f-stack/freebsd/arm64/arm64/mp_machdep.c

772 lines
16 KiB
C

/*-
* Copyright (c) 2015-2016 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Andrew Turner under
* sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include "opt_kstack_pages.h"
#include "opt_platform.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <machine/debug_monitor.h>
#include <machine/intr.h>
#include <machine/smp.h>
#ifdef VFP
#include <machine/vfp.h>
#endif
#ifdef FDT
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_cpu.h>
#endif
#include <dev/psci/psci.h>
#ifdef INTRNG
#include "pic_if.h"
typedef void intr_ipi_send_t(void *, cpuset_t, u_int);
typedef void intr_ipi_handler_t(void *);
#define INTR_IPI_NAMELEN (MAXCOMLEN + 1)
struct intr_ipi {
intr_ipi_handler_t * ii_handler;
void * ii_handler_arg;
intr_ipi_send_t * ii_send;
void * ii_send_arg;
char ii_name[INTR_IPI_NAMELEN];
u_long * ii_count;
};
static struct intr_ipi ipi_sources[INTR_IPI_COUNT];
static struct intr_ipi *intr_ipi_lookup(u_int);
static void intr_pic_ipi_setup(u_int, const char *, intr_ipi_handler_t *,
void *);
#endif /* INTRNG */
boolean_t ofw_cpu_reg(phandle_t node, u_int, cell_t *);
extern struct pcpu __pcpu[];
static enum {
CPUS_UNKNOWN,
#ifdef FDT
CPUS_FDT,
#endif
} cpu_enum_method;
static device_identify_t arm64_cpu_identify;
static device_probe_t arm64_cpu_probe;
static device_attach_t arm64_cpu_attach;
static void ipi_ast(void *);
static void ipi_hardclock(void *);
static void ipi_preempt(void *);
static void ipi_rendezvous(void *);
static void ipi_stop(void *);
static int ipi_handler(void *arg);
struct mtx ap_boot_mtx;
struct pcb stoppcbs[MAXCPU];
#ifdef INVARIANTS
static uint32_t cpu_reg[MAXCPU][2];
#endif
static device_t cpu_list[MAXCPU];
/*
* Not all systems boot from the first CPU in the device tree. To work around
* this we need to find which CPU we have booted from so when we later
* enable the secondary CPUs we skip this one.
*/
static int cpu0 = -1;
void mpentry(unsigned long cpuid);
void init_secondary(uint64_t);
uint8_t secondary_stacks[MAXCPU - 1][PAGE_SIZE * KSTACK_PAGES] __aligned(16);
/* Set to 1 once we're ready to let the APs out of the pen. */
volatile int aps_ready = 0;
/* Temporary variables for init_secondary() */
void *dpcpu[MAXCPU - 1];
static device_method_t arm64_cpu_methods[] = {
/* Device interface */
DEVMETHOD(device_identify, arm64_cpu_identify),
DEVMETHOD(device_probe, arm64_cpu_probe),
DEVMETHOD(device_attach, arm64_cpu_attach),
DEVMETHOD_END
};
static devclass_t arm64_cpu_devclass;
static driver_t arm64_cpu_driver = {
"arm64_cpu",
arm64_cpu_methods,
0
};
DRIVER_MODULE(arm64_cpu, cpu, arm64_cpu_driver, arm64_cpu_devclass, 0, 0);
static void
arm64_cpu_identify(driver_t *driver, device_t parent)
{
if (device_find_child(parent, "arm64_cpu", -1) != NULL)
return;
if (BUS_ADD_CHILD(parent, 0, "arm64_cpu", -1) == NULL)
device_printf(parent, "add child failed\n");
}
static int
arm64_cpu_probe(device_t dev)
{
u_int cpuid;
cpuid = device_get_unit(dev);
if (cpuid >= MAXCPU || cpuid > mp_maxid)
return (EINVAL);
device_quiet(dev);
return (0);
}
static int
arm64_cpu_attach(device_t dev)
{
const uint32_t *reg;
size_t reg_size;
u_int cpuid;
int i;
cpuid = device_get_unit(dev);
if (cpuid >= MAXCPU || cpuid > mp_maxid)
return (EINVAL);
KASSERT(cpu_list[cpuid] == NULL, ("Already have cpu %u", cpuid));
reg = cpu_get_cpuid(dev, &reg_size);
if (reg == NULL)
return (EINVAL);
if (bootverbose) {
device_printf(dev, "register <");
for (i = 0; i < reg_size; i++)
printf("%s%x", (i == 0) ? "" : " ", reg[i]);
printf(">\n");
}
/* Set the device to start it later */
cpu_list[cpuid] = dev;
return (0);
}
static void
release_aps(void *dummy __unused)
{
int cpu, i;
#ifdef INTRNG
intr_pic_ipi_setup(IPI_AST, "ast", ipi_ast, NULL);
intr_pic_ipi_setup(IPI_PREEMPT, "preempt", ipi_preempt, NULL);
intr_pic_ipi_setup(IPI_RENDEZVOUS, "rendezvous", ipi_rendezvous, NULL);
intr_pic_ipi_setup(IPI_STOP, "stop", ipi_stop, NULL);
intr_pic_ipi_setup(IPI_STOP_HARD, "stop hard", ipi_stop, NULL);
intr_pic_ipi_setup(IPI_HARDCLOCK, "hardclock", ipi_hardclock, NULL);
#else
/* Setup the IPI handler */
for (i = 0; i < INTR_IPI_COUNT; i++)
arm_setup_ipihandler(ipi_handler, i);
#endif
atomic_store_rel_int(&aps_ready, 1);
/* Wake up the other CPUs */
__asm __volatile("sev");
printf("Release APs\n");
for (i = 0; i < 2000; i++) {
if (smp_started) {
for (cpu = 0; cpu <= mp_maxid; cpu++) {
if (CPU_ABSENT(cpu))
continue;
print_cpu_features(cpu);
}
return;
}
DELAY(1000);
}
printf("APs not started\n");
}
SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
void
init_secondary(uint64_t cpu)
{
struct pcpu *pcpup;
#ifndef INTRNG
int i;
#endif
pcpup = &__pcpu[cpu];
/*
* Set the pcpu pointer with a backup in tpidr_el1 to be
* loaded when entering the kernel from userland.
*/
__asm __volatile(
"mov x18, %0 \n"
"msr tpidr_el1, %0" :: "r"(pcpup));
/* Spin until the BSP releases the APs */
while (!aps_ready)
__asm __volatile("wfe");
/* Initialize curthread */
KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
pcpup->pc_curthread = pcpup->pc_idlethread;
pcpup->pc_curpcb = pcpup->pc_idlethread->td_pcb;
/*
* Identify current CPU. This is necessary to setup
* affinity registers and to provide support for
* runtime chip identification.
*/
identify_cpu();
#ifdef INTRNG
intr_pic_init_secondary();
#else
/* Configure the interrupt controller */
arm_init_secondary();
for (i = 0; i < INTR_IPI_COUNT; i++)
arm_unmask_ipi(i);
#endif
/* Start per-CPU event timers. */
cpu_initclocks_ap();
#ifdef VFP
vfp_init();
#endif
dbg_monitor_init();
/* Enable interrupts */
intr_enable();
mtx_lock_spin(&ap_boot_mtx);
atomic_add_rel_32(&smp_cpus, 1);
if (smp_cpus == mp_ncpus) {
/* enable IPI's, tlb shootdown, freezes etc */
atomic_store_rel_int(&smp_started, 1);
}
mtx_unlock_spin(&ap_boot_mtx);
/* Enter the scheduler */
sched_throw(NULL);
panic("scheduler returned us to init_secondary");
/* NOTREACHED */
}
#ifdef INTRNG
/*
* Send IPI thru interrupt controller.
*/
static void
pic_ipi_send(void *arg, cpuset_t cpus, u_int ipi)
{
KASSERT(intr_irq_root_dev != NULL, ("%s: no root attached", __func__));
PIC_IPI_SEND(intr_irq_root_dev, arg, cpus, ipi);
}
/*
* Setup IPI handler on interrupt controller.
*
* Not SMP coherent.
*/
static void
intr_pic_ipi_setup(u_int ipi, const char *name, intr_ipi_handler_t *hand,
void *arg)
{
struct intr_irqsrc *isrc;
struct intr_ipi *ii;
int error;
KASSERT(intr_irq_root_dev != NULL, ("%s: no root attached", __func__));
KASSERT(hand != NULL, ("%s: ipi %u no handler", __func__, ipi));
error = PIC_IPI_SETUP(intr_irq_root_dev, ipi, &isrc);
if (error != 0)
return;
isrc->isrc_handlers++;
ii = intr_ipi_lookup(ipi);
KASSERT(ii->ii_count == NULL, ("%s: ipi %u reused", __func__, ipi));
ii->ii_handler = hand;
ii->ii_handler_arg = arg;
ii->ii_send = pic_ipi_send;
ii->ii_send_arg = isrc;
strlcpy(ii->ii_name, name, INTR_IPI_NAMELEN);
ii->ii_count = intr_ipi_setup_counters(name);
}
static void
intr_ipi_send(cpuset_t cpus, u_int ipi)
{
struct intr_ipi *ii;
ii = intr_ipi_lookup(ipi);
if (ii->ii_count == NULL)
panic("%s: not setup IPI %u", __func__, ipi);
ii->ii_send(ii->ii_send_arg, cpus, ipi);
}
#endif
static void
ipi_ast(void *dummy __unused)
{
CTR0(KTR_SMP, "IPI_AST");
}
static void
ipi_hardclock(void *dummy __unused)
{
CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__);
hardclockintr();
}
static void
ipi_preempt(void *dummy __unused)
{
CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__);
sched_preempt(curthread);
}
static void
ipi_rendezvous(void *dummy __unused)
{
CTR0(KTR_SMP, "IPI_RENDEZVOUS");
smp_rendezvous_action();
}
static void
ipi_stop(void *dummy __unused)
{
u_int cpu;
CTR0(KTR_SMP, "IPI_STOP");
cpu = PCPU_GET(cpuid);
savectx(&stoppcbs[cpu]);
/* Indicate we are stopped */
CPU_SET_ATOMIC(cpu, &stopped_cpus);
/* Wait for restart */
while (!CPU_ISSET(cpu, &started_cpus))
cpu_spinwait();
CPU_CLR_ATOMIC(cpu, &started_cpus);
CPU_CLR_ATOMIC(cpu, &stopped_cpus);
CTR0(KTR_SMP, "IPI_STOP (restart)");
}
#ifndef INTRNG
static int
ipi_handler(void *arg)
{
u_int cpu, ipi;
arg = (void *)((uintptr_t)arg & ~(1 << 16));
KASSERT((uintptr_t)arg < INTR_IPI_COUNT,
("Invalid IPI %ju", (uintptr_t)arg));
cpu = PCPU_GET(cpuid);
ipi = (uintptr_t)arg;
switch(ipi) {
case IPI_AST:
ipi_ast(NULL);
break;
case IPI_PREEMPT:
ipi_preempt(NULL);
break;
case IPI_RENDEZVOUS:
ipi_rendezvous(NULL);
break;
case IPI_STOP:
case IPI_STOP_HARD:
ipi_stop(NULL);
break;
case IPI_HARDCLOCK:
ipi_hardclock(NULL);
break;
default:
panic("Unknown IPI %#0x on cpu %d", ipi, curcpu);
}
return (FILTER_HANDLED);
}
#endif
struct cpu_group *
cpu_topo(void)
{
return (smp_topo_none());
}
/* Determine if we running MP machine */
int
cpu_mp_probe(void)
{
/* ARM64TODO: Read the u bit of mpidr_el1 to determine this */
return (1);
}
#ifdef FDT
static boolean_t
cpu_init_fdt(u_int id, phandle_t node, u_int addr_size, pcell_t *reg)
{
uint64_t target_cpu;
struct pcpu *pcpup;
vm_paddr_t pa;
u_int cpuid;
int err;
/* Check we are able to start this cpu */
if (id > mp_maxid)
return (0);
KASSERT(id < MAXCPU, ("Too mant CPUs"));
KASSERT(addr_size == 1 || addr_size == 2, ("Invalid register size"));
#ifdef INVARIANTS
cpu_reg[id][0] = reg[0];
if (addr_size == 2)
cpu_reg[id][1] = reg[1];
#endif
/* We are already running on cpu 0 */
if (id == cpu0)
return (1);
cpuid = id;
if (cpuid < cpu0)
cpuid++;
pcpup = &__pcpu[cpuid];
pcpu_init(pcpup, cpuid, sizeof(struct pcpu));
dpcpu[cpuid - 1] = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
M_WAITOK | M_ZERO);
dpcpu_init(dpcpu[cpuid - 1], cpuid);
target_cpu = reg[0];
if (addr_size == 2) {
target_cpu <<= 32;
target_cpu |= reg[1];
}
printf("Starting CPU %u (%lx)\n", cpuid, target_cpu);
pa = pmap_extract(kernel_pmap, (vm_offset_t)mpentry);
err = psci_cpu_on(target_cpu, pa, cpuid);
if (err != PSCI_RETVAL_SUCCESS) {
/* Panic here if INVARIANTS are enabled */
KASSERT(0, ("Failed to start CPU %u (%lx)\n", id,
target_cpu));
pcpu_destroy(pcpup);
kmem_free(kernel_arena, (vm_offset_t)dpcpu[cpuid - 1],
DPCPU_SIZE);
dpcpu[cpuid - 1] = NULL;
/* Notify the user that the CPU failed to start */
printf("Failed to start CPU %u (%lx)\n", id, target_cpu);
} else
CPU_SET(cpuid, &all_cpus);
return (1);
}
#endif
/* Initialize and fire up non-boot processors */
void
cpu_mp_start(void)
{
mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
CPU_SET(0, &all_cpus);
switch(cpu_enum_method) {
#ifdef FDT
case CPUS_FDT:
KASSERT(cpu0 >= 0, ("Current CPU was not found"));
ofw_cpu_early_foreach(cpu_init_fdt, true);
break;
#endif
case CPUS_UNKNOWN:
break;
}
}
/* Introduce rest of cores to the world */
void
cpu_mp_announce(void)
{
}
static boolean_t
cpu_find_cpu0_fdt(u_int id, phandle_t node, u_int addr_size, pcell_t *reg)
{
uint64_t mpidr_fdt, mpidr_reg;
if (cpu0 < 0) {
mpidr_fdt = reg[0];
if (addr_size == 2) {
mpidr_fdt <<= 32;
mpidr_fdt |= reg[1];
}
mpidr_reg = READ_SPECIALREG(mpidr_el1);
if ((mpidr_reg & 0xff00fffffful) == mpidr_fdt)
cpu0 = id;
}
return (TRUE);
}
void
cpu_mp_setmaxid(void)
{
#ifdef FDT
int cores;
cores = ofw_cpu_early_foreach(cpu_find_cpu0_fdt, false);
if (cores > 0) {
cores = MIN(cores, MAXCPU);
if (bootverbose)
printf("Found %d CPUs in the device tree\n", cores);
mp_ncpus = cores;
mp_maxid = cores - 1;
cpu_enum_method = CPUS_FDT;
return;
}
#endif
if (bootverbose)
printf("No CPU data, limiting to 1 core\n");
mp_ncpus = 1;
mp_maxid = 0;
}
#ifdef INTRNG
/*
* Lookup IPI source.
*/
static struct intr_ipi *
intr_ipi_lookup(u_int ipi)
{
if (ipi >= INTR_IPI_COUNT)
panic("%s: no such IPI %u", __func__, ipi);
return (&ipi_sources[ipi]);
}
/*
* interrupt controller dispatch function for IPIs. It should
* be called straight from the interrupt controller, when associated
* interrupt source is learned. Or from anybody who has an interrupt
* source mapped.
*/
void
intr_ipi_dispatch(u_int ipi, struct trapframe *tf)
{
void *arg;
struct intr_ipi *ii;
ii = intr_ipi_lookup(ipi);
if (ii->ii_count == NULL)
panic("%s: not setup IPI %u", __func__, ipi);
intr_ipi_increment_count(ii->ii_count, PCPU_GET(cpuid));
/*
* Supply ipi filter with trapframe argument
* if none is registered.
*/
arg = ii->ii_handler_arg != NULL ? ii->ii_handler_arg : tf;
ii->ii_handler(arg);
}
#ifdef notyet
/*
* Map IPI into interrupt controller.
*
* Not SMP coherent.
*/
static int
ipi_map(struct intr_irqsrc *isrc, u_int ipi)
{
boolean_t is_percpu;
int error;
if (ipi >= INTR_IPI_COUNT)
panic("%s: no such IPI %u", __func__, ipi);
KASSERT(intr_irq_root_dev != NULL, ("%s: no root attached", __func__));
isrc->isrc_type = INTR_ISRCT_NAMESPACE;
isrc->isrc_nspc_type = INTR_IRQ_NSPC_IPI;
isrc->isrc_nspc_num = ipi_next_num;
error = PIC_REGISTER(intr_irq_root_dev, isrc, &is_percpu);
if (error == 0) {
isrc->isrc_dev = intr_irq_root_dev;
ipi_next_num++;
}
return (error);
}
/*
* Setup IPI handler to interrupt source.
*
* Note that there could be more ways how to send and receive IPIs
* on a platform like fast interrupts for example. In that case,
* one can call this function with ASIF_NOALLOC flag set and then
* call intr_ipi_dispatch() when appropriate.
*
* Not SMP coherent.
*/
int
intr_ipi_set_handler(u_int ipi, const char *name, intr_ipi_filter_t *filter,
void *arg, u_int flags)
{
struct intr_irqsrc *isrc;
int error;
if (filter == NULL)
return(EINVAL);
isrc = intr_ipi_lookup(ipi);
if (isrc->isrc_ipifilter != NULL)
return (EEXIST);
if ((flags & AISHF_NOALLOC) == 0) {
error = ipi_map(isrc, ipi);
if (error != 0)
return (error);
}
isrc->isrc_ipifilter = filter;
isrc->isrc_arg = arg;
isrc->isrc_handlers = 1;
isrc->isrc_count = intr_ipi_setup_counters(name);
isrc->isrc_index = 0; /* it should not be used in IPI case */
if (isrc->isrc_dev != NULL) {
PIC_ENABLE_INTR(isrc->isrc_dev, isrc);
PIC_ENABLE_SOURCE(isrc->isrc_dev, isrc);
}
return (0);
}
#endif
/* Sending IPI */
void
ipi_all_but_self(u_int ipi)
{
cpuset_t cpus;
cpus = all_cpus;
CPU_CLR(PCPU_GET(cpuid), &cpus);
CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
intr_ipi_send(cpus, ipi);
}
void
ipi_cpu(int cpu, u_int ipi)
{
cpuset_t cpus;
CPU_ZERO(&cpus);
CPU_SET(cpu, &cpus);
CTR3(KTR_SMP, "%s: cpu: %d, ipi: %x", __func__, cpu, ipi);
intr_ipi_send(cpus, ipi);
}
void
ipi_selected(cpuset_t cpus, u_int ipi)
{
CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
intr_ipi_send(cpus, ipi);
}
#endif /* INTRNG */