mirror of https://github.com/F-Stack/f-stack.git
772 lines
16 KiB
C
772 lines
16 KiB
C
/*-
|
|
* Copyright (c) 2015-2016 The FreeBSD Foundation
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed by Andrew Turner under
|
|
* sponsorship from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include "opt_kstack_pages.h"
|
|
#include "opt_platform.h"
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_kern.h>
|
|
|
|
#include <machine/debug_monitor.h>
|
|
#include <machine/intr.h>
|
|
#include <machine/smp.h>
|
|
#ifdef VFP
|
|
#include <machine/vfp.h>
|
|
#endif
|
|
|
|
#ifdef FDT
|
|
#include <dev/ofw/openfirm.h>
|
|
#include <dev/ofw/ofw_cpu.h>
|
|
#endif
|
|
|
|
#include <dev/psci/psci.h>
|
|
|
|
#ifdef INTRNG
|
|
#include "pic_if.h"
|
|
|
|
typedef void intr_ipi_send_t(void *, cpuset_t, u_int);
|
|
typedef void intr_ipi_handler_t(void *);
|
|
|
|
#define INTR_IPI_NAMELEN (MAXCOMLEN + 1)
|
|
struct intr_ipi {
|
|
intr_ipi_handler_t * ii_handler;
|
|
void * ii_handler_arg;
|
|
intr_ipi_send_t * ii_send;
|
|
void * ii_send_arg;
|
|
char ii_name[INTR_IPI_NAMELEN];
|
|
u_long * ii_count;
|
|
};
|
|
|
|
static struct intr_ipi ipi_sources[INTR_IPI_COUNT];
|
|
|
|
static struct intr_ipi *intr_ipi_lookup(u_int);
|
|
static void intr_pic_ipi_setup(u_int, const char *, intr_ipi_handler_t *,
|
|
void *);
|
|
#endif /* INTRNG */
|
|
|
|
boolean_t ofw_cpu_reg(phandle_t node, u_int, cell_t *);
|
|
|
|
extern struct pcpu __pcpu[];
|
|
|
|
static enum {
|
|
CPUS_UNKNOWN,
|
|
#ifdef FDT
|
|
CPUS_FDT,
|
|
#endif
|
|
} cpu_enum_method;
|
|
|
|
static device_identify_t arm64_cpu_identify;
|
|
static device_probe_t arm64_cpu_probe;
|
|
static device_attach_t arm64_cpu_attach;
|
|
|
|
static void ipi_ast(void *);
|
|
static void ipi_hardclock(void *);
|
|
static void ipi_preempt(void *);
|
|
static void ipi_rendezvous(void *);
|
|
static void ipi_stop(void *);
|
|
|
|
static int ipi_handler(void *arg);
|
|
|
|
struct mtx ap_boot_mtx;
|
|
struct pcb stoppcbs[MAXCPU];
|
|
|
|
#ifdef INVARIANTS
|
|
static uint32_t cpu_reg[MAXCPU][2];
|
|
#endif
|
|
static device_t cpu_list[MAXCPU];
|
|
|
|
/*
|
|
* Not all systems boot from the first CPU in the device tree. To work around
|
|
* this we need to find which CPU we have booted from so when we later
|
|
* enable the secondary CPUs we skip this one.
|
|
*/
|
|
static int cpu0 = -1;
|
|
|
|
void mpentry(unsigned long cpuid);
|
|
void init_secondary(uint64_t);
|
|
|
|
uint8_t secondary_stacks[MAXCPU - 1][PAGE_SIZE * KSTACK_PAGES] __aligned(16);
|
|
|
|
/* Set to 1 once we're ready to let the APs out of the pen. */
|
|
volatile int aps_ready = 0;
|
|
|
|
/* Temporary variables for init_secondary() */
|
|
void *dpcpu[MAXCPU - 1];
|
|
|
|
static device_method_t arm64_cpu_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_identify, arm64_cpu_identify),
|
|
DEVMETHOD(device_probe, arm64_cpu_probe),
|
|
DEVMETHOD(device_attach, arm64_cpu_attach),
|
|
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static devclass_t arm64_cpu_devclass;
|
|
static driver_t arm64_cpu_driver = {
|
|
"arm64_cpu",
|
|
arm64_cpu_methods,
|
|
0
|
|
};
|
|
|
|
DRIVER_MODULE(arm64_cpu, cpu, arm64_cpu_driver, arm64_cpu_devclass, 0, 0);
|
|
|
|
static void
|
|
arm64_cpu_identify(driver_t *driver, device_t parent)
|
|
{
|
|
|
|
if (device_find_child(parent, "arm64_cpu", -1) != NULL)
|
|
return;
|
|
if (BUS_ADD_CHILD(parent, 0, "arm64_cpu", -1) == NULL)
|
|
device_printf(parent, "add child failed\n");
|
|
}
|
|
|
|
static int
|
|
arm64_cpu_probe(device_t dev)
|
|
{
|
|
u_int cpuid;
|
|
|
|
cpuid = device_get_unit(dev);
|
|
if (cpuid >= MAXCPU || cpuid > mp_maxid)
|
|
return (EINVAL);
|
|
|
|
device_quiet(dev);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
arm64_cpu_attach(device_t dev)
|
|
{
|
|
const uint32_t *reg;
|
|
size_t reg_size;
|
|
u_int cpuid;
|
|
int i;
|
|
|
|
cpuid = device_get_unit(dev);
|
|
|
|
if (cpuid >= MAXCPU || cpuid > mp_maxid)
|
|
return (EINVAL);
|
|
KASSERT(cpu_list[cpuid] == NULL, ("Already have cpu %u", cpuid));
|
|
|
|
reg = cpu_get_cpuid(dev, ®_size);
|
|
if (reg == NULL)
|
|
return (EINVAL);
|
|
|
|
if (bootverbose) {
|
|
device_printf(dev, "register <");
|
|
for (i = 0; i < reg_size; i++)
|
|
printf("%s%x", (i == 0) ? "" : " ", reg[i]);
|
|
printf(">\n");
|
|
}
|
|
|
|
/* Set the device to start it later */
|
|
cpu_list[cpuid] = dev;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
release_aps(void *dummy __unused)
|
|
{
|
|
int cpu, i;
|
|
|
|
#ifdef INTRNG
|
|
intr_pic_ipi_setup(IPI_AST, "ast", ipi_ast, NULL);
|
|
intr_pic_ipi_setup(IPI_PREEMPT, "preempt", ipi_preempt, NULL);
|
|
intr_pic_ipi_setup(IPI_RENDEZVOUS, "rendezvous", ipi_rendezvous, NULL);
|
|
intr_pic_ipi_setup(IPI_STOP, "stop", ipi_stop, NULL);
|
|
intr_pic_ipi_setup(IPI_STOP_HARD, "stop hard", ipi_stop, NULL);
|
|
intr_pic_ipi_setup(IPI_HARDCLOCK, "hardclock", ipi_hardclock, NULL);
|
|
#else
|
|
/* Setup the IPI handler */
|
|
for (i = 0; i < INTR_IPI_COUNT; i++)
|
|
arm_setup_ipihandler(ipi_handler, i);
|
|
#endif
|
|
|
|
atomic_store_rel_int(&aps_ready, 1);
|
|
/* Wake up the other CPUs */
|
|
__asm __volatile("sev");
|
|
|
|
printf("Release APs\n");
|
|
|
|
for (i = 0; i < 2000; i++) {
|
|
if (smp_started) {
|
|
for (cpu = 0; cpu <= mp_maxid; cpu++) {
|
|
if (CPU_ABSENT(cpu))
|
|
continue;
|
|
print_cpu_features(cpu);
|
|
}
|
|
return;
|
|
}
|
|
DELAY(1000);
|
|
}
|
|
|
|
printf("APs not started\n");
|
|
}
|
|
SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
|
|
|
|
void
|
|
init_secondary(uint64_t cpu)
|
|
{
|
|
struct pcpu *pcpup;
|
|
#ifndef INTRNG
|
|
int i;
|
|
#endif
|
|
|
|
pcpup = &__pcpu[cpu];
|
|
/*
|
|
* Set the pcpu pointer with a backup in tpidr_el1 to be
|
|
* loaded when entering the kernel from userland.
|
|
*/
|
|
__asm __volatile(
|
|
"mov x18, %0 \n"
|
|
"msr tpidr_el1, %0" :: "r"(pcpup));
|
|
|
|
/* Spin until the BSP releases the APs */
|
|
while (!aps_ready)
|
|
__asm __volatile("wfe");
|
|
|
|
/* Initialize curthread */
|
|
KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
|
|
pcpup->pc_curthread = pcpup->pc_idlethread;
|
|
pcpup->pc_curpcb = pcpup->pc_idlethread->td_pcb;
|
|
|
|
/*
|
|
* Identify current CPU. This is necessary to setup
|
|
* affinity registers and to provide support for
|
|
* runtime chip identification.
|
|
*/
|
|
identify_cpu();
|
|
|
|
#ifdef INTRNG
|
|
intr_pic_init_secondary();
|
|
#else
|
|
/* Configure the interrupt controller */
|
|
arm_init_secondary();
|
|
|
|
for (i = 0; i < INTR_IPI_COUNT; i++)
|
|
arm_unmask_ipi(i);
|
|
#endif
|
|
|
|
/* Start per-CPU event timers. */
|
|
cpu_initclocks_ap();
|
|
|
|
#ifdef VFP
|
|
vfp_init();
|
|
#endif
|
|
|
|
dbg_monitor_init();
|
|
|
|
/* Enable interrupts */
|
|
intr_enable();
|
|
|
|
mtx_lock_spin(&ap_boot_mtx);
|
|
|
|
atomic_add_rel_32(&smp_cpus, 1);
|
|
|
|
if (smp_cpus == mp_ncpus) {
|
|
/* enable IPI's, tlb shootdown, freezes etc */
|
|
atomic_store_rel_int(&smp_started, 1);
|
|
}
|
|
|
|
mtx_unlock_spin(&ap_boot_mtx);
|
|
|
|
/* Enter the scheduler */
|
|
sched_throw(NULL);
|
|
|
|
panic("scheduler returned us to init_secondary");
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
#ifdef INTRNG
|
|
/*
|
|
* Send IPI thru interrupt controller.
|
|
*/
|
|
static void
|
|
pic_ipi_send(void *arg, cpuset_t cpus, u_int ipi)
|
|
{
|
|
|
|
KASSERT(intr_irq_root_dev != NULL, ("%s: no root attached", __func__));
|
|
PIC_IPI_SEND(intr_irq_root_dev, arg, cpus, ipi);
|
|
}
|
|
|
|
/*
|
|
* Setup IPI handler on interrupt controller.
|
|
*
|
|
* Not SMP coherent.
|
|
*/
|
|
static void
|
|
intr_pic_ipi_setup(u_int ipi, const char *name, intr_ipi_handler_t *hand,
|
|
void *arg)
|
|
{
|
|
struct intr_irqsrc *isrc;
|
|
struct intr_ipi *ii;
|
|
int error;
|
|
|
|
KASSERT(intr_irq_root_dev != NULL, ("%s: no root attached", __func__));
|
|
KASSERT(hand != NULL, ("%s: ipi %u no handler", __func__, ipi));
|
|
|
|
error = PIC_IPI_SETUP(intr_irq_root_dev, ipi, &isrc);
|
|
if (error != 0)
|
|
return;
|
|
|
|
isrc->isrc_handlers++;
|
|
|
|
ii = intr_ipi_lookup(ipi);
|
|
KASSERT(ii->ii_count == NULL, ("%s: ipi %u reused", __func__, ipi));
|
|
|
|
ii->ii_handler = hand;
|
|
ii->ii_handler_arg = arg;
|
|
ii->ii_send = pic_ipi_send;
|
|
ii->ii_send_arg = isrc;
|
|
strlcpy(ii->ii_name, name, INTR_IPI_NAMELEN);
|
|
ii->ii_count = intr_ipi_setup_counters(name);
|
|
}
|
|
|
|
static void
|
|
intr_ipi_send(cpuset_t cpus, u_int ipi)
|
|
{
|
|
struct intr_ipi *ii;
|
|
|
|
ii = intr_ipi_lookup(ipi);
|
|
if (ii->ii_count == NULL)
|
|
panic("%s: not setup IPI %u", __func__, ipi);
|
|
|
|
ii->ii_send(ii->ii_send_arg, cpus, ipi);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
ipi_ast(void *dummy __unused)
|
|
{
|
|
|
|
CTR0(KTR_SMP, "IPI_AST");
|
|
}
|
|
|
|
static void
|
|
ipi_hardclock(void *dummy __unused)
|
|
{
|
|
|
|
CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__);
|
|
hardclockintr();
|
|
}
|
|
|
|
static void
|
|
ipi_preempt(void *dummy __unused)
|
|
{
|
|
CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__);
|
|
sched_preempt(curthread);
|
|
}
|
|
|
|
static void
|
|
ipi_rendezvous(void *dummy __unused)
|
|
{
|
|
|
|
CTR0(KTR_SMP, "IPI_RENDEZVOUS");
|
|
smp_rendezvous_action();
|
|
}
|
|
|
|
static void
|
|
ipi_stop(void *dummy __unused)
|
|
{
|
|
u_int cpu;
|
|
|
|
CTR0(KTR_SMP, "IPI_STOP");
|
|
|
|
cpu = PCPU_GET(cpuid);
|
|
savectx(&stoppcbs[cpu]);
|
|
|
|
/* Indicate we are stopped */
|
|
CPU_SET_ATOMIC(cpu, &stopped_cpus);
|
|
|
|
/* Wait for restart */
|
|
while (!CPU_ISSET(cpu, &started_cpus))
|
|
cpu_spinwait();
|
|
|
|
CPU_CLR_ATOMIC(cpu, &started_cpus);
|
|
CPU_CLR_ATOMIC(cpu, &stopped_cpus);
|
|
CTR0(KTR_SMP, "IPI_STOP (restart)");
|
|
}
|
|
|
|
#ifndef INTRNG
|
|
static int
|
|
ipi_handler(void *arg)
|
|
{
|
|
u_int cpu, ipi;
|
|
|
|
arg = (void *)((uintptr_t)arg & ~(1 << 16));
|
|
KASSERT((uintptr_t)arg < INTR_IPI_COUNT,
|
|
("Invalid IPI %ju", (uintptr_t)arg));
|
|
|
|
cpu = PCPU_GET(cpuid);
|
|
ipi = (uintptr_t)arg;
|
|
|
|
switch(ipi) {
|
|
case IPI_AST:
|
|
ipi_ast(NULL);
|
|
break;
|
|
case IPI_PREEMPT:
|
|
ipi_preempt(NULL);
|
|
break;
|
|
case IPI_RENDEZVOUS:
|
|
ipi_rendezvous(NULL);
|
|
break;
|
|
case IPI_STOP:
|
|
case IPI_STOP_HARD:
|
|
ipi_stop(NULL);
|
|
break;
|
|
case IPI_HARDCLOCK:
|
|
ipi_hardclock(NULL);
|
|
break;
|
|
default:
|
|
panic("Unknown IPI %#0x on cpu %d", ipi, curcpu);
|
|
}
|
|
|
|
return (FILTER_HANDLED);
|
|
}
|
|
#endif
|
|
|
|
struct cpu_group *
|
|
cpu_topo(void)
|
|
{
|
|
|
|
return (smp_topo_none());
|
|
}
|
|
|
|
/* Determine if we running MP machine */
|
|
int
|
|
cpu_mp_probe(void)
|
|
{
|
|
|
|
/* ARM64TODO: Read the u bit of mpidr_el1 to determine this */
|
|
return (1);
|
|
}
|
|
|
|
#ifdef FDT
|
|
static boolean_t
|
|
cpu_init_fdt(u_int id, phandle_t node, u_int addr_size, pcell_t *reg)
|
|
{
|
|
uint64_t target_cpu;
|
|
struct pcpu *pcpup;
|
|
vm_paddr_t pa;
|
|
u_int cpuid;
|
|
int err;
|
|
|
|
/* Check we are able to start this cpu */
|
|
if (id > mp_maxid)
|
|
return (0);
|
|
|
|
KASSERT(id < MAXCPU, ("Too mant CPUs"));
|
|
|
|
KASSERT(addr_size == 1 || addr_size == 2, ("Invalid register size"));
|
|
#ifdef INVARIANTS
|
|
cpu_reg[id][0] = reg[0];
|
|
if (addr_size == 2)
|
|
cpu_reg[id][1] = reg[1];
|
|
#endif
|
|
|
|
/* We are already running on cpu 0 */
|
|
if (id == cpu0)
|
|
return (1);
|
|
|
|
cpuid = id;
|
|
if (cpuid < cpu0)
|
|
cpuid++;
|
|
|
|
pcpup = &__pcpu[cpuid];
|
|
pcpu_init(pcpup, cpuid, sizeof(struct pcpu));
|
|
|
|
dpcpu[cpuid - 1] = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
|
|
M_WAITOK | M_ZERO);
|
|
dpcpu_init(dpcpu[cpuid - 1], cpuid);
|
|
|
|
target_cpu = reg[0];
|
|
if (addr_size == 2) {
|
|
target_cpu <<= 32;
|
|
target_cpu |= reg[1];
|
|
}
|
|
|
|
printf("Starting CPU %u (%lx)\n", cpuid, target_cpu);
|
|
pa = pmap_extract(kernel_pmap, (vm_offset_t)mpentry);
|
|
|
|
err = psci_cpu_on(target_cpu, pa, cpuid);
|
|
if (err != PSCI_RETVAL_SUCCESS) {
|
|
/* Panic here if INVARIANTS are enabled */
|
|
KASSERT(0, ("Failed to start CPU %u (%lx)\n", id,
|
|
target_cpu));
|
|
|
|
pcpu_destroy(pcpup);
|
|
kmem_free(kernel_arena, (vm_offset_t)dpcpu[cpuid - 1],
|
|
DPCPU_SIZE);
|
|
dpcpu[cpuid - 1] = NULL;
|
|
/* Notify the user that the CPU failed to start */
|
|
printf("Failed to start CPU %u (%lx)\n", id, target_cpu);
|
|
} else
|
|
CPU_SET(cpuid, &all_cpus);
|
|
|
|
return (1);
|
|
}
|
|
#endif
|
|
|
|
/* Initialize and fire up non-boot processors */
|
|
void
|
|
cpu_mp_start(void)
|
|
{
|
|
|
|
mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
|
|
|
|
CPU_SET(0, &all_cpus);
|
|
|
|
switch(cpu_enum_method) {
|
|
#ifdef FDT
|
|
case CPUS_FDT:
|
|
KASSERT(cpu0 >= 0, ("Current CPU was not found"));
|
|
ofw_cpu_early_foreach(cpu_init_fdt, true);
|
|
break;
|
|
#endif
|
|
case CPUS_UNKNOWN:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Introduce rest of cores to the world */
|
|
void
|
|
cpu_mp_announce(void)
|
|
{
|
|
}
|
|
|
|
static boolean_t
|
|
cpu_find_cpu0_fdt(u_int id, phandle_t node, u_int addr_size, pcell_t *reg)
|
|
{
|
|
uint64_t mpidr_fdt, mpidr_reg;
|
|
|
|
if (cpu0 < 0) {
|
|
mpidr_fdt = reg[0];
|
|
if (addr_size == 2) {
|
|
mpidr_fdt <<= 32;
|
|
mpidr_fdt |= reg[1];
|
|
}
|
|
|
|
mpidr_reg = READ_SPECIALREG(mpidr_el1);
|
|
|
|
if ((mpidr_reg & 0xff00fffffful) == mpidr_fdt)
|
|
cpu0 = id;
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
void
|
|
cpu_mp_setmaxid(void)
|
|
{
|
|
#ifdef FDT
|
|
int cores;
|
|
|
|
cores = ofw_cpu_early_foreach(cpu_find_cpu0_fdt, false);
|
|
if (cores > 0) {
|
|
cores = MIN(cores, MAXCPU);
|
|
if (bootverbose)
|
|
printf("Found %d CPUs in the device tree\n", cores);
|
|
mp_ncpus = cores;
|
|
mp_maxid = cores - 1;
|
|
cpu_enum_method = CPUS_FDT;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (bootverbose)
|
|
printf("No CPU data, limiting to 1 core\n");
|
|
mp_ncpus = 1;
|
|
mp_maxid = 0;
|
|
}
|
|
|
|
#ifdef INTRNG
|
|
/*
|
|
* Lookup IPI source.
|
|
*/
|
|
static struct intr_ipi *
|
|
intr_ipi_lookup(u_int ipi)
|
|
{
|
|
|
|
if (ipi >= INTR_IPI_COUNT)
|
|
panic("%s: no such IPI %u", __func__, ipi);
|
|
|
|
return (&ipi_sources[ipi]);
|
|
}
|
|
|
|
/*
|
|
* interrupt controller dispatch function for IPIs. It should
|
|
* be called straight from the interrupt controller, when associated
|
|
* interrupt source is learned. Or from anybody who has an interrupt
|
|
* source mapped.
|
|
*/
|
|
void
|
|
intr_ipi_dispatch(u_int ipi, struct trapframe *tf)
|
|
{
|
|
void *arg;
|
|
struct intr_ipi *ii;
|
|
|
|
ii = intr_ipi_lookup(ipi);
|
|
if (ii->ii_count == NULL)
|
|
panic("%s: not setup IPI %u", __func__, ipi);
|
|
|
|
intr_ipi_increment_count(ii->ii_count, PCPU_GET(cpuid));
|
|
|
|
/*
|
|
* Supply ipi filter with trapframe argument
|
|
* if none is registered.
|
|
*/
|
|
arg = ii->ii_handler_arg != NULL ? ii->ii_handler_arg : tf;
|
|
ii->ii_handler(arg);
|
|
}
|
|
|
|
#ifdef notyet
|
|
/*
|
|
* Map IPI into interrupt controller.
|
|
*
|
|
* Not SMP coherent.
|
|
*/
|
|
static int
|
|
ipi_map(struct intr_irqsrc *isrc, u_int ipi)
|
|
{
|
|
boolean_t is_percpu;
|
|
int error;
|
|
|
|
if (ipi >= INTR_IPI_COUNT)
|
|
panic("%s: no such IPI %u", __func__, ipi);
|
|
|
|
KASSERT(intr_irq_root_dev != NULL, ("%s: no root attached", __func__));
|
|
|
|
isrc->isrc_type = INTR_ISRCT_NAMESPACE;
|
|
isrc->isrc_nspc_type = INTR_IRQ_NSPC_IPI;
|
|
isrc->isrc_nspc_num = ipi_next_num;
|
|
|
|
error = PIC_REGISTER(intr_irq_root_dev, isrc, &is_percpu);
|
|
if (error == 0) {
|
|
isrc->isrc_dev = intr_irq_root_dev;
|
|
ipi_next_num++;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Setup IPI handler to interrupt source.
|
|
*
|
|
* Note that there could be more ways how to send and receive IPIs
|
|
* on a platform like fast interrupts for example. In that case,
|
|
* one can call this function with ASIF_NOALLOC flag set and then
|
|
* call intr_ipi_dispatch() when appropriate.
|
|
*
|
|
* Not SMP coherent.
|
|
*/
|
|
int
|
|
intr_ipi_set_handler(u_int ipi, const char *name, intr_ipi_filter_t *filter,
|
|
void *arg, u_int flags)
|
|
{
|
|
struct intr_irqsrc *isrc;
|
|
int error;
|
|
|
|
if (filter == NULL)
|
|
return(EINVAL);
|
|
|
|
isrc = intr_ipi_lookup(ipi);
|
|
if (isrc->isrc_ipifilter != NULL)
|
|
return (EEXIST);
|
|
|
|
if ((flags & AISHF_NOALLOC) == 0) {
|
|
error = ipi_map(isrc, ipi);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
|
|
isrc->isrc_ipifilter = filter;
|
|
isrc->isrc_arg = arg;
|
|
isrc->isrc_handlers = 1;
|
|
isrc->isrc_count = intr_ipi_setup_counters(name);
|
|
isrc->isrc_index = 0; /* it should not be used in IPI case */
|
|
|
|
if (isrc->isrc_dev != NULL) {
|
|
PIC_ENABLE_INTR(isrc->isrc_dev, isrc);
|
|
PIC_ENABLE_SOURCE(isrc->isrc_dev, isrc);
|
|
}
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
/* Sending IPI */
|
|
void
|
|
ipi_all_but_self(u_int ipi)
|
|
{
|
|
cpuset_t cpus;
|
|
|
|
cpus = all_cpus;
|
|
CPU_CLR(PCPU_GET(cpuid), &cpus);
|
|
CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
|
|
intr_ipi_send(cpus, ipi);
|
|
}
|
|
|
|
void
|
|
ipi_cpu(int cpu, u_int ipi)
|
|
{
|
|
cpuset_t cpus;
|
|
|
|
CPU_ZERO(&cpus);
|
|
CPU_SET(cpu, &cpus);
|
|
|
|
CTR3(KTR_SMP, "%s: cpu: %d, ipi: %x", __func__, cpu, ipi);
|
|
intr_ipi_send(cpus, ipi);
|
|
}
|
|
|
|
void
|
|
ipi_selected(cpuset_t cpus, u_int ipi)
|
|
{
|
|
|
|
CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
|
|
intr_ipi_send(cpus, ipi);
|
|
}
|
|
#endif /* INTRNG */
|