RtcDriverParam->bypass)
{
p_Rtc->clockPeriodNanoSec = (1000 / p_Rtc->srcClkFreqMhz);
}
else
{
/* Initialize TMR_ADD with the initial frequency compensation value:
freqCompensation = (2^32 / frequency ratio) */
/* frequency ratio = sorce clock/rtc clock =
* (p_Rtc->srcClkFreqMhz*1000000))/ 1/(p_Rtc->clockPeriodNanoSec * 1000000000) */
freqCompensation = (uint32_t)DIV_CEIL(ACCUMULATOR_OVERFLOW * 1000,
p_Rtc->clockPeriodNanoSec * p_Rtc->srcClkFreqMhz);
WRITE_UINT32(p_MemMap->tmr_add, freqCompensation);
}
/* check the legality of the relation between source and destination clocks */
/* should be larger than 1.0001 */
tmpDouble = 10000 * (uint64_t)p_Rtc->clockPeriodNanoSec * (uint64_t)p_Rtc->srcClkFreqMhz;
if((tmpDouble) <= 10001)
RETURN_ERROR(MAJOR, E_CONFLICT,
("Invalid relation between source and destination clocks. Should be larger than 1.0001"));
for (i=0; i < 2; i++)
/* Clear TMR_FIPER registers */
WRITE_UINT32(p_MemMap->tmr_fiper[i], 0xFFFFFFFF);
/* Initialize TMR_PRSC */
WRITE_UINT32(p_MemMap->tmr_prsc, p_Rtc->outputClockDivisor);
/* Clear TMR_OFF */
WRITE_UINT32(p_MemMap->tmr_off_l, 0);
WRITE_UINT32(p_MemMap->tmr_off_h, 0);
/* Register the FM RTC interrupt */
FmRegisterIntr(p_Rtc->h_Fm, e_FM_MOD_TMR, 0, e_FM_INTR_TYPE_NORMAL, RtcExceptions , p_Rtc);
/* Free parameters structures */
XX_Free(p_Rtc->p_RtcDriverParam);
p_Rtc->p_RtcDriverParam = NULL;
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_Free(t_Handle h_FmRtc)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
if (p_Rtc->p_RtcDriverParam)
{
XX_Free(p_Rtc->p_RtcDriverParam);
}
else
{
FM_RTC_Disable(h_FmRtc);
}
/* Unregister FM RTC interrupt */
FmUnregisterIntr(p_Rtc->h_Fm, e_FM_MOD_TMR, 0, e_FM_INTR_TYPE_NORMAL);
XX_Free(p_Rtc);
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_ConfigSourceClock(t_Handle h_FmRtc,
e_FmSrcClk srcClk,
uint32_t freqInMhz)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
p_Rtc->p_RtcDriverParam->srcClk = srcClk;
if(srcClk != e_FM_RTC_SOURCE_CLOCK_SYSTEM)
p_Rtc->p_RtcDriverParam->extSrcClkFreq = freqInMhz;
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_ConfigPeriod(t_Handle h_FmRtc, uint32_t period)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
p_Rtc->clockPeriodNanoSec = period;
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_ConfigFrequencyBypass(t_Handle h_FmRtc, bool enabled)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
p_Rtc->p_RtcDriverParam->bypass = enabled;
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_ConfigInvertedInputClockPhase(t_Handle h_FmRtc, bool inverted)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
p_Rtc->p_RtcDriverParam->invertInputClkPhase = inverted;
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_ConfigInvertedOutputClockPhase(t_Handle h_FmRtc, bool inverted)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
p_Rtc->p_RtcDriverParam->invertOutputClkPhase = inverted;
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_ConfigOutputClockDivisor(t_Handle h_FmRtc, uint16_t divisor)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
p_Rtc->outputClockDivisor = divisor;
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_ConfigPulseRealignment(t_Handle h_FmRtc, bool enable)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
p_Rtc->p_RtcDriverParam->pulseRealign = enable;
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_ConfigAlarmPolarity(t_Handle h_FmRtc,
uint8_t alarmId,
e_FmRtcAlarmPolarity alarmPolarity)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
if (alarmId >= FM_RTC_NUM_OF_ALARMS)
{
RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Alarm ID"));
}
p_Rtc->p_RtcDriverParam->alarmPolarity[alarmId] = alarmPolarity;
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_ConfigExternalTriggerPolarity(t_Handle h_FmRtc,
uint8_t triggerId,
e_FmRtcTriggerPolarity triggerPolarity)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
if (triggerId >= FM_RTC_NUM_OF_EXT_TRIGGERS)
{
RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("External trigger ID"));
}
p_Rtc->p_RtcDriverParam->triggerPolarity[triggerId] = triggerPolarity;
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_Enable(t_Handle h_FmRtc, bool resetClock)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
uint32_t tmrCtrl;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
tmrCtrl = GET_UINT32(p_Rtc->p_MemMap->tmr_ctrl);
/* TODO A check must be added here, that no timestamping MAC's
* are working in this stage. */
if (resetClock)
{
WRITE_UINT32(p_Rtc->p_MemMap->tmr_ctrl, (tmrCtrl | TMR_CTRL_TMSR));
XX_UDelay(10);
/* Clear TMR_OFF */
WRITE_UINT32(p_Rtc->p_MemMap->tmr_off_l, 0);
WRITE_UINT32(p_Rtc->p_MemMap->tmr_off_h, 0);
}
WRITE_UINT32(p_Rtc->p_MemMap->tmr_ctrl, (tmrCtrl | TMR_CTRL_TE));
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_Disable(t_Handle h_FmRtc)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
uint32_t tmrCtrl;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
/* TODO A check must be added here, that no timestamping MAC's
* are working in this stage. */
tmrCtrl = GET_UINT32(p_Rtc->p_MemMap->tmr_ctrl);
WRITE_UINT32(p_Rtc->p_MemMap->tmr_ctrl, (tmrCtrl & ~(TMR_CTRL_TE)));
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_SetClockOffset(t_Handle h_FmRtc, int64_t offset)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
/* TMR_OFF_L must be written first */
WRITE_UINT32(p_Rtc->p_MemMap->tmr_off_l, (uint32_t)offset);
WRITE_UINT32(p_Rtc->p_MemMap->tmr_off_h, (uint32_t)(offset >> 32));
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_SetAlarm(t_Handle h_FmRtc, t_FmRtcAlarmParams *p_FmRtcAlarmParams)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
t_FmRtcMemMap *p_MemMap;
uint32_t tmpReg;
uint64_t tmpAlarm;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
p_MemMap = p_Rtc->p_MemMap;
if (p_FmRtcAlarmParams->alarmId >= FM_RTC_NUM_OF_ALARMS)
{
RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Alarm ID"));
}
if(p_FmRtcAlarmParams->alarmTime < p_Rtc->clockPeriodNanoSec)
RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Alarm time must be equal or larger than RTC period - %d nanoseconds", p_Rtc->clockPeriodNanoSec));
if(p_FmRtcAlarmParams->alarmTime % (uint64_t)p_Rtc->clockPeriodNanoSec)
RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Alarm time must be a multiple of RTC period - %d nanoseconds", p_Rtc->clockPeriodNanoSec));
tmpAlarm = p_FmRtcAlarmParams->alarmTime/(uint64_t)p_Rtc->clockPeriodNanoSec;
/* TMR_ALARM_L must be written first */
WRITE_UINT32(p_MemMap->tmr_alarm[p_FmRtcAlarmParams->alarmId].tmr_alarm_l, (uint32_t)tmpAlarm);
WRITE_UINT32(p_MemMap->tmr_alarm[p_FmRtcAlarmParams->alarmId].tmr_alarm_h,
(uint32_t)(tmpAlarm >> 32));
if (p_FmRtcAlarmParams->f_AlarmCallback)
{
p_Rtc->alarmParams[p_FmRtcAlarmParams->alarmId].f_AlarmCallback = p_FmRtcAlarmParams->f_AlarmCallback;
p_Rtc->alarmParams[p_FmRtcAlarmParams->alarmId].clearOnExpiration = p_FmRtcAlarmParams->clearOnExpiration;
if(p_FmRtcAlarmParams->alarmId == 0)
tmpReg = TMR_TEVENT_ALM1;
else
tmpReg = TMR_TEVENT_ALM2;
WRITE_UINT32(p_MemMap->tmr_temask, GET_UINT32(p_MemMap->tmr_temask) | tmpReg);
}
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_SetPeriodicPulse(t_Handle h_FmRtc, t_FmRtcPeriodicPulseParams *p_FmRtcPeriodicPulseParams)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
t_FmRtcMemMap *p_MemMap;
uint32_t tmpReg;
uint64_t tmpFiper;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
p_MemMap = p_Rtc->p_MemMap;
if (p_FmRtcPeriodicPulseParams->periodicPulseId >= FM_RTC_NUM_OF_PERIODIC_PULSES)
{
RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Periodic pulse ID"));
}
if(GET_UINT32(p_MemMap->tmr_ctrl) & TMR_CTRL_TE)
RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Can't set Periodic pulse when RTC is enabled."));
if(p_FmRtcPeriodicPulseParams->periodicPulsePeriod < p_Rtc->clockPeriodNanoSec)
RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Periodic pulse must be equal or larger than RTC period - %d nanoseconds", p_Rtc->clockPeriodNanoSec));
if(p_FmRtcPeriodicPulseParams->periodicPulsePeriod % (uint64_t)p_Rtc->clockPeriodNanoSec)
RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Periodic pulse must be a multiple of RTC period - %d nanoseconds", p_Rtc->clockPeriodNanoSec));
tmpFiper = p_FmRtcPeriodicPulseParams->periodicPulsePeriod/(uint64_t)p_Rtc->clockPeriodNanoSec;
if(tmpFiper & 0xffffffff00000000LL)
RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Periodic pulse/RTC Period must be smaller than 4294967296", p_Rtc->clockPeriodNanoSec));
WRITE_UINT32(p_MemMap->tmr_fiper[p_FmRtcPeriodicPulseParams->periodicPulseId], (uint32_t)tmpFiper);
if (p_FmRtcPeriodicPulseParams->f_PeriodicPulseCallback)
{
p_Rtc->periodicPulseParams[p_FmRtcPeriodicPulseParams->periodicPulseId].f_PeriodicPulseCallback =
p_FmRtcPeriodicPulseParams->f_PeriodicPulseCallback;
if(p_FmRtcPeriodicPulseParams->periodicPulseId == 0)
tmpReg = TMR_TEVENT_PP1;
else
tmpReg = TMR_TEVENT_PP2;
WRITE_UINT32(p_MemMap->tmr_temask, GET_UINT32(p_MemMap->tmr_temask) | tmpReg);
}
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_ClearPeriodicPulse(t_Handle h_FmRtc, uint8_t periodicPulseId)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
uint32_t tmpReg;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
if (periodicPulseId >= FM_RTC_NUM_OF_PERIODIC_PULSES)
{
RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Periodic pulse ID"));
}
p_Rtc->periodicPulseParams[periodicPulseId].f_PeriodicPulseCallback = NULL;
if(periodicPulseId == 0)
tmpReg = TMR_TEVENT_PP1;
else
tmpReg = TMR_TEVENT_PP2;
WRITE_UINT32(p_Rtc->p_MemMap->tmr_temask, GET_UINT32(p_Rtc->p_MemMap->tmr_temask) & ~tmpReg);
if (GET_UINT32(p_Rtc->p_MemMap->tmr_ctrl) & TMR_CTRL_FS)
WRITE_UINT32(p_Rtc->p_MemMap->tmr_ctrl, GET_UINT32(p_Rtc->p_MemMap->tmr_ctrl) & ~TMR_CTRL_FS);
WRITE_UINT32(p_Rtc->p_MemMap->tmr_fiper[periodicPulseId], 0xFFFFFFFF);
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_SetExternalTrigger(t_Handle h_FmRtc, t_FmRtcExternalTriggerParams *p_FmRtcExternalTriggerParams)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
uint32_t tmpReg;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
if (p_FmRtcExternalTriggerParams->externalTriggerId >= FM_RTC_NUM_OF_EXT_TRIGGERS)
{
RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("External Trigger ID"));
}
if (p_FmRtcExternalTriggerParams->f_ExternalTriggerCallback)
{
p_Rtc->externalTriggerParams[p_FmRtcExternalTriggerParams->externalTriggerId].f_ExternalTriggerCallback = p_FmRtcExternalTriggerParams->f_ExternalTriggerCallback;
if(p_FmRtcExternalTriggerParams->externalTriggerId == 0)
tmpReg = TMR_TEVENT_ETS1;
else
tmpReg = TMR_TEVENT_ETS2;
WRITE_UINT32(p_Rtc->p_MemMap->tmr_temask, GET_UINT32(p_Rtc->p_MemMap->tmr_temask) | tmpReg);
}
if(p_FmRtcExternalTriggerParams->usePulseAsInput)
{
if(p_FmRtcExternalTriggerParams->externalTriggerId == 0)
tmpReg = TMR_CTRL_PP1L;
else
tmpReg = TMR_CTRL_PP2L;
WRITE_UINT32(p_Rtc->p_MemMap->tmr_ctrl, GET_UINT32(p_Rtc->p_MemMap->tmr_ctrl) | tmpReg);
}
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_ClearExternalTrigger(t_Handle h_FmRtc, uint8_t externalTriggerId)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
uint32_t tmpReg;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
if (externalTriggerId >= FM_RTC_NUM_OF_EXT_TRIGGERS)
RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("External Trigger ID"));
p_Rtc->externalTriggerParams[externalTriggerId].f_ExternalTriggerCallback = NULL;
if(externalTriggerId == 0)
tmpReg = TMR_TEVENT_ETS1;
else
tmpReg = TMR_TEVENT_ETS2;
WRITE_UINT32(p_Rtc->p_MemMap->tmr_temask, GET_UINT32(p_Rtc->p_MemMap->tmr_temask) & ~tmpReg);
if(externalTriggerId == 0)
tmpReg = TMR_CTRL_PP1L;
else
tmpReg = TMR_CTRL_PP2L;
if (GET_UINT32(p_Rtc->p_MemMap->tmr_ctrl) & tmpReg)
WRITE_UINT32(p_Rtc->p_MemMap->tmr_ctrl, GET_UINT32(p_Rtc->p_MemMap->tmr_ctrl) & ~tmpReg);
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_GetExternalTriggerTimeStamp(t_Handle h_FmRtc,
uint8_t triggerId,
uint64_t *p_TimeStamp)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
uint64_t timeStamp;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
if (triggerId >= FM_RTC_NUM_OF_EXT_TRIGGERS)
{
RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("External trigger ID"));
}
timeStamp = (uint64_t)GET_UINT32(p_Rtc->p_MemMap->tmr_etts[triggerId].tmr_etts_l);
timeStamp |= ((uint64_t)GET_UINT32(p_Rtc->p_MemMap->tmr_etts[triggerId].tmr_etts_h) << 32);
timeStamp = timeStamp*p_Rtc->clockPeriodNanoSec;
*p_TimeStamp = timeStamp;
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_GetCurrentTime(t_Handle h_FmRtc, uint64_t *p_Ts)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
uint64_t time;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
/* TMR_CNT_L must be read first to get an accurate value */
time = (uint64_t)GET_UINT32(p_Rtc->p_MemMap->tmr_cnt_l);
time |= ((uint64_t)GET_UINT32(p_Rtc->p_MemMap->tmr_cnt_h) << 32);
time = time*p_Rtc->clockPeriodNanoSec;
*p_Ts = time;
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_SetCurrentTime(t_Handle h_FmRtc, uint64_t ts)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
ts = ts/p_Rtc->clockPeriodNanoSec;
/* TMR_CNT_L must be written first to get an accurate value */
WRITE_UINT32(p_Rtc->p_MemMap->tmr_cnt_l, (uint32_t)ts);
WRITE_UINT32(p_Rtc->p_MemMap->tmr_cnt_h, (uint32_t)(ts >> 32));
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_GetFreqCompensation(t_Handle h_FmRtc, uint32_t *p_Compensation)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
*p_Compensation = (uint32_t)
DIV_CEIL(ACCUMULATOR_OVERFLOW * 1000,
p_Rtc->clockPeriodNanoSec * p_Rtc->srcClkFreqMhz);
return E_OK;
}
/*****************************************************************************/
t_Error FM_RTC_SetFreqCompensation(t_Handle h_FmRtc, uint32_t freqCompensation)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE);
SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE);
/* set the new freqCompensation */
WRITE_UINT32(p_Rtc->p_MemMap->tmr_add, freqCompensation);
return E_OK;
}
/*****************************************************************************/
#if (defined(DEBUG_ERRORS) && (DEBUG_ERRORS > 0))
t_Error FM_RTC_DumpRegs(t_Handle h_FmRtc)
{
t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc;
t_FmRtcMemMap *p_MemMap = p_Rtc->p_MemMap;
int i = 0;
DECLARE_DUMP;
if (p_MemMap)
{
DUMP_TITLE(p_MemMap, ("RTC:"));
DUMP_VAR(p_MemMap, tmr_id);
DUMP_VAR(p_MemMap, tmr_id2);
DUMP_VAR(p_MemMap, tmr_ctrl);
DUMP_VAR(p_MemMap, tmr_tevent);
DUMP_VAR(p_MemMap, tmr_temask);
DUMP_VAR(p_MemMap, tmr_cnt_h);
DUMP_VAR(p_MemMap, tmr_cnt_l);
DUMP_VAR(p_MemMap, tmr_ctrl);
DUMP_VAR(p_MemMap, tmr_add);
DUMP_VAR(p_MemMap, tmr_acc);
DUMP_VAR(p_MemMap, tmr_prsc);
DUMP_VAR(p_MemMap, tmr_off_h);
DUMP_VAR(p_MemMap, tmr_off_l);
DUMP_SUBSTRUCT_ARRAY(i, 2)
{
DUMP_VAR(p_MemMap, tmr_alarm[i].tmr_alarm_h);
DUMP_VAR(p_MemMap, tmr_alarm[i].tmr_alarm_l);
}
DUMP_SUBSTRUCT_ARRAY(i, 2)
{
DUMP_VAR(p_MemMap, tmr_fiper[i]);
DUMP_VAR(p_MemMap, tmr_fiper[i]);
}
DUMP_SUBSTRUCT_ARRAY(i, 2)
{
DUMP_VAR(p_MemMap, tmr_etts[i].tmr_etts_l);
DUMP_VAR(p_MemMap, tmr_etts[i].tmr_etts_l);
}
}
return E_OK;
}
#endif /* (defined(DEBUG_ERRORS) && ... */