f-stack/freebsd/arm64/nvidia/tegra210/tegra210_clk_pll.c

1495 lines
37 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright 2020 Michal Meloun <mmel@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <machine/bus.h>
#include <dev/extres/clk/clk_div.h>
#include <dev/extres/clk/clk_fixed.h>
#include <dev/extres/clk/clk_gate.h>
#include <dev/extres/clk/clk_mux.h>
#include <dt-bindings/clock/tegra210-car.h>
#include "tegra210_car.h"
#if 0
#define dprintf(...) printf(__VA_ARGS__)
#else
#define dprintf(...)
#endif
/* All PLLs. */
enum pll_type {
PLL_M,
PLL_MB,
PLL_X,
PLL_C,
PLL_C2,
PLL_C3,
PLL_C4,
PLL_P,
PLL_A,
PLL_A1,
PLL_U,
PLL_D,
PLL_D2,
PLL_DP,
PLL_E,
PLL_REFE};
/* Flags for PLLs */
#define PLL_FLAG_PDIV_POWER2 0x01 /* P Divider is 2^n */
#define PLL_FLAG_VCO_OUT 0x02 /* Output VCO directly */
#define PLL_FLAG_HAVE_SDM 0x04 /* Have SDM implemented */
#define PLL_FLAG_HAVE_SDA 0x04 /* Have SDA implemented */
/* Common base register bits. */
#define PLL_BASE_BYPASS (1U << 31)
#define PLL_BASE_ENABLE (1 << 30)
#define PLL_BASE_REFDISABLE (1 << 29)
#define PLL_BASE_LOCK (1 << 27)
#define PLLREFE_MISC_LOCK (1 << 27)
#define PLL_MISC_LOCK_ENABLE (1 << 18)
#define PLLM_LOCK_ENABLE (1 << 4)
#define PLLMB_LOCK_ENABLE (1 << 16)
#define PLLC_LOCK_ENABLE (1 << 24)
#define PLLC4_LOCK_ENABLE (1 << 30)
#define PLLA_LOCK_ENABLE (1 << 28)
#define PLLD2_LOCK_ENABLE (1 << 30)
#define PLLU_LOCK_ENABLE (1 << 29)
#define PLLREFE_LOCK_ENABLE (1 << 30)
#define PLLPD_LOCK_ENABLE (1 << 30)
#define PLLE_LOCK_ENABLE (1 << 9)
#define PLLM_IDDQ_BIT 5
#define PLLMB_IDDQ_BIT 17
#define PLLC_IDDQ_BIT 27
#define PLLC4_IDDQ_BIT 18
#define PLLP_IDDQ_BIT 3
#define PLLA_IDDQ_BIT 25
#define PLLA1_IDDQ_BIT 27
#define PLLU_IDDQ_BIT 31
#define PLLD_IDDQ_BIT 20
#define PLLD2_IDDQ_BIT 18
#define PLLX_IDDQ_BIT 3
#define PLLREFE_IDDQ_BIT 24
#define PLLDP_IDDQ_BIT 18
#define PLL_LOCK_TIMEOUT 5000
/* Post divider <-> register value mapping. */
struct pdiv_table {
uint32_t divider; /* real divider */
uint32_t value; /* register value */
};
/* Bits definition of M, N and P fields. */
struct mnp_bits {
uint32_t m_width;
uint32_t n_width;
uint32_t p_width;
uint32_t m_shift;
uint32_t n_shift;
uint32_t p_shift;
};
struct clk_pll_def {
struct clknode_init_def clkdef;
enum pll_type type;
uint32_t base_reg;
uint32_t misc_reg;
uint32_t lock_enable;
uint32_t iddq_reg;
uint32_t iddq_mask;
uint32_t flags;
struct pdiv_table *pdiv_table;
struct mnp_bits mnp_bits;
};
#define PLIST(x) static const char *x[]
#define PLL(_id, cname, pname) \
.clkdef.id = _id, \
.clkdef.name = cname, \
.clkdef.parent_names = (const char *[]){pname}, \
.clkdef.parent_cnt = 1, \
.clkdef.flags = CLK_NODE_STATIC_STRINGS
/* multiplexer for pll sources. */
#define MUX(_id, cname, plists, o, s, w) \
{ \
.clkdef.id = _id, \
.clkdef.name = cname, \
.clkdef.parent_names = plists, \
.clkdef.parent_cnt = nitems(plists), \
.clkdef.flags = CLK_NODE_STATIC_STRINGS, \
.offset = o, \
.shift = s, \
.width = w, \
}
/* Fractional divider (7.1) for PLL branch. */
#define DIV7_1(_id, cname, plist, o, s) \
{ \
.clkdef.id = _id, \
.clkdef.name = cname, \
.clkdef.parent_names = (const char *[]){plist}, \
.clkdef.parent_cnt = 1, \
.clkdef.flags = CLK_NODE_STATIC_STRINGS, \
.offset = o, \
.i_shift = (s) + 1, \
.i_width = 7, \
.f_shift = s, \
.f_width = 1, \
}
/* P divider (2^n). for PLL branch. */
#define DIV5_E(_id, cname, plist, o, s) \
{ \
.clkdef.id = _id, \
.clkdef.name = cname, \
.clkdef.parent_names = (const char *[]){plist}, \
.clkdef.parent_cnt = 1, \
.clkdef.flags = CLK_NODE_STATIC_STRINGS, \
.offset = o, \
.i_shift = s, \
.i_width = 5, \
}
/* P divider (2^n). for PLL branch. */
#define DIV_TB(_id, cname, plist, o, s, n, table) \
{ \
.clkdef.id = _id, \
.clkdef.name = cname, \
.clkdef.parent_names = (const char *[]){plist}, \
.clkdef.parent_cnt = 1, \
.clkdef.flags = CLK_NODE_STATIC_STRINGS, \
.div_flags = CLK_DIV_WITH_TABLE | CLK_DIV_ZERO_BASED, \
.offset = o, \
.i_shift = s, \
.i_width = n, \
.div_table = table, \
}
/* Standard gate. */
#define GATE(_id, cname, plist, o, s) \
{ \
.clkdef.id = _id, \
.clkdef.name = cname, \
.clkdef.parent_names = (const char *[]){plist}, \
.clkdef.parent_cnt = 1, \
.clkdef.flags = CLK_NODE_STATIC_STRINGS, \
.offset = o, \
.shift = s, \
.mask = 1, \
.on_value = 1, \
.off_value = 0, \
}
/* Gate for PLL branch. */
#define GATE_PLL(_id, cname, plist, o, s) \
{ \
.clkdef.id = _id, \
.clkdef.name = cname, \
.clkdef.parent_names = (const char *[]){plist}, \
.clkdef.parent_cnt = 1, \
.clkdef.flags = CLK_NODE_STATIC_STRINGS, \
.offset = o, \
.shift = s, \
.mask = 3, \
.on_value = 3, \
.off_value = 0, \
}
/* Fixed rate multipier/divider. */
#define FACT(_id, cname, pname, _mult, _div) \
{ \
.clkdef.id = _id, \
.clkdef.name = cname, \
.clkdef.parent_names = (const char *[]){pname}, \
.clkdef.parent_cnt = 1, \
.clkdef.flags = CLK_NODE_STATIC_STRINGS, \
.mult = _mult, \
.div = _div, \
}
static struct pdiv_table qlin_map[] = {
{ 1, 0},
{ 2, 1},
{ 3, 2},
{ 4, 3},
{ 5, 4},
{ 6, 5},
{ 8, 6},
{ 9, 7},
{10, 8},
{12, 9},
{15, 10},
{16, 11},
{18, 12},
{20, 13},
{24, 14},
{30, 15},
{32, 16},
{ 0, 0},
};
static struct clk_pll_def pll_clks[] = {
/* PLLM: 880 MHz Clock source for EMC 2x clock */
{
PLL(TEGRA210_CLK_PLL_M, "pllM_out0", "osc"),
.type = PLL_M,
.base_reg = PLLM_BASE,
.misc_reg = PLLM_MISC2,
.lock_enable = PLLM_LOCK_ENABLE,
.iddq_reg = PLLM_MISC2,
.iddq_mask = 1 << PLLM_IDDQ_BIT,
.pdiv_table = qlin_map,
.mnp_bits = {8, 8, 5, 0, 8, 20},
},
/* PLLMB: 880 MHz Clock source for EMC 2x clock */
{
PLL(TEGRA210_CLK_PLL_M, "pllMB_out0", "osc"),
.type = PLL_MB,
.base_reg = PLLMB_BASE,
.misc_reg = PLLMB_MISC1,
.lock_enable = PLLMB_LOCK_ENABLE,
.iddq_reg = PLLMB_MISC1,
.iddq_mask = 1 << PLLMB_IDDQ_BIT,
.pdiv_table = qlin_map,
.mnp_bits = {8, 8, 5, 0, 8, 20},
},
/* PLLX: 1GHz Clock source for the fast CPU cluster and the shadow CPU */
{
PLL(TEGRA210_CLK_PLL_X, "pllX_out0", "osc_div_clk"),
.type = PLL_X,
.base_reg = PLLX_BASE,
.misc_reg = PLLX_MISC,
.lock_enable = PLL_MISC_LOCK_ENABLE,
.iddq_reg = PLLX_MISC_3,
.iddq_mask = 1 << PLLX_IDDQ_BIT,
.pdiv_table = qlin_map,
.mnp_bits = {8, 8, 5, 0, 8, 20},
},
/* PLLC: 510 MHz Clock source for camera use */
{
PLL(TEGRA210_CLK_PLL_C, "pllC_out0", "osc_div_clk"),
.type = PLL_C,
.base_reg = PLLC_BASE,
.misc_reg = PLLC_MISC_0,
.iddq_reg = PLLC_MISC_1,
.iddq_mask = 1 << PLLC_IDDQ_BIT,
.pdiv_table = qlin_map,
.mnp_bits = {8, 8, 5, 0, 10, 20},
},
/* PLLC2: 510 MHz Clock source for SE, VIC, TSECB, NVJPG scaling */
{
PLL(TEGRA210_CLK_PLL_C2, "pllC2_out0", "osc_div_clk"),
.type = PLL_C2,
.base_reg = PLLC2_BASE,
.misc_reg = PLLC2_MISC_0,
.iddq_reg = PLLC2_MISC_1,
.iddq_mask = 1 << PLLC_IDDQ_BIT,
.pdiv_table = qlin_map,
.mnp_bits = {8, 8, 5, 0, 10, 20},
},
/* PLLC3: 510 MHz Clock source for NVENC, NVDEC scaling */
{
PLL(TEGRA210_CLK_PLL_C3, "pllC3_out0", "osc_div_clk"),
.type = PLL_C3,
.base_reg = PLLC3_BASE,
.misc_reg = PLLC3_MISC_0,
.lock_enable = PLL_MISC_LOCK_ENABLE,
.iddq_reg = PLLC3_MISC_1,
.iddq_mask = 1 << PLLC_IDDQ_BIT,
.mnp_bits = {8, 8, 5, 0, 10, 20},
},
/* PLLC4: 600 MHz Clock source for SD/eMMC ans system busses */
{
PLL(TEGRA210_CLK_PLL_C4, "pllC4", "pllC4_src"),
.type = PLL_C4,
.flags = PLL_FLAG_VCO_OUT,
.base_reg = PLLC4_BASE,
.misc_reg = PLLC4_MISC,
.lock_enable = PLLC4_LOCK_ENABLE,
.iddq_reg = PLLC4_BASE,
.iddq_mask = 1 << PLLC4_IDDQ_BIT,
.pdiv_table = qlin_map,
.mnp_bits = {8, 8, 5, 0, 8, 19},
},
/* PLLP: 408 MHz Clock source for most peripherals */
{
/*
* VCO is directly exposed as pllP_out0, P div is used for
* pllP_out2
*/
PLL(TEGRA210_CLK_PLL_P, "pllP_out0", "osc_div_clk"),
.type = PLL_P,
.flags = PLL_FLAG_VCO_OUT,
.base_reg = PLLP_BASE,
.misc_reg = PLLP_MISC,
.lock_enable = PLL_MISC_LOCK_ENABLE,
.iddq_reg = PLLP_MISC,
.iddq_mask = 1 << PLLA_IDDQ_BIT,
.mnp_bits = {8, 8, 5, 0, 10, 20},
},
/* PLLA: Audio clock for precise codec sampling */
{
PLL(TEGRA210_CLK_PLL_A, "pllA", "osc_div_clk"),
.type = PLL_A,
.base_reg = PLLA_BASE,
.misc_reg = PLLA_MISC,
.lock_enable = PLLA_LOCK_ENABLE,
.iddq_reg = PLLA_BASE,
.iddq_mask = 1 << PLLA_IDDQ_BIT,
.pdiv_table = qlin_map,
.mnp_bits = {8, 8, 5, 0, 8, 20},
},
/* PLLA1: Audio clock for ADSP */
{
PLL(TEGRA210_CLK_PLL_A1, "pllA1_out0", "osc_div_clk"),
.type = PLL_A1,
.base_reg = PLLA1_BASE,
.misc_reg = PLLA1_MISC_1,
.iddq_reg = PLLA1_MISC_1,
.iddq_mask = 1 << PLLA_IDDQ_BIT,
.pdiv_table = qlin_map,
.mnp_bits = {8, 8, 5, 0, 8, 20},
},
/* PLLU: 480 MHz Clock source for USB PHY, provides 12/60/480 MHz */
{
PLL(TEGRA210_CLK_PLL_U, "pllU", "osc_div_clk"),
.type = PLL_U,
.flags = PLL_FLAG_VCO_OUT | PLL_FLAG_HAVE_SDA,
.base_reg = PLLU_BASE,
.misc_reg = PLLU_MISC,
.lock_enable = PLLU_LOCK_ENABLE,
.iddq_reg = PLLU_MISC,
.iddq_mask = 1 << PLLU_IDDQ_BIT,
.pdiv_table = qlin_map,
.mnp_bits = {8, 8, 5, 0, 8, 16},
},
/* PLLD: 594 MHz Clock sources for the DSI and display subsystem */
{
PLL(TEGRA210_CLK_PLL_D, "pllD_out", "osc_div_clk"),
.type = PLL_D,
.flags = PLL_FLAG_PDIV_POWER2,
.base_reg = PLLD_BASE,
.misc_reg = PLLD_MISC,
.lock_enable = PLL_MISC_LOCK_ENABLE,
.iddq_reg = PLLA1_MISC_1,
.iddq_mask = 1 << PLLA_IDDQ_BIT,
.mnp_bits = {8, 8, 3, 0, 11, 20},
},
/* PLLD2: 594 MHz Clock sources for the DSI and display subsystem */
{
PLL(TEGRA210_CLK_PLL_D2, "pllD2_out", "pllD2_src"),
.type = PLL_D2,
.flags = PLL_FLAG_HAVE_SDM,
.base_reg = PLLD2_BASE,
.misc_reg = PLLD2_MISC,
.lock_enable = PLLD2_LOCK_ENABLE,
.iddq_reg = PLLD2_BASE,
.iddq_mask = 1 << PLLD_IDDQ_BIT,
.pdiv_table = qlin_map,
.mnp_bits = {8, 8, 5, 0, 8, 19},
},
/* PLLREFE: 624 Mhz*/
{
PLL(0, "pllREFE", "osc_div_clk"),
.type = PLL_REFE,
.flags = PLL_FLAG_VCO_OUT,
.base_reg = PLLREFE_BASE,
.misc_reg = PLLREFE_MISC,
.lock_enable = PLLREFE_LOCK_ENABLE,
.iddq_reg = PLLREFE_MISC,
.iddq_mask = 1 << PLLREFE_IDDQ_BIT,
.pdiv_table = qlin_map,
.mnp_bits = {8, 8, 5, 0, 8, 16},
},
/* PLLE: 100 MHz reference clock for PCIe/SATA/USB 3.0 (spread spectrum) */
{
PLL(TEGRA210_CLK_PLL_E, "pllE_out0", "pllE_src"),
.type = PLL_E,
.base_reg = PLLE_BASE,
.misc_reg = PLLE_MISC,
.lock_enable = PLLE_LOCK_ENABLE,
.pdiv_table = qlin_map,
.mnp_bits = {8, 8, 5, 0, 8, 24},
},
/* PLLDP: 270 MHz Clock source fordisplay SOR (spread spectrum) */
{
PLL(0, "pllDP_out0", "pllDP_src"),
.type = PLL_DP,
.flags = PLL_FLAG_HAVE_SDM,
.base_reg = PLLDP_BASE,
.misc_reg = PLLDP_MISC,
.lock_enable = PLLPD_LOCK_ENABLE,
.iddq_reg = PLLDP_BASE,
.iddq_mask = 1 << PLLDP_IDDQ_BIT,
.pdiv_table = qlin_map,
.mnp_bits = {8, 8, 5, 0, 8, 19},
},
};
/* Fixed rate dividers. */
static struct clk_fixed_def tegra210_pll_fdivs[] = {
FACT(0, "pllP_UD", "pllP_out0", 1, 1),
FACT(0, "pllC_UD", "pllC_out0", 1, 1),
FACT(0, "pllD_UD", "pllD_out0", 1, 1),
FACT(0, "pllM_UD", "pllM_out0", 1, 1),
FACT(0, "pllMB_UD", "pllMB_out0", 1, 1),
FACT(TEGRA210_CLK_PLL_D_OUT0, "pllD_out0", "pllD_out", 1, 2),
FACT(0, "pllC4_out1", "pllC4", 1, 3),
FACT(0, "pllC4_out2", "pllC4", 1, 5),
FACT(0, "pllD2_out0", "pllD2_out", 1, 2),
/* Aliases used in super mux. */
FACT(0, "pllX_out0_alias", "pllX_out0", 1, 1),
FACT(0, "dfllCPU_out_alias", "dfllCPU_out", 1, 1),
};
/* MUXes for PLL sources. */
PLIST(mux_pll_srcs) = {"osc_div_clk", NULL, "pllP_out0", NULL}; /* FIXME */
PLIST(mux_plle_src1) = {"osc_div_clk", "pllP_out0"};
PLIST(mux_plle_src) = {"pllE_src1", "pllREFE_out0"};
static struct clk_mux_def tegra210_pll_sources[] = {
/* Core clocks. */
MUX(0, "pllD2_src", mux_pll_srcs, PLLD2_BASE, 25, 2),
MUX(0, "pllDP_src", mux_pll_srcs, PLLDP_BASE, 25, 2),
MUX(0, "pllC4_src", mux_pll_srcs, PLLC4_BASE, 25, 2),
MUX(0, "pllE_src1", mux_plle_src1, PLLE_AUX, 2, 1),
MUX(0, "pllE_src", mux_plle_src, PLLE_AUX, 28, 1),
};
/* Gates for PLL branches. */
static struct clk_gate_def tegra210_pll_gates[] = {
/* Core clocks. */
GATE_PLL(0, "pllC_out1", "pllC_out1_div", PLLC_OUT, 0),
GATE_PLL(0, "pllP_out1", "pllP_out1_div", PLLP_OUTA, 0),
GATE_PLL(0, "pllP_out3", "pllP_out3_div", PLLP_OUTB, 0),
GATE_PLL(TEGRA210_CLK_PLL_P_OUT4, "pllP_out4", "pllP_out4_div", PLLP_OUTB, 16),
GATE_PLL(0, "pllP_out5", "pllP_out5_div", PLLP_OUTC, 16),
GATE_PLL(0, "pllU_out1", "pllU_out1_div", PLLU_OUTA, 0),
GATE_PLL(0, "pllU_out2", "pllU_out2_div", PLLU_OUTA, 16),
GATE(0, "pllU_480", "pllU", PLLU_BASE, 22),
GATE(0, "pllU_60", "pllU_out2", PLLU_BASE, 23),
GATE(0, "pllU_48", "pllU_out1", PLLU_BASE, 25),
GATE_PLL(0, "pllREFE_out1", "pllREFE_out1_div", PLLREFE_OUT, 0),
GATE_PLL(0, "pllC4_out3", "pllC4_out3_div", PLLC4_OUT, 0),
GATE_PLL(0, "pllA_out0", "pllA_out0_div", PLLA_OUT, 0),
};
struct clk_div_table tegra210_pll_pdiv_tbl[] = {
/* value , divider */
{ 0, 1 },
{ 1, 2 },
{ 2, 3 },
{ 3, 4 },
{ 4, 5 },
{ 5, 6 },
{ 6, 8 },
{ 7, 10 },
{ 8, 12 },
{ 9, 16 },
{10, 12 },
{11, 16 },
{12, 20 },
{13, 24 },
{14, 32 },
{ 0, 0 },
};
/* Dividers for PLL branches. */
static struct clk_div_def tegra210_pll_divs[] = {
/* Core clocks. */
DIV7_1(0, "pllC_out1_div", "pllC_out0", PLLC_OUT, 8),
DIV7_1(0, "pllP_out1_div", "pllP_out0", PLLP_OUTA, 8),
DIV_TB(0, "pllP_out2", "pllP_out0", PLLP_BASE, 20, 5, tegra210_pll_pdiv_tbl),
DIV7_1(0, "pllP_out3_div", "pllP_out0", PLLP_OUTB, 8),
DIV7_1(0, "pllP_out4_div", "pllP_out0", PLLP_OUTB, 24),
DIV7_1(0, "pllP_out5_div", "pllP_out0", PLLP_OUTC, 24),
DIV_TB(0, "pllU_out0", "pllU", PLLU_BASE, 16, 5, tegra210_pll_pdiv_tbl),
DIV7_1(0, "pllU_out1_div", "pllU_out0", PLLU_OUTA, 8),
DIV7_1(0, "pllU_out2_div", "pllU_out0", PLLU_OUTA, 24),
DIV_TB(0, "pllREFE_out0", "pllREFE", PLLREFE_BASE, 16, 5, tegra210_pll_pdiv_tbl),
DIV7_1(0, "pllREFE_out1_div", "pllREFE", PLLREFE_OUT, 8),
DIV_TB(TEGRA210_CLK_PLL_C4_OUT0,
"pllC4_out0", "pllC4", PLLC4_BASE, 19, 5, tegra210_pll_pdiv_tbl),
DIV7_1(0, "pllC4_out3_div", "pllC4_out0", PLLC4_OUT, 8),
DIV7_1(0, "pllA_out0_div", "pllA", PLLA_OUT, 8),
};
static int tegra210_pll_init(struct clknode *clk, device_t dev);
static int tegra210_pll_set_gate(struct clknode *clk, bool enable);
static int tegra210_pll_recalc(struct clknode *clk, uint64_t *freq);
static int tegra210_pll_set_freq(struct clknode *clknode, uint64_t fin,
uint64_t *fout, int flags, int *stop);
struct pll_sc {
device_t clkdev;
enum pll_type type;
uint32_t base_reg;
uint32_t misc_reg;
uint32_t lock_enable;
uint32_t iddq_reg;
uint32_t iddq_mask;
uint32_t flags;
struct pdiv_table *pdiv_table;
struct mnp_bits mnp_bits;
};
static clknode_method_t tegra210_pll_methods[] = {
/* Device interface */
CLKNODEMETHOD(clknode_init, tegra210_pll_init),
CLKNODEMETHOD(clknode_set_gate, tegra210_pll_set_gate),
CLKNODEMETHOD(clknode_recalc_freq, tegra210_pll_recalc),
CLKNODEMETHOD(clknode_set_freq, tegra210_pll_set_freq),
CLKNODEMETHOD_END
};
DEFINE_CLASS_1(tegra210_pll, tegra210_pll_class, tegra210_pll_methods,
sizeof(struct pll_sc), clknode_class);
static int
pll_enable(struct pll_sc *sc)
{
uint32_t reg;
RD4(sc, sc->base_reg, &reg);
if (sc->type != PLL_E)
reg &= ~PLL_BASE_BYPASS;
reg |= PLL_BASE_ENABLE;
WR4(sc, sc->base_reg, reg);
return (0);
}
static int
pll_disable(struct pll_sc *sc)
{
uint32_t reg;
RD4(sc, sc->base_reg, &reg);
if (sc->type != PLL_E)
reg |= PLL_BASE_BYPASS;
reg &= ~PLL_BASE_ENABLE;
WR4(sc, sc->base_reg, reg);
return (0);
}
static uint32_t
pdiv_to_reg(struct pll_sc *sc, uint32_t p_div)
{
struct pdiv_table *tbl;
tbl = sc->pdiv_table;
if (tbl == NULL) {
if (sc->flags & PLL_FLAG_PDIV_POWER2)
return (ffs(p_div) - 1);
else
return (p_div);
}
while (tbl->divider != 0) {
if (p_div <= tbl->divider)
return (tbl->value);
tbl++;
}
return (0xFFFFFFFF);
}
static uint32_t
reg_to_pdiv(struct pll_sc *sc, uint32_t reg)
{
struct pdiv_table *tbl;
tbl = sc->pdiv_table;
if (tbl == NULL) {
if (sc->flags & PLL_FLAG_PDIV_POWER2)
return (1 << reg);
else
return (reg == 0 ? 1: reg);
}
while (tbl->divider) {
if (reg == tbl->value)
return (tbl->divider);
tbl++;
}
return (0);
}
static uint32_t
get_masked(uint32_t val, uint32_t shift, uint32_t width)
{
return ((val >> shift) & ((1 << width) - 1));
}
static uint32_t
set_masked(uint32_t val, uint32_t v, uint32_t shift, uint32_t width)
{
val &= ~(((1 << width) - 1) << shift);
val |= (v & ((1 << width) - 1)) << shift;
return (val);
}
static void
get_divisors(struct pll_sc *sc, uint32_t *m, uint32_t *n, uint32_t *p)
{
uint32_t val;
struct mnp_bits *mnp_bits;
mnp_bits = &sc->mnp_bits;
RD4(sc, sc->base_reg, &val);
*m = get_masked(val, mnp_bits->m_shift, mnp_bits->m_width);
*n = get_masked(val, mnp_bits->n_shift, mnp_bits->n_width);
*p = get_masked(val, mnp_bits->p_shift, mnp_bits->p_width);
}
static uint32_t
set_divisors(struct pll_sc *sc, uint32_t val, uint32_t m, uint32_t n,
uint32_t p)
{
struct mnp_bits *mnp_bits;
mnp_bits = &sc->mnp_bits;
val = set_masked(val, m, mnp_bits->m_shift, mnp_bits->m_width);
val = set_masked(val, n, mnp_bits->n_shift, mnp_bits->n_width);
val = set_masked(val, p, mnp_bits->p_shift, mnp_bits->p_width);
return (val);
}
static bool
is_locked(struct pll_sc *sc)
{
uint32_t reg;
switch (sc->type) {
case PLL_REFE:
RD4(sc, sc->misc_reg, &reg);
reg &= PLLREFE_MISC_LOCK;
break;
case PLL_E:
RD4(sc, sc->misc_reg, &reg);
reg &= PLLE_MISC_LOCK;
break;
default:
RD4(sc, sc->base_reg, &reg);
reg &= PLL_BASE_LOCK;
break;
}
return (reg != 0);
}
static int
wait_for_lock(struct pll_sc *sc)
{
int i;
for (i = PLL_LOCK_TIMEOUT / 10; i > 0; i--) {
if (is_locked(sc))
break;
DELAY(10);
}
if (i <= 0) {
printf("PLL lock timeout\n");
return (ETIMEDOUT);
}
return (0);
}
static int
plle_enable(struct pll_sc *sc)
{
uint32_t reg;
int rv;
struct mnp_bits *mnp_bits;
uint32_t pll_m = 2;
uint32_t pll_n = 125;
uint32_t pll_cml = 14;
mnp_bits = &sc->mnp_bits;
/* Disable lock override. */
RD4(sc, sc->base_reg, &reg);
reg &= ~PLLE_BASE_LOCK_OVERRIDE;
WR4(sc, sc->base_reg, reg);
/* Enable SW control */
RD4(sc, PLLE_AUX, &reg);
reg |= PLLE_AUX_ENABLE_SWCTL;
reg &= ~PLLE_AUX_SEQ_ENABLE;
WR4(sc, PLLE_AUX, reg);
DELAY(10);
RD4(sc, sc->misc_reg, &reg);
reg |= PLLE_MISC_LOCK_ENABLE;
reg |= PLLE_MISC_IDDQ_SWCTL;
reg &= ~PLLE_MISC_IDDQ_OVERRIDE_VALUE;
reg |= PLLE_MISC_PTS;
reg &= ~PLLE_MISC_VREG_BG_CTRL(~0);
reg &= ~PLLE_MISC_VREG_CTRL(~0);
WR4(sc, sc->misc_reg, reg);
DELAY(10);
RD4(sc, PLLE_SS_CNTL, &reg);
reg |= PLLE_SS_CNTL_DISABLE;
WR4(sc, PLLE_SS_CNTL, reg);
RD4(sc, sc->base_reg, &reg);
reg = set_divisors(sc, reg, pll_m, pll_n, pll_cml);
WR4(sc, sc->base_reg, reg);
DELAY(10);
pll_enable(sc);
rv = wait_for_lock(sc);
if (rv != 0)
return (rv);
RD4(sc, PLLE_SS_CNTL, &reg);
reg &= ~PLLE_SS_CNTL_SSCINCINTRV(~0);
reg &= ~PLLE_SS_CNTL_SSCINC(~0);
reg &= ~PLLE_SS_CNTL_SSCINVERT;
reg &= ~PLLE_SS_CNTL_SSCCENTER;
reg &= ~PLLE_SS_CNTL_SSCMAX(~0);
reg |= PLLE_SS_CNTL_SSCINCINTRV(0x23);
reg |= PLLE_SS_CNTL_SSCINC(0x1);
reg |= PLLE_SS_CNTL_SSCMAX(0x21);
WR4(sc, PLLE_SS_CNTL, reg);
reg &= ~PLLE_SS_CNTL_SSCBYP;
reg &= ~PLLE_SS_CNTL_BYPASS_SS;
WR4(sc, PLLE_SS_CNTL, reg);
DELAY(10);
reg &= ~PLLE_SS_CNTL_INTERP_RESET;
WR4(sc, PLLE_SS_CNTL, reg);
DELAY(10);
/* HW control of brick pll. */
RD4(sc, sc->misc_reg, &reg);
reg &= ~PLLE_MISC_IDDQ_SWCTL;
WR4(sc, sc->misc_reg, reg);
RD4(sc, PLLE_AUX, &reg);
reg |= PLLE_AUX_USE_LOCKDET;
reg |= PLLE_AUX_SS_SEQ_INCLUDE;
reg &= ~PLLE_AUX_ENABLE_SWCTL;
reg &= ~PLLE_AUX_SS_SWCTL;
WR4(sc, PLLE_AUX, reg);
reg |= PLLE_AUX_SEQ_START_STATE;
DELAY(10);
reg |= PLLE_AUX_SEQ_ENABLE;
WR4(sc, PLLE_AUX, reg);
/* Enable and start XUSBIO PLL HW control*/
RD4(sc, XUSBIO_PLL_CFG0, &reg);
reg &= ~XUSBIO_PLL_CFG0_CLK_ENABLE_SWCTL;
reg &= ~XUSBIO_PLL_CFG0_PADPLL_RESET_SWCTL;
reg |= XUSBIO_PLL_CFG0_PADPLL_USE_LOCKDET;
reg |= XUSBIO_PLL_CFG0_PADPLL_SLEEP_IDDQ;
reg &= ~XUSBIO_PLL_CFG0_SEQ_ENABLE;
WR4(sc, XUSBIO_PLL_CFG0, reg);
DELAY(10);
reg |= XUSBIO_PLL_CFG0_SEQ_ENABLE;
WR4(sc, XUSBIO_PLL_CFG0, reg);
/* Enable and start SATA PLL HW control */
RD4(sc, SATA_PLL_CFG0, &reg);
reg &= ~SATA_PLL_CFG0_PADPLL_RESET_SWCTL;
reg &= ~SATA_PLL_CFG0_PADPLL_RESET_OVERRIDE_VALUE;
reg |= SATA_PLL_CFG0_PADPLL_USE_LOCKDET;
reg |= SATA_PLL_CFG0_PADPLL_SLEEP_IDDQ;
reg &= ~SATA_PLL_CFG0_SEQ_IN_SWCTL;
reg &= ~SATA_PLL_CFG0_SEQ_RESET_INPUT_VALUE;
reg &= ~SATA_PLL_CFG0_SEQ_LANE_PD_INPUT_VALUE;
reg &= ~SATA_PLL_CFG0_SEQ_PADPLL_PD_INPUT_VALUE;
reg &= ~SATA_PLL_CFG0_SEQ_ENABLE;
WR4(sc, SATA_PLL_CFG0, reg);
DELAY(10);
reg |= SATA_PLL_CFG0_SEQ_ENABLE;
WR4(sc, SATA_PLL_CFG0, reg);
/* Enable HW control of PCIe PLL. */
RD4(sc, PCIE_PLL_CFG, &reg);
reg |= PCIE_PLL_CFG_SEQ_ENABLE;
WR4(sc, PCIE_PLL_CFG, reg);
return (0);
}
static int
tegra210_pll_set_gate(struct clknode *clknode, bool enable)
{
int rv;
struct pll_sc *sc;
sc = clknode_get_softc(clknode);
if (enable == 0) {
rv = pll_disable(sc);
return(rv);
}
if (sc->type == PLL_E)
rv = plle_enable(sc);
else
rv = pll_enable(sc);
return (rv);
}
static int
pll_set_std(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags,
uint32_t m, uint32_t n, uint32_t p)
{
uint32_t reg;
struct mnp_bits *mnp_bits;
int rv;
mnp_bits = &sc->mnp_bits;
if (m >= (1 << mnp_bits->m_width))
return (ERANGE);
if (n >= (1 << mnp_bits->n_width))
return (ERANGE);
if (pdiv_to_reg(sc, p) >= (1 << mnp_bits->p_width))
return (ERANGE);
if (flags & CLK_SET_DRYRUN) {
if (((flags & (CLK_SET_ROUND_UP | CLK_SET_ROUND_DOWN)) == 0) &&
(*fout != (((fin / m) * n) /p)))
return (ERANGE);
*fout = ((fin / m) * n) /p;
return (0);
}
pll_disable(sc);
/* take pll out of IDDQ */
if (sc->iddq_reg != 0)
MD4(sc, sc->iddq_reg, sc->iddq_mask, 0);
RD4(sc, sc->base_reg, &reg);
reg = set_masked(reg, m, mnp_bits->m_shift, mnp_bits->m_width);
reg = set_masked(reg, n, mnp_bits->n_shift, mnp_bits->n_width);
reg = set_masked(reg, pdiv_to_reg(sc, p), mnp_bits->p_shift,
mnp_bits->p_width);
WR4(sc, sc->base_reg, reg);
/* Enable PLL. */
RD4(sc, sc->base_reg, &reg);
reg |= PLL_BASE_ENABLE;
WR4(sc, sc->base_reg, reg);
/* Enable lock detection. */
RD4(sc, sc->misc_reg, &reg);
reg |= sc->lock_enable;
WR4(sc, sc->misc_reg, reg);
rv = wait_for_lock(sc);
if (rv != 0) {
/* Disable PLL */
RD4(sc, sc->base_reg, &reg);
reg &= ~PLL_BASE_ENABLE;
WR4(sc, sc->base_reg, reg);
return (rv);
}
RD4(sc, sc->misc_reg, &reg);
pll_enable(sc);
*fout = ((fin / m) * n) / p;
return 0;
}
static int
plla_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags)
{
uint32_t m, n, p;
p = 1;
m = 3;
n = (*fout * p * m + fin / 2)/ fin;
dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p);
return (pll_set_std(sc, fin, fout, flags, m, n, p));
}
static int
pllc_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags)
{
uint32_t m, n, p;
p = 2;
m = 3;
n = (*fout * p * m + fin / 2)/ fin;
dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p);
return (pll_set_std( sc, fin, fout, flags, m, n, p));
}
static int
pllc4_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags)
{
uint32_t m, n, p;
p = 1;
m = 4;
n = (*fout * p * m + fin / 2)/ fin;
dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p);
return (pll_set_std( sc, fin, fout, flags, m, n, p));
}
static int
plldp_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags)
{
uint32_t m, n, p;
p = 1;
m = 4;
n = (*fout * p * m + fin / 2)/ fin;
dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p);
return (pll_set_std( sc, fin, fout, flags, m, n, p));
}
/*
* PLLD2 is used as source for pixel clock for HDMI.
* We must be able to set it frequency very flexibly and
* precisely (within 5% tolerance limit allowed by HDMI specs).
*
* For this reason, it is necessary to search the full state space.
* Fortunately, thanks to early cycle terminations, performance
* is within acceptable limits.
*/
#define PLLD2_PFD_MIN 12000000 /* 12 MHz */
#define PLLD2_PFD_MAX 38400000 /* 38.4 MHz */
#define PLLD2_VCO_MIN 750000000 /* 750 MHz */
#define PLLD2_VCO_MAX 1500000000 /* 1.5 GHz */
static int
plld2_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags)
{
uint32_t m, n, p;
uint32_t best_m, best_n, best_p;
uint64_t vco, pfd;
int64_t err, best_err;
struct mnp_bits *mnp_bits;
struct pdiv_table *tbl;
int p_idx, rv;
mnp_bits = &sc->mnp_bits;
tbl = sc->pdiv_table;
best_err = INT64_MAX;
for (p_idx = 0; tbl[p_idx].divider != 0; p_idx++) {
p = tbl[p_idx].divider;
/* Check constraints */
vco = *fout * p;
if (vco < PLLD2_VCO_MIN)
continue;
if (vco > PLLD2_VCO_MAX)
break;
for (m = 1; m < (1 << mnp_bits->m_width); m++) {
n = (*fout * p * m + fin / 2) / fin;
/* Check constraints */
if (n == 0)
continue;
if (n >= (1 << mnp_bits->n_width))
break;
vco = (fin * n) / m;
if (vco > PLLD2_VCO_MAX || vco < PLLD2_VCO_MIN)
continue;
pfd = fin / m;
if (pfd > PLLD2_PFD_MAX || vco < PLLD2_PFD_MIN)
continue;
/* Constraints passed, save best result */
err = *fout - vco / p;
if (err < 0)
err = -err;
if (err < best_err) {
best_err = err;
best_p = p;
best_m = m;
best_n = n;
}
if (err == 0)
goto done;
}
}
done:
/*
* HDMI specification allows 5% pixel clock tolerance,
* we will by a slightly stricter
*/
if (best_err > ((*fout * 100) / 4))
return (ERANGE);
if (flags & CLK_SET_DRYRUN)
return (0);
rv = pll_set_std(sc, fin, fout, flags, best_m, best_n, best_p);
/* XXXX Panic for rv == ERANGE ? */
return (rv);
}
static int
pllrefe_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags)
{
uint32_t m, n, p;
m = 1;
p = 1;
n = *fout * p * m / fin;
dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p);
return (pll_set_std(sc, fin, fout, flags, m, n, p));
}
#define PLLX_PFD_MIN 12000000LL /* 12 MHz */
#define PLLX_PFD_MAX 38400000LL /* 38.4 MHz */
#define PLLX_VCO_MIN 900000000LL /* 0.9 GHz */
#define PLLX_VCO_MAX 3000000000LL /* 3 GHz */
static int
pllx_set_freq(struct pll_sc *sc, uint64_t fin, uint64_t *fout, int flags)
{
struct mnp_bits *mnp_bits;
uint32_t m, n, p;
uint32_t old_m, old_n, old_p;
uint32_t reg;
int i, rv;
mnp_bits = &sc->mnp_bits;
get_divisors(sc, &old_m, &old_n, &old_p);
old_p = reg_to_pdiv(sc, old_p);
/* Pre-divider is fixed, Compute post-divider */
m = old_m;
p = 1;
while ((*fout * p) < PLLX_VCO_MIN)
p++;
if ((*fout * p) > PLLX_VCO_MAX)
return (ERANGE);
n = (*fout * p * m + fin / 2) / fin;
dprintf("%s: m: %d, n: %d, p: %d\n", __func__, m, n, p);
if (m >= (1 << mnp_bits->m_width))
return (ERANGE);
if (n >= (1 << mnp_bits->n_width))
return (ERANGE);
if (pdiv_to_reg(sc, p) >= (1 << mnp_bits->p_width))
return (ERANGE);
if (flags & CLK_SET_DRYRUN) {
if (((flags & (CLK_SET_ROUND_UP | CLK_SET_ROUND_DOWN)) == 0) &&
(*fout != (((fin / m) * n) /p)))
return (ERANGE);
*fout = ((fin / m) * n) /p;
return (0);
}
/* If new post-divider is bigger that original, set it now. */
if (p < old_p) {
RD4(sc, sc->base_reg, &reg);
reg = set_masked(reg, pdiv_to_reg(sc, p), mnp_bits->p_shift,
mnp_bits->p_width);
WR4(sc, sc->base_reg, reg);
}
DELAY(100);
/* vvv Program dynamic VCO ramp. vvv */
/* 1 - disable dynamic ramp mode. */
RD4(sc, PLLX_MISC_2, &reg);
reg &= ~PLLX_MISC_2_EN_DYNRAMP;
WR4(sc, PLLX_MISC_2, reg);
/* 2 - Setup new ndiv. */
RD4(sc, PLLX_MISC_2, &reg);
reg &= ~PLLX_MISC_2_NDIV_NEW(~0);
reg |= PLLX_MISC_2_NDIV_NEW(n);
WR4(sc, PLLX_MISC_2, reg);
/* 3 - enable dynamic ramp. */
RD4(sc, PLLX_MISC_2, &reg);
reg |= PLLX_MISC_2_EN_DYNRAMP;
WR4(sc, PLLX_MISC_2, reg);
/* 4 - wait for done. */
for (i = PLL_LOCK_TIMEOUT / 10; i > 0; i--) {
RD4(sc, PLLX_MISC_2, &reg);
if (reg & PLLX_MISC_2_DYNRAMP_DONE)
break;
DELAY(10);
}
if (i <= 0) {
printf("PLL X dynamic ramp timedout\n");
return (ETIMEDOUT);
}
/* 5 - copy new ndiv to base register. */
RD4(sc, sc->base_reg, &reg);
reg = set_masked(reg, n, mnp_bits->n_shift,
mnp_bits->n_width);
WR4(sc, sc->base_reg, reg);
/* 6 - disable dynamic ramp mode. */
RD4(sc, PLLX_MISC_2, &reg);
reg &= ~PLLX_MISC_2_EN_DYNRAMP;
WR4(sc, PLLX_MISC_2, reg);
rv = wait_for_lock(sc);
if (rv != 0) {
printf("PLL X is not locked !!\n");
}
/* ^^^ Dynamic ramp done. ^^^ */
/* If new post-divider is smaller that original, set it. */
if (p > old_p) {
RD4(sc, sc->base_reg, &reg);
reg = set_masked(reg, pdiv_to_reg(sc, p), mnp_bits->p_shift,
mnp_bits->p_width);
WR4(sc, sc->base_reg, reg);
}
*fout = ((fin / m) * n) / p;
return (0);
}
/* Simplified setup for 38.4 MHz clock. */
#define PLLX_STEP_A 0x04
#define PLLX_STEP_B 0x05
static int
pllx_init(struct pll_sc *sc)
{
uint32_t reg;
RD4(sc, PLLX_MISC, &reg);
reg = PLLX_MISC_LOCK_ENABLE;
WR4(sc, PLLX_MISC, reg);
/* Setup dynamic ramp. */
reg = 0;
reg |= PLLX_MISC_2_DYNRAMP_STEPA(PLLX_STEP_A);
reg |= PLLX_MISC_2_DYNRAMP_STEPB(PLLX_STEP_B);
WR4(sc, PLLX_MISC_2, reg);
/* Disable SDM. */
reg = 0;
WR4(sc, PLLX_MISC_4, reg);
WR4(sc, PLLX_MISC_5, reg);
return (0);
}
static int
tegra210_pll_set_freq(struct clknode *clknode, uint64_t fin, uint64_t *fout,
int flags, int *stop)
{
*stop = 1;
int rv;
struct pll_sc *sc;
sc = clknode_get_softc(clknode);
dprintf("%s: %s requested freq: %lu, input freq: %lu\n", __func__,
clknode_get_name(clknode), *fout, fin);
switch (sc->type) {
case PLL_A:
rv = plla_set_freq(sc, fin, fout, flags);
break;
case PLL_C:
case PLL_C2:
case PLL_C3:
rv = pllc_set_freq(sc, fin, fout, flags);
break;
case PLL_C4:
rv = pllc4_set_freq(sc, fin, fout, flags);
break;
case PLL_D2:
rv = plld2_set_freq(sc, fin, fout, flags);
break;
case PLL_DP:
rv = plldp_set_freq(sc, fin, fout, flags);
break;
case PLL_REFE:
rv = pllrefe_set_freq(sc, fin, fout, flags);
break;
case PLL_X:
rv = pllx_set_freq(sc, fin, fout, flags);
break;
case PLL_U:
if (*fout == 480000000) /* PLLU is fixed to 480 MHz */
rv = 0;
else
rv = ERANGE;
break;
default:
rv = ENXIO;
break;
}
return (rv);
}
static int
tegra210_pll_init(struct clknode *clk, device_t dev)
{
struct pll_sc *sc;
uint32_t reg, rv;
sc = clknode_get_softc(clk);
if (sc->type == PLL_X) {
rv = pllx_init(sc);
if (rv != 0)
return (rv);
}
/* If PLL is enabled, enable lock detect too. */
RD4(sc, sc->base_reg, &reg);
if (reg & PLL_BASE_ENABLE) {
RD4(sc, sc->misc_reg, &reg);
reg |= sc->lock_enable;
WR4(sc, sc->misc_reg, reg);
}
if (sc->type == PLL_REFE) {
RD4(sc, sc->misc_reg, &reg);
reg &= ~(1 << 29); /* Disable lock override */
WR4(sc, sc->misc_reg, reg);
}
clknode_init_parent_idx(clk, 0);
return(0);
}
static int
tegra210_pll_recalc(struct clknode *clk, uint64_t *freq)
{
struct pll_sc *sc;
uint32_t m, n, p, pr;
uint32_t reg, misc_reg;
int locked;
sc = clknode_get_softc(clk);
RD4(sc, sc->base_reg, &reg);
RD4(sc, sc->misc_reg, &misc_reg);
get_divisors(sc, &m, &n, &pr);
/* If VCO is directlu exposed, P divider is handled by external node */
if (sc->flags & PLL_FLAG_VCO_OUT)
p = 1;
else
p = reg_to_pdiv(sc, pr);
locked = is_locked(sc);
dprintf("%s: %s (0x%08x, 0x%08x) - m: %d, n: %d, p: %d (%d): "
"e: %d, r: %d, o: %d - %s\n", __func__,
clknode_get_name(clk), reg, misc_reg, m, n, p, pr,
(reg >> 30) & 1, (reg >> 29) & 1, (reg >> 28) & 1,
locked ? "locked" : "unlocked");
if ((m == 0) || (n == 0) || (p == 0)) {
*freq = 0;
return (EINVAL);
}
if (!locked) {
*freq = 0;
return (0);
}
*freq = ((*freq / m) * n) / p;
return (0);
}
static int
pll_register(struct clkdom *clkdom, struct clk_pll_def *clkdef)
{
struct clknode *clk;
struct pll_sc *sc;
clk = clknode_create(clkdom, &tegra210_pll_class, &clkdef->clkdef);
if (clk == NULL)
return (ENXIO);
sc = clknode_get_softc(clk);
sc->clkdev = clknode_get_device(clk);
sc->type = clkdef->type;
sc->base_reg = clkdef->base_reg;
sc->misc_reg = clkdef->misc_reg;
sc->lock_enable = clkdef->lock_enable;
sc->iddq_reg = clkdef->iddq_reg;
sc->iddq_mask = clkdef->iddq_mask;
sc->flags = clkdef->flags;
sc->pdiv_table = clkdef->pdiv_table;
sc->mnp_bits = clkdef->mnp_bits;
clknode_register(clkdom, clk);
return (0);
}
static void config_utmi_pll(struct tegra210_car_softc *sc)
{
uint32_t reg;
/*
* XXX Simplified UTMIP settings for 38.4MHz base clock.
*/
#define ENABLE_DELAY_COUNT 0x00
#define STABLE_COUNT 0x00
#define ACTIVE_DELAY_COUNT 0x06
#define XTAL_FREQ_COUNT 0x80
CLKDEV_READ_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, &reg);
reg &= ~UTMIPLL_HW_PWRDN_CFG0_IDDQ_OVERRIDE;
CLKDEV_WRITE_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, reg);
CLKDEV_READ_4(sc->dev, UTMIP_PLL_CFG2, &reg);
reg &= ~UTMIP_PLL_CFG2_STABLE_COUNT(~0);
reg |= UTMIP_PLL_CFG2_STABLE_COUNT(STABLE_COUNT);
reg &= ~UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(~0);
reg |= UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(ACTIVE_DELAY_COUNT);
CLKDEV_WRITE_4(sc->dev, UTMIP_PLL_CFG2, reg);
CLKDEV_READ_4(sc->dev, UTMIP_PLL_CFG1, &reg);
reg &= ~UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(~0);
reg |= UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(ENABLE_DELAY_COUNT);
reg &= ~UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(~0);
reg |= UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(XTAL_FREQ_COUNT);
reg |= UTMIP_PLL_CFG1_FORCE_PLLU_POWERUP;
CLKDEV_WRITE_4(sc->dev, UTMIP_PLL_CFG1, reg);
reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN;
reg |= UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERUP;
CLKDEV_WRITE_4(sc->dev, UTMIP_PLL_CFG1, reg);
DELAY(20);
/* Setup samplers. */
CLKDEV_READ_4(sc->dev, UTMIP_PLL_CFG2, &reg);
reg |= UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERUP;
reg |= UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERUP;
reg |= UTMIP_PLL_CFG2_FORCE_PD_SAMP_D_POWERUP;
reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERDOWN;
reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERDOWN;
reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_D_POWERDOWN;
CLKDEV_WRITE_4(sc->dev, UTMIP_PLL_CFG2, reg);
/* Powerup UTMIP. */
CLKDEV_READ_4(sc->dev, UTMIP_PLL_CFG1, &reg);
reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERUP;
reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN;
CLKDEV_WRITE_4(sc->dev, UTMIP_PLL_CFG1, reg);
DELAY(10);
/* Prepare UTMIP sequencer. */
CLKDEV_READ_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, &reg);
reg |= UTMIPLL_HW_PWRDN_CFG0_USE_LOCKDET;
reg &= ~UTMIPLL_HW_PWRDN_CFG0_CLK_ENABLE_SWCTL;
CLKDEV_WRITE_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, reg);
DELAY(10);
CLKDEV_READ_4(sc->dev, XUSB_PLL_CFG0, &reg);
reg &= ~XUSB_PLL_CFG0_UTMIPLL_LOCK_DLY;
CLKDEV_WRITE_4(sc->dev, XUSB_PLL_CFG0, reg);
DELAY(10);
/* HW control of UTMIPLL. */
CLKDEV_READ_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, &reg);
reg |= UTMIPLL_HW_PWRDN_CFG0_SEQ_ENABLE;
CLKDEV_WRITE_4(sc->dev, UTMIPLL_HW_PWRDN_CFG0, reg);
}
void
tegra210_init_plls(struct tegra210_car_softc *sc)
{
int i, rv;
for (i = 0; i < nitems(tegra210_pll_sources); i++) {
rv = clknode_mux_register(sc->clkdom, tegra210_pll_sources + i);
if (rv != 0)
panic("clk_mux_register failed");
}
for (i = 0; i < nitems(pll_clks); i++) {
rv = pll_register(sc->clkdom, pll_clks + i);
if (rv != 0)
panic("pll_register failed");
}
config_utmi_pll(sc);
for (i = 0; i < nitems(tegra210_pll_fdivs); i++) {
rv = clknode_fixed_register(sc->clkdom, tegra210_pll_fdivs + i);
if (rv != 0)
panic("clk_fixed_register failed");
}
for (i = 0; i < nitems(tegra210_pll_gates); i++) {
rv = clknode_gate_register(sc->clkdom, tegra210_pll_gates + i);
if (rv != 0)
panic("clk_gate_register failed");
}
for (i = 0; i < nitems(tegra210_pll_divs); i++) {
rv = clknode_div_register(sc->clkdom, tegra210_pll_divs + i);
if (rv != 0)
panic("clk_div_register failed");
}
}