mirror of https://github.com/F-Stack/f-stack.git
911 lines
28 KiB
C
911 lines
28 KiB
C
/******************************************************************************
|
|
*
|
|
* Module Name: dsmethod - Parser/Interpreter interface - control method parsing
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* Copyright (C) 2000 - 2016, Intel Corp.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* substantially similar to the "NO WARRANTY" disclaimer below
|
|
* ("Disclaimer") and any redistribution must be conditioned upon
|
|
* including a substantially similar Disclaimer requirement for further
|
|
* binary redistribution.
|
|
* 3. Neither the names of the above-listed copyright holders nor the names
|
|
* of any contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* Alternatively, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL") version 2 as published by the Free
|
|
* Software Foundation.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGES.
|
|
*/
|
|
|
|
#include <contrib/dev/acpica/include/acpi.h>
|
|
#include <contrib/dev/acpica/include/accommon.h>
|
|
#include <contrib/dev/acpica/include/acdispat.h>
|
|
#include <contrib/dev/acpica/include/acinterp.h>
|
|
#include <contrib/dev/acpica/include/acnamesp.h>
|
|
#include <contrib/dev/acpica/include/acparser.h>
|
|
#include <contrib/dev/acpica/include/amlcode.h>
|
|
#include <contrib/dev/acpica/include/acdebug.h>
|
|
|
|
|
|
#define _COMPONENT ACPI_DISPATCHER
|
|
ACPI_MODULE_NAME ("dsmethod")
|
|
|
|
/* Local prototypes */
|
|
|
|
static ACPI_STATUS
|
|
AcpiDsDetectNamedOpcodes (
|
|
ACPI_WALK_STATE *WalkState,
|
|
ACPI_PARSE_OBJECT **OutOp);
|
|
|
|
static ACPI_STATUS
|
|
AcpiDsCreateMethodMutex (
|
|
ACPI_OPERAND_OBJECT *MethodDesc);
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiDsAutoSerializeMethod
|
|
*
|
|
* PARAMETERS: Node - Namespace Node of the method
|
|
* ObjDesc - Method object attached to node
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Parse a control method AML to scan for control methods that
|
|
* need serialization due to the creation of named objects.
|
|
*
|
|
* NOTE: It is a bit of overkill to mark all such methods serialized, since
|
|
* there is only a problem if the method actually blocks during execution.
|
|
* A blocking operation is, for example, a Sleep() operation, or any access
|
|
* to an operation region. However, it is probably not possible to easily
|
|
* detect whether a method will block or not, so we simply mark all suspicious
|
|
* methods as serialized.
|
|
*
|
|
* NOTE2: This code is essentially a generic routine for parsing a single
|
|
* control method.
|
|
*
|
|
******************************************************************************/
|
|
|
|
ACPI_STATUS
|
|
AcpiDsAutoSerializeMethod (
|
|
ACPI_NAMESPACE_NODE *Node,
|
|
ACPI_OPERAND_OBJECT *ObjDesc)
|
|
{
|
|
ACPI_STATUS Status;
|
|
ACPI_PARSE_OBJECT *Op = NULL;
|
|
ACPI_WALK_STATE *WalkState;
|
|
|
|
|
|
ACPI_FUNCTION_TRACE_PTR (DsAutoSerializeMethod, Node);
|
|
|
|
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_PARSE,
|
|
"Method auto-serialization parse [%4.4s] %p\n",
|
|
AcpiUtGetNodeName (Node), Node));
|
|
|
|
/* Create/Init a root op for the method parse tree */
|
|
|
|
Op = AcpiPsAllocOp (AML_METHOD_OP, ObjDesc->Method.AmlStart);
|
|
if (!Op)
|
|
{
|
|
return_ACPI_STATUS (AE_NO_MEMORY);
|
|
}
|
|
|
|
AcpiPsSetName (Op, Node->Name.Integer);
|
|
Op->Common.Node = Node;
|
|
|
|
/* Create and initialize a new walk state */
|
|
|
|
WalkState = AcpiDsCreateWalkState (Node->OwnerId, NULL, NULL, NULL);
|
|
if (!WalkState)
|
|
{
|
|
AcpiPsFreeOp (Op);
|
|
return_ACPI_STATUS (AE_NO_MEMORY);
|
|
}
|
|
|
|
Status = AcpiDsInitAmlWalk (WalkState, Op, Node,
|
|
ObjDesc->Method.AmlStart, ObjDesc->Method.AmlLength, NULL, 0);
|
|
if (ACPI_FAILURE (Status))
|
|
{
|
|
AcpiDsDeleteWalkState (WalkState);
|
|
AcpiPsFreeOp (Op);
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
|
|
WalkState->DescendingCallback = AcpiDsDetectNamedOpcodes;
|
|
|
|
/* Parse the method, scan for creation of named objects */
|
|
|
|
Status = AcpiPsParseAml (WalkState);
|
|
|
|
AcpiPsDeleteParseTree (Op);
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiDsDetectNamedOpcodes
|
|
*
|
|
* PARAMETERS: WalkState - Current state of the parse tree walk
|
|
* OutOp - Unused, required for parser interface
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Descending callback used during the loading of ACPI tables.
|
|
* Currently used to detect methods that must be marked serialized
|
|
* in order to avoid problems with the creation of named objects.
|
|
*
|
|
******************************************************************************/
|
|
|
|
static ACPI_STATUS
|
|
AcpiDsDetectNamedOpcodes (
|
|
ACPI_WALK_STATE *WalkState,
|
|
ACPI_PARSE_OBJECT **OutOp)
|
|
{
|
|
|
|
ACPI_FUNCTION_NAME (AcpiDsDetectNamedOpcodes);
|
|
|
|
|
|
/* We are only interested in opcodes that create a new name */
|
|
|
|
if (!(WalkState->OpInfo->Flags & (AML_NAMED | AML_CREATE | AML_FIELD)))
|
|
{
|
|
return (AE_OK);
|
|
}
|
|
|
|
/*
|
|
* At this point, we know we have a Named object opcode.
|
|
* Mark the method as serialized. Later code will create a mutex for
|
|
* this method to enforce serialization.
|
|
*
|
|
* Note, ACPI_METHOD_IGNORE_SYNC_LEVEL flag means that we will ignore the
|
|
* Sync Level mechanism for this method, even though it is now serialized.
|
|
* Otherwise, there can be conflicts with existing ASL code that actually
|
|
* uses sync levels.
|
|
*/
|
|
WalkState->MethodDesc->Method.SyncLevel = 0;
|
|
WalkState->MethodDesc->Method.InfoFlags |=
|
|
(ACPI_METHOD_SERIALIZED | ACPI_METHOD_IGNORE_SYNC_LEVEL);
|
|
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
|
|
"Method serialized [%4.4s] %p - [%s] (%4.4X)\n",
|
|
WalkState->MethodNode->Name.Ascii, WalkState->MethodNode,
|
|
WalkState->OpInfo->Name, WalkState->Opcode));
|
|
|
|
/* Abort the parse, no need to examine this method any further */
|
|
|
|
return (AE_CTRL_TERMINATE);
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiDsMethodError
|
|
*
|
|
* PARAMETERS: Status - Execution status
|
|
* WalkState - Current state
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Called on method error. Invoke the global exception handler if
|
|
* present, dump the method data if the debugger is configured
|
|
*
|
|
* Note: Allows the exception handler to change the status code
|
|
*
|
|
******************************************************************************/
|
|
|
|
ACPI_STATUS
|
|
AcpiDsMethodError (
|
|
ACPI_STATUS Status,
|
|
ACPI_WALK_STATE *WalkState)
|
|
{
|
|
UINT32 AmlOffset;
|
|
|
|
|
|
ACPI_FUNCTION_ENTRY ();
|
|
|
|
|
|
/* Ignore AE_OK and control exception codes */
|
|
|
|
if (ACPI_SUCCESS (Status) ||
|
|
(Status & AE_CODE_CONTROL))
|
|
{
|
|
return (Status);
|
|
}
|
|
|
|
/* Invoke the global exception handler */
|
|
|
|
if (AcpiGbl_ExceptionHandler)
|
|
{
|
|
/* Exit the interpreter, allow handler to execute methods */
|
|
|
|
AcpiExExitInterpreter ();
|
|
|
|
/*
|
|
* Handler can map the exception code to anything it wants, including
|
|
* AE_OK, in which case the executing method will not be aborted.
|
|
*/
|
|
AmlOffset = (UINT32) ACPI_PTR_DIFF (WalkState->Aml,
|
|
WalkState->ParserState.AmlStart);
|
|
|
|
Status = AcpiGbl_ExceptionHandler (Status,
|
|
WalkState->MethodNode ?
|
|
WalkState->MethodNode->Name.Integer : 0,
|
|
WalkState->Opcode, AmlOffset, NULL);
|
|
AcpiExEnterInterpreter ();
|
|
}
|
|
|
|
AcpiDsClearImplicitReturn (WalkState);
|
|
|
|
if (ACPI_FAILURE (Status))
|
|
{
|
|
AcpiDsDumpMethodStack (Status, WalkState, WalkState->Op);
|
|
|
|
/* Display method locals/args if debugger is present */
|
|
|
|
#ifdef ACPI_DEBUGGER
|
|
AcpiDbDumpMethodInfo (Status, WalkState);
|
|
#endif
|
|
}
|
|
|
|
return (Status);
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiDsCreateMethodMutex
|
|
*
|
|
* PARAMETERS: ObjDesc - The method object
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Create a mutex object for a serialized control method
|
|
*
|
|
******************************************************************************/
|
|
|
|
static ACPI_STATUS
|
|
AcpiDsCreateMethodMutex (
|
|
ACPI_OPERAND_OBJECT *MethodDesc)
|
|
{
|
|
ACPI_OPERAND_OBJECT *MutexDesc;
|
|
ACPI_STATUS Status;
|
|
|
|
|
|
ACPI_FUNCTION_TRACE (DsCreateMethodMutex);
|
|
|
|
|
|
/* Create the new mutex object */
|
|
|
|
MutexDesc = AcpiUtCreateInternalObject (ACPI_TYPE_MUTEX);
|
|
if (!MutexDesc)
|
|
{
|
|
return_ACPI_STATUS (AE_NO_MEMORY);
|
|
}
|
|
|
|
/* Create the actual OS Mutex */
|
|
|
|
Status = AcpiOsCreateMutex (&MutexDesc->Mutex.OsMutex);
|
|
if (ACPI_FAILURE (Status))
|
|
{
|
|
AcpiUtDeleteObjectDesc (MutexDesc);
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
|
|
MutexDesc->Mutex.SyncLevel = MethodDesc->Method.SyncLevel;
|
|
MethodDesc->Method.Mutex = MutexDesc;
|
|
return_ACPI_STATUS (AE_OK);
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiDsBeginMethodExecution
|
|
*
|
|
* PARAMETERS: MethodNode - Node of the method
|
|
* ObjDesc - The method object
|
|
* WalkState - current state, NULL if not yet executing
|
|
* a method.
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Prepare a method for execution. Parses the method if necessary,
|
|
* increments the thread count, and waits at the method semaphore
|
|
* for clearance to execute.
|
|
*
|
|
******************************************************************************/
|
|
|
|
ACPI_STATUS
|
|
AcpiDsBeginMethodExecution (
|
|
ACPI_NAMESPACE_NODE *MethodNode,
|
|
ACPI_OPERAND_OBJECT *ObjDesc,
|
|
ACPI_WALK_STATE *WalkState)
|
|
{
|
|
ACPI_STATUS Status = AE_OK;
|
|
|
|
|
|
ACPI_FUNCTION_TRACE_PTR (DsBeginMethodExecution, MethodNode);
|
|
|
|
|
|
if (!MethodNode)
|
|
{
|
|
return_ACPI_STATUS (AE_NULL_ENTRY);
|
|
}
|
|
|
|
AcpiExStartTraceMethod (MethodNode, ObjDesc, WalkState);
|
|
|
|
/* Prevent wraparound of thread count */
|
|
|
|
if (ObjDesc->Method.ThreadCount == ACPI_UINT8_MAX)
|
|
{
|
|
ACPI_ERROR ((AE_INFO,
|
|
"Method reached maximum reentrancy limit (255)"));
|
|
return_ACPI_STATUS (AE_AML_METHOD_LIMIT);
|
|
}
|
|
|
|
/*
|
|
* If this method is serialized, we need to acquire the method mutex.
|
|
*/
|
|
if (ObjDesc->Method.InfoFlags & ACPI_METHOD_SERIALIZED)
|
|
{
|
|
/*
|
|
* Create a mutex for the method if it is defined to be Serialized
|
|
* and a mutex has not already been created. We defer the mutex creation
|
|
* until a method is actually executed, to minimize the object count
|
|
*/
|
|
if (!ObjDesc->Method.Mutex)
|
|
{
|
|
Status = AcpiDsCreateMethodMutex (ObjDesc);
|
|
if (ACPI_FAILURE (Status))
|
|
{
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The CurrentSyncLevel (per-thread) must be less than or equal to
|
|
* the sync level of the method. This mechanism provides some
|
|
* deadlock prevention.
|
|
*
|
|
* If the method was auto-serialized, we just ignore the sync level
|
|
* mechanism, because auto-serialization of methods can interfere
|
|
* with ASL code that actually uses sync levels.
|
|
*
|
|
* Top-level method invocation has no walk state at this point
|
|
*/
|
|
if (WalkState &&
|
|
(!(ObjDesc->Method.InfoFlags & ACPI_METHOD_IGNORE_SYNC_LEVEL)) &&
|
|
(WalkState->Thread->CurrentSyncLevel >
|
|
ObjDesc->Method.Mutex->Mutex.SyncLevel))
|
|
{
|
|
ACPI_ERROR ((AE_INFO,
|
|
"Cannot acquire Mutex for method [%4.4s]"
|
|
", current SyncLevel is too large (%u)",
|
|
AcpiUtGetNodeName (MethodNode),
|
|
WalkState->Thread->CurrentSyncLevel));
|
|
|
|
return_ACPI_STATUS (AE_AML_MUTEX_ORDER);
|
|
}
|
|
|
|
/*
|
|
* Obtain the method mutex if necessary. Do not acquire mutex for a
|
|
* recursive call.
|
|
*/
|
|
if (!WalkState ||
|
|
!ObjDesc->Method.Mutex->Mutex.ThreadId ||
|
|
(WalkState->Thread->ThreadId !=
|
|
ObjDesc->Method.Mutex->Mutex.ThreadId))
|
|
{
|
|
/*
|
|
* Acquire the method mutex. This releases the interpreter if we
|
|
* block (and reacquires it before it returns)
|
|
*/
|
|
Status = AcpiExSystemWaitMutex (
|
|
ObjDesc->Method.Mutex->Mutex.OsMutex, ACPI_WAIT_FOREVER);
|
|
if (ACPI_FAILURE (Status))
|
|
{
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
|
|
/* Update the mutex and walk info and save the original SyncLevel */
|
|
|
|
if (WalkState)
|
|
{
|
|
ObjDesc->Method.Mutex->Mutex.OriginalSyncLevel =
|
|
WalkState->Thread->CurrentSyncLevel;
|
|
|
|
ObjDesc->Method.Mutex->Mutex.ThreadId =
|
|
WalkState->Thread->ThreadId;
|
|
|
|
/*
|
|
* Update the current SyncLevel only if this is not an auto-
|
|
* serialized method. In the auto case, we have to ignore
|
|
* the sync level for the method mutex (created for the
|
|
* auto-serialization) because we have no idea of what the
|
|
* sync level should be. Therefore, just ignore it.
|
|
*/
|
|
if (!(ObjDesc->Method.InfoFlags &
|
|
ACPI_METHOD_IGNORE_SYNC_LEVEL))
|
|
{
|
|
WalkState->Thread->CurrentSyncLevel =
|
|
ObjDesc->Method.SyncLevel;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ObjDesc->Method.Mutex->Mutex.OriginalSyncLevel =
|
|
ObjDesc->Method.Mutex->Mutex.SyncLevel;
|
|
|
|
ObjDesc->Method.Mutex->Mutex.ThreadId =
|
|
AcpiOsGetThreadId ();
|
|
}
|
|
}
|
|
|
|
/* Always increase acquisition depth */
|
|
|
|
ObjDesc->Method.Mutex->Mutex.AcquisitionDepth++;
|
|
}
|
|
|
|
/*
|
|
* Allocate an Owner ID for this method, only if this is the first thread
|
|
* to begin concurrent execution. We only need one OwnerId, even if the
|
|
* method is invoked recursively.
|
|
*/
|
|
if (!ObjDesc->Method.OwnerId)
|
|
{
|
|
Status = AcpiUtAllocateOwnerId (&ObjDesc->Method.OwnerId);
|
|
if (ACPI_FAILURE (Status))
|
|
{
|
|
goto Cleanup;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Increment the method parse tree thread count since it has been
|
|
* reentered one more time (even if it is the same thread)
|
|
*/
|
|
ObjDesc->Method.ThreadCount++;
|
|
AcpiMethodCount++;
|
|
return_ACPI_STATUS (Status);
|
|
|
|
|
|
Cleanup:
|
|
/* On error, must release the method mutex (if present) */
|
|
|
|
if (ObjDesc->Method.Mutex)
|
|
{
|
|
AcpiOsReleaseMutex (ObjDesc->Method.Mutex->Mutex.OsMutex);
|
|
}
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiDsCallControlMethod
|
|
*
|
|
* PARAMETERS: Thread - Info for this thread
|
|
* ThisWalkState - Current walk state
|
|
* Op - Current Op to be walked
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Transfer execution to a called control method
|
|
*
|
|
******************************************************************************/
|
|
|
|
ACPI_STATUS
|
|
AcpiDsCallControlMethod (
|
|
ACPI_THREAD_STATE *Thread,
|
|
ACPI_WALK_STATE *ThisWalkState,
|
|
ACPI_PARSE_OBJECT *Op)
|
|
{
|
|
ACPI_STATUS Status;
|
|
ACPI_NAMESPACE_NODE *MethodNode;
|
|
ACPI_WALK_STATE *NextWalkState = NULL;
|
|
ACPI_OPERAND_OBJECT *ObjDesc;
|
|
ACPI_EVALUATE_INFO *Info;
|
|
UINT32 i;
|
|
|
|
|
|
ACPI_FUNCTION_TRACE_PTR (DsCallControlMethod, ThisWalkState);
|
|
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
|
|
"Calling method %p, currentstate=%p\n",
|
|
ThisWalkState->PrevOp, ThisWalkState));
|
|
|
|
/*
|
|
* Get the namespace entry for the control method we are about to call
|
|
*/
|
|
MethodNode = ThisWalkState->MethodCallNode;
|
|
if (!MethodNode)
|
|
{
|
|
return_ACPI_STATUS (AE_NULL_ENTRY);
|
|
}
|
|
|
|
ObjDesc = AcpiNsGetAttachedObject (MethodNode);
|
|
if (!ObjDesc)
|
|
{
|
|
return_ACPI_STATUS (AE_NULL_OBJECT);
|
|
}
|
|
|
|
/* Init for new method, possibly wait on method mutex */
|
|
|
|
Status = AcpiDsBeginMethodExecution (
|
|
MethodNode, ObjDesc, ThisWalkState);
|
|
if (ACPI_FAILURE (Status))
|
|
{
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
|
|
/* Begin method parse/execution. Create a new walk state */
|
|
|
|
NextWalkState = AcpiDsCreateWalkState (
|
|
ObjDesc->Method.OwnerId, NULL, ObjDesc, Thread);
|
|
if (!NextWalkState)
|
|
{
|
|
Status = AE_NO_MEMORY;
|
|
goto Cleanup;
|
|
}
|
|
|
|
/*
|
|
* The resolved arguments were put on the previous walk state's operand
|
|
* stack. Operands on the previous walk state stack always
|
|
* start at index 0. Also, null terminate the list of arguments
|
|
*/
|
|
ThisWalkState->Operands [ThisWalkState->NumOperands] = NULL;
|
|
|
|
/*
|
|
* Allocate and initialize the evaluation information block
|
|
* TBD: this is somewhat inefficient, should change interface to
|
|
* DsInitAmlWalk. For now, keeps this struct off the CPU stack
|
|
*/
|
|
Info = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_EVALUATE_INFO));
|
|
if (!Info)
|
|
{
|
|
Status = AE_NO_MEMORY;
|
|
goto Cleanup;
|
|
}
|
|
|
|
Info->Parameters = &ThisWalkState->Operands[0];
|
|
|
|
Status = AcpiDsInitAmlWalk (NextWalkState, NULL, MethodNode,
|
|
ObjDesc->Method.AmlStart, ObjDesc->Method.AmlLength,
|
|
Info, ACPI_IMODE_EXECUTE);
|
|
|
|
ACPI_FREE (Info);
|
|
if (ACPI_FAILURE (Status))
|
|
{
|
|
goto Cleanup;
|
|
}
|
|
|
|
/*
|
|
* Delete the operands on the previous walkstate operand stack
|
|
* (they were copied to new objects)
|
|
*/
|
|
for (i = 0; i < ObjDesc->Method.ParamCount; i++)
|
|
{
|
|
AcpiUtRemoveReference (ThisWalkState->Operands [i]);
|
|
ThisWalkState->Operands [i] = NULL;
|
|
}
|
|
|
|
/* Clear the operand stack */
|
|
|
|
ThisWalkState->NumOperands = 0;
|
|
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
|
|
"**** Begin nested execution of [%4.4s] **** WalkState=%p\n",
|
|
MethodNode->Name.Ascii, NextWalkState));
|
|
|
|
/* Invoke an internal method if necessary */
|
|
|
|
if (ObjDesc->Method.InfoFlags & ACPI_METHOD_INTERNAL_ONLY)
|
|
{
|
|
Status = ObjDesc->Method.Dispatch.Implementation (NextWalkState);
|
|
if (Status == AE_OK)
|
|
{
|
|
Status = AE_CTRL_TERMINATE;
|
|
}
|
|
}
|
|
|
|
return_ACPI_STATUS (Status);
|
|
|
|
|
|
Cleanup:
|
|
|
|
/* On error, we must terminate the method properly */
|
|
|
|
AcpiDsTerminateControlMethod (ObjDesc, NextWalkState);
|
|
AcpiDsDeleteWalkState (NextWalkState);
|
|
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiDsRestartControlMethod
|
|
*
|
|
* PARAMETERS: WalkState - State for preempted method (caller)
|
|
* ReturnDesc - Return value from the called method
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Restart a method that was preempted by another (nested) method
|
|
* invocation. Handle the return value (if any) from the callee.
|
|
*
|
|
******************************************************************************/
|
|
|
|
ACPI_STATUS
|
|
AcpiDsRestartControlMethod (
|
|
ACPI_WALK_STATE *WalkState,
|
|
ACPI_OPERAND_OBJECT *ReturnDesc)
|
|
{
|
|
ACPI_STATUS Status;
|
|
int SameAsImplicitReturn;
|
|
|
|
|
|
ACPI_FUNCTION_TRACE_PTR (DsRestartControlMethod, WalkState);
|
|
|
|
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
|
|
"****Restart [%4.4s] Op %p ReturnValueFromCallee %p\n",
|
|
AcpiUtGetNodeName (WalkState->MethodNode),
|
|
WalkState->MethodCallOp, ReturnDesc));
|
|
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
|
|
" ReturnFromThisMethodUsed?=%X ResStack %p Walk %p\n",
|
|
WalkState->ReturnUsed,
|
|
WalkState->Results, WalkState));
|
|
|
|
/* Did the called method return a value? */
|
|
|
|
if (ReturnDesc)
|
|
{
|
|
/* Is the implicit return object the same as the return desc? */
|
|
|
|
SameAsImplicitReturn = (WalkState->ImplicitReturnObj == ReturnDesc);
|
|
|
|
/* Are we actually going to use the return value? */
|
|
|
|
if (WalkState->ReturnUsed)
|
|
{
|
|
/* Save the return value from the previous method */
|
|
|
|
Status = AcpiDsResultPush (ReturnDesc, WalkState);
|
|
if (ACPI_FAILURE (Status))
|
|
{
|
|
AcpiUtRemoveReference (ReturnDesc);
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
|
|
/*
|
|
* Save as THIS method's return value in case it is returned
|
|
* immediately to yet another method
|
|
*/
|
|
WalkState->ReturnDesc = ReturnDesc;
|
|
}
|
|
|
|
/*
|
|
* The following code is the optional support for the so-called
|
|
* "implicit return". Some AML code assumes that the last value of the
|
|
* method is "implicitly" returned to the caller, in the absence of an
|
|
* explicit return value.
|
|
*
|
|
* Just save the last result of the method as the return value.
|
|
*
|
|
* NOTE: this is optional because the ASL language does not actually
|
|
* support this behavior.
|
|
*/
|
|
else if (!AcpiDsDoImplicitReturn (ReturnDesc, WalkState, FALSE) ||
|
|
SameAsImplicitReturn)
|
|
{
|
|
/*
|
|
* Delete the return value if it will not be used by the
|
|
* calling method or remove one reference if the explicit return
|
|
* is the same as the implicit return value.
|
|
*/
|
|
AcpiUtRemoveReference (ReturnDesc);
|
|
}
|
|
}
|
|
|
|
return_ACPI_STATUS (AE_OK);
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiDsTerminateControlMethod
|
|
*
|
|
* PARAMETERS: MethodDesc - Method object
|
|
* WalkState - State associated with the method
|
|
*
|
|
* RETURN: None
|
|
*
|
|
* DESCRIPTION: Terminate a control method. Delete everything that the method
|
|
* created, delete all locals and arguments, and delete the parse
|
|
* tree if requested.
|
|
*
|
|
* MUTEX: Interpreter is locked
|
|
*
|
|
******************************************************************************/
|
|
|
|
void
|
|
AcpiDsTerminateControlMethod (
|
|
ACPI_OPERAND_OBJECT *MethodDesc,
|
|
ACPI_WALK_STATE *WalkState)
|
|
{
|
|
|
|
ACPI_FUNCTION_TRACE_PTR (DsTerminateControlMethod, WalkState);
|
|
|
|
|
|
/* MethodDesc is required, WalkState is optional */
|
|
|
|
if (!MethodDesc)
|
|
{
|
|
return_VOID;
|
|
}
|
|
|
|
if (WalkState)
|
|
{
|
|
/* Delete all arguments and locals */
|
|
|
|
AcpiDsMethodDataDeleteAll (WalkState);
|
|
|
|
/*
|
|
* If method is serialized, release the mutex and restore the
|
|
* current sync level for this thread
|
|
*/
|
|
if (MethodDesc->Method.Mutex)
|
|
{
|
|
/* Acquisition Depth handles recursive calls */
|
|
|
|
MethodDesc->Method.Mutex->Mutex.AcquisitionDepth--;
|
|
if (!MethodDesc->Method.Mutex->Mutex.AcquisitionDepth)
|
|
{
|
|
WalkState->Thread->CurrentSyncLevel =
|
|
MethodDesc->Method.Mutex->Mutex.OriginalSyncLevel;
|
|
|
|
AcpiOsReleaseMutex (
|
|
MethodDesc->Method.Mutex->Mutex.OsMutex);
|
|
MethodDesc->Method.Mutex->Mutex.ThreadId = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Delete any namespace objects created anywhere within the
|
|
* namespace by the execution of this method. Unless:
|
|
* 1) This method is a module-level executable code method, in which
|
|
* case we want make the objects permanent.
|
|
* 2) There are other threads executing the method, in which case we
|
|
* will wait until the last thread has completed.
|
|
*/
|
|
if (!(MethodDesc->Method.InfoFlags & ACPI_METHOD_MODULE_LEVEL) &&
|
|
(MethodDesc->Method.ThreadCount == 1))
|
|
{
|
|
/* Delete any direct children of (created by) this method */
|
|
|
|
AcpiNsDeleteNamespaceSubtree (WalkState->MethodNode);
|
|
|
|
/*
|
|
* Delete any objects that were created by this method
|
|
* elsewhere in the namespace (if any were created).
|
|
* Use of the ACPI_METHOD_MODIFIED_NAMESPACE optimizes the
|
|
* deletion such that we don't have to perform an entire
|
|
* namespace walk for every control method execution.
|
|
*/
|
|
if (MethodDesc->Method.InfoFlags & ACPI_METHOD_MODIFIED_NAMESPACE)
|
|
{
|
|
AcpiNsDeleteNamespaceByOwner (MethodDesc->Method.OwnerId);
|
|
MethodDesc->Method.InfoFlags &=
|
|
~ACPI_METHOD_MODIFIED_NAMESPACE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Decrement the thread count on the method */
|
|
|
|
if (MethodDesc->Method.ThreadCount)
|
|
{
|
|
MethodDesc->Method.ThreadCount--;
|
|
}
|
|
else
|
|
{
|
|
ACPI_ERROR ((AE_INFO,
|
|
"Invalid zero thread count in method"));
|
|
}
|
|
|
|
/* Are there any other threads currently executing this method? */
|
|
|
|
if (MethodDesc->Method.ThreadCount)
|
|
{
|
|
/*
|
|
* Additional threads. Do not release the OwnerId in this case,
|
|
* we immediately reuse it for the next thread executing this method
|
|
*/
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
|
|
"*** Completed execution of one thread, %u threads remaining\n",
|
|
MethodDesc->Method.ThreadCount));
|
|
}
|
|
else
|
|
{
|
|
/* This is the only executing thread for this method */
|
|
|
|
/*
|
|
* Support to dynamically change a method from NotSerialized to
|
|
* Serialized if it appears that the method is incorrectly written and
|
|
* does not support multiple thread execution. The best example of this
|
|
* is if such a method creates namespace objects and blocks. A second
|
|
* thread will fail with an AE_ALREADY_EXISTS exception.
|
|
*
|
|
* This code is here because we must wait until the last thread exits
|
|
* before marking the method as serialized.
|
|
*/
|
|
if (MethodDesc->Method.InfoFlags & ACPI_METHOD_SERIALIZED_PENDING)
|
|
{
|
|
if (WalkState)
|
|
{
|
|
ACPI_INFO ((
|
|
"Marking method %4.4s as Serialized "
|
|
"because of AE_ALREADY_EXISTS error",
|
|
WalkState->MethodNode->Name.Ascii));
|
|
}
|
|
|
|
/*
|
|
* Method tried to create an object twice and was marked as
|
|
* "pending serialized". The probable cause is that the method
|
|
* cannot handle reentrancy.
|
|
*
|
|
* The method was created as NotSerialized, but it tried to create
|
|
* a named object and then blocked, causing the second thread
|
|
* entrance to begin and then fail. Workaround this problem by
|
|
* marking the method permanently as Serialized when the last
|
|
* thread exits here.
|
|
*/
|
|
MethodDesc->Method.InfoFlags &=
|
|
~ACPI_METHOD_SERIALIZED_PENDING;
|
|
|
|
MethodDesc->Method.InfoFlags |=
|
|
(ACPI_METHOD_SERIALIZED | ACPI_METHOD_IGNORE_SYNC_LEVEL);
|
|
MethodDesc->Method.SyncLevel = 0;
|
|
}
|
|
|
|
/* No more threads, we can free the OwnerId */
|
|
|
|
if (!(MethodDesc->Method.InfoFlags & ACPI_METHOD_MODULE_LEVEL))
|
|
{
|
|
AcpiUtReleaseOwnerId (&MethodDesc->Method.OwnerId);
|
|
}
|
|
}
|
|
|
|
AcpiExStopTraceMethod ((ACPI_NAMESPACE_NODE *) MethodDesc->Method.Node,
|
|
MethodDesc, WalkState);
|
|
|
|
return_VOID;
|
|
}
|