f-stack/dpdk/lib/timer/rte_timer.c

1075 lines
29 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <inttypes.h>
#include <assert.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_eal_memconfig.h>
#include <rte_memory.h>
#include <rte_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_spinlock.h>
#include <rte_random.h>
#include <rte_pause.h>
#include <rte_memzone.h>
#include "rte_timer.h"
/**
* Per-lcore info for timers.
*/
struct priv_timer {
struct rte_timer pending_head; /**< dummy timer instance to head up list */
rte_spinlock_t list_lock; /**< lock to protect list access */
/** per-core variable that true if a timer was updated on this
* core since last reset of the variable */
int updated;
/** track the current depth of the skiplist */
unsigned curr_skiplist_depth;
unsigned prev_lcore; /**< used for lcore round robin */
/** running timer on this lcore now */
struct rte_timer *running_tim;
#ifdef RTE_LIBRTE_TIMER_DEBUG
/** per-lcore statistics */
struct rte_timer_debug_stats stats;
#endif
} __rte_cache_aligned;
#define FL_ALLOCATED (1 << 0)
struct rte_timer_data {
struct priv_timer priv_timer[RTE_MAX_LCORE];
uint8_t internal_flags;
};
#define RTE_MAX_DATA_ELS 64
static const struct rte_memzone *rte_timer_data_mz;
static int *volatile rte_timer_mz_refcnt;
static struct rte_timer_data *rte_timer_data_arr;
static const uint32_t default_data_id;
static uint32_t rte_timer_subsystem_initialized;
/* when debug is enabled, store some statistics */
#ifdef RTE_LIBRTE_TIMER_DEBUG
#define __TIMER_STAT_ADD(priv_timer, name, n) do { \
unsigned __lcore_id = rte_lcore_id(); \
if (__lcore_id < RTE_MAX_LCORE) \
priv_timer[__lcore_id].stats.name += (n); \
} while(0)
#else
#define __TIMER_STAT_ADD(priv_timer, name, n) do {} while (0)
#endif
static inline int
timer_data_valid(uint32_t id)
{
return rte_timer_data_arr &&
(rte_timer_data_arr[id].internal_flags & FL_ALLOCATED);
}
/* validate ID and retrieve timer data pointer, or return error value */
#define TIMER_DATA_VALID_GET_OR_ERR_RET(id, timer_data, retval) do { \
if (id >= RTE_MAX_DATA_ELS || !timer_data_valid(id)) \
return retval; \
timer_data = &rte_timer_data_arr[id]; \
} while (0)
int
rte_timer_data_alloc(uint32_t *id_ptr)
{
int i;
struct rte_timer_data *data;
if (!rte_timer_subsystem_initialized)
return -ENOMEM;
for (i = 0; i < RTE_MAX_DATA_ELS; i++) {
data = &rte_timer_data_arr[i];
if (!(data->internal_flags & FL_ALLOCATED)) {
data->internal_flags |= FL_ALLOCATED;
if (id_ptr)
*id_ptr = i;
return 0;
}
}
return -ENOSPC;
}
int
rte_timer_data_dealloc(uint32_t id)
{
struct rte_timer_data *timer_data;
TIMER_DATA_VALID_GET_OR_ERR_RET(id, timer_data, -EINVAL);
timer_data->internal_flags &= ~(FL_ALLOCATED);
return 0;
}
/* Init the timer library. Allocate an array of timer data structs in shared
* memory, and allocate the zeroth entry for use with original timer
* APIs. Since the intersection of the sets of lcore ids in primary and
* secondary processes should be empty, the zeroth entry can be shared by
* multiple processes.
*/
int
rte_timer_subsystem_init(void)
{
const struct rte_memzone *mz;
struct rte_timer_data *data;
int i, lcore_id;
static const char *mz_name = "rte_timer_mz";
const size_t data_arr_size =
RTE_MAX_DATA_ELS * sizeof(*rte_timer_data_arr);
const size_t mem_size = data_arr_size + sizeof(*rte_timer_mz_refcnt);
bool do_full_init = true;
rte_mcfg_timer_lock();
if (rte_timer_subsystem_initialized) {
rte_mcfg_timer_unlock();
return -EALREADY;
}
mz = rte_memzone_lookup(mz_name);
if (mz == NULL) {
mz = rte_memzone_reserve_aligned(mz_name, mem_size,
SOCKET_ID_ANY, 0, RTE_CACHE_LINE_SIZE);
if (mz == NULL) {
rte_mcfg_timer_unlock();
return -ENOMEM;
}
do_full_init = true;
} else
do_full_init = false;
rte_timer_data_mz = mz;
rte_timer_data_arr = mz->addr;
rte_timer_mz_refcnt = (void *)((char *)mz->addr + data_arr_size);
if (do_full_init) {
for (i = 0; i < RTE_MAX_DATA_ELS; i++) {
data = &rte_timer_data_arr[i];
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE;
lcore_id++) {
rte_spinlock_init(
&data->priv_timer[lcore_id].list_lock);
data->priv_timer[lcore_id].prev_lcore =
lcore_id;
}
}
}
rte_timer_data_arr[default_data_id].internal_flags |= FL_ALLOCATED;
(*rte_timer_mz_refcnt)++;
rte_timer_subsystem_initialized = 1;
rte_mcfg_timer_unlock();
return 0;
}
void
rte_timer_subsystem_finalize(void)
{
rte_mcfg_timer_lock();
if (!rte_timer_subsystem_initialized) {
rte_mcfg_timer_unlock();
return;
}
if (--(*rte_timer_mz_refcnt) == 0)
rte_memzone_free(rte_timer_data_mz);
rte_timer_subsystem_initialized = 0;
rte_mcfg_timer_unlock();
}
/* Initialize the timer handle tim for use */
void
rte_timer_init(struct rte_timer *tim)
{
union rte_timer_status status;
status.state = RTE_TIMER_STOP;
status.owner = RTE_TIMER_NO_OWNER;
__atomic_store_n(&tim->status.u32, status.u32, __ATOMIC_RELAXED);
}
/*
* if timer is pending or stopped (or running on the same core than
* us), mark timer as configuring, and on success return the previous
* status of the timer
*/
static int
timer_set_config_state(struct rte_timer *tim,
union rte_timer_status *ret_prev_status,
struct priv_timer *priv_timer)
{
union rte_timer_status prev_status, status;
int success = 0;
unsigned lcore_id;
lcore_id = rte_lcore_id();
/* wait that the timer is in correct status before update,
* and mark it as being configured */
prev_status.u32 = __atomic_load_n(&tim->status.u32, __ATOMIC_RELAXED);
while (success == 0) {
/* timer is running on another core
* or ready to run on local core, exit
*/
if (prev_status.state == RTE_TIMER_RUNNING &&
(prev_status.owner != (uint16_t)lcore_id ||
tim != priv_timer[lcore_id].running_tim))
return -1;
/* timer is being configured on another core */
if (prev_status.state == RTE_TIMER_CONFIG)
return -1;
/* here, we know that timer is stopped or pending,
* mark it atomically as being configured */
status.state = RTE_TIMER_CONFIG;
status.owner = (int16_t)lcore_id;
/* CONFIG states are acting as locked states. If the
* timer is in CONFIG state, the state cannot be changed
* by other threads. So, we should use ACQUIRE here.
*/
success = __atomic_compare_exchange_n(&tim->status.u32,
&prev_status.u32,
status.u32, 0,
__ATOMIC_ACQUIRE,
__ATOMIC_RELAXED);
}
ret_prev_status->u32 = prev_status.u32;
return 0;
}
/*
* if timer is pending, mark timer as running
*/
static int
timer_set_running_state(struct rte_timer *tim)
{
union rte_timer_status prev_status, status;
unsigned lcore_id = rte_lcore_id();
int success = 0;
/* wait that the timer is in correct status before update,
* and mark it as running */
prev_status.u32 = __atomic_load_n(&tim->status.u32, __ATOMIC_RELAXED);
while (success == 0) {
/* timer is not pending anymore */
if (prev_status.state != RTE_TIMER_PENDING)
return -1;
/* we know that the timer will be pending at this point
* mark it atomically as being running
*/
status.state = RTE_TIMER_RUNNING;
status.owner = (int16_t)lcore_id;
/* RUNNING states are acting as locked states. If the
* timer is in RUNNING state, the state cannot be changed
* by other threads. So, we should use ACQUIRE here.
*/
success = __atomic_compare_exchange_n(&tim->status.u32,
&prev_status.u32,
status.u32, 0,
__ATOMIC_ACQUIRE,
__ATOMIC_RELAXED);
}
return 0;
}
/*
* Return a skiplist level for a new entry.
* This probabilistically gives a level with p=1/4 that an entry at level n
* will also appear at level n+1.
*/
static uint32_t
timer_get_skiplist_level(unsigned curr_depth)
{
#ifdef RTE_LIBRTE_TIMER_DEBUG
static uint32_t i, count = 0;
static uint32_t levels[MAX_SKIPLIST_DEPTH] = {0};
#endif
/* probability value is 1/4, i.e. all at level 0, 1 in 4 is at level 1,
* 1 in 16 at level 2, 1 in 64 at level 3, etc. Calculated using lowest
* bit position of a (pseudo)random number.
*/
uint32_t rand = rte_rand() & (UINT32_MAX - 1);
uint32_t level = rand == 0 ? MAX_SKIPLIST_DEPTH : (rte_bsf32(rand)-1) / 2;
/* limit the levels used to one above our current level, so we don't,
* for instance, have a level 0 and a level 7 without anything between
*/
if (level > curr_depth)
level = curr_depth;
if (level >= MAX_SKIPLIST_DEPTH)
level = MAX_SKIPLIST_DEPTH-1;
#ifdef RTE_LIBRTE_TIMER_DEBUG
count ++;
levels[level]++;
if (count % 10000 == 0)
for (i = 0; i < MAX_SKIPLIST_DEPTH; i++)
printf("Level %u: %u\n", (unsigned)i, (unsigned)levels[i]);
#endif
return level;
}
/*
* For a given time value, get the entries at each level which
* are <= that time value.
*/
static void
timer_get_prev_entries(uint64_t time_val, unsigned tim_lcore,
struct rte_timer **prev, struct priv_timer *priv_timer)
{
unsigned lvl = priv_timer[tim_lcore].curr_skiplist_depth;
prev[lvl] = &priv_timer[tim_lcore].pending_head;
while(lvl != 0) {
lvl--;
prev[lvl] = prev[lvl+1];
while (prev[lvl]->sl_next[lvl] &&
prev[lvl]->sl_next[lvl]->expire <= time_val)
prev[lvl] = prev[lvl]->sl_next[lvl];
}
}
/*
* Given a timer node in the skiplist, find the previous entries for it at
* all skiplist levels.
*/
static void
timer_get_prev_entries_for_node(struct rte_timer *tim, unsigned tim_lcore,
struct rte_timer **prev,
struct priv_timer *priv_timer)
{
int i;
/* to get a specific entry in the list, look for just lower than the time
* values, and then increment on each level individually if necessary
*/
timer_get_prev_entries(tim->expire - 1, tim_lcore, prev, priv_timer);
for (i = priv_timer[tim_lcore].curr_skiplist_depth - 1; i >= 0; i--) {
while (prev[i]->sl_next[i] != NULL &&
prev[i]->sl_next[i] != tim &&
prev[i]->sl_next[i]->expire <= tim->expire)
prev[i] = prev[i]->sl_next[i];
}
}
/* call with lock held as necessary
* add in list
* timer must be in config state
* timer must not be in a list
*/
static void
timer_add(struct rte_timer *tim, unsigned int tim_lcore,
struct priv_timer *priv_timer)
{
unsigned lvl;
struct rte_timer *prev[MAX_SKIPLIST_DEPTH+1];
/* find where exactly this element goes in the list of elements
* for each depth. */
timer_get_prev_entries(tim->expire, tim_lcore, prev, priv_timer);
/* now assign it a new level and add at that level */
const unsigned tim_level = timer_get_skiplist_level(
priv_timer[tim_lcore].curr_skiplist_depth);
if (tim_level == priv_timer[tim_lcore].curr_skiplist_depth)
priv_timer[tim_lcore].curr_skiplist_depth++;
lvl = tim_level;
while (lvl > 0) {
tim->sl_next[lvl] = prev[lvl]->sl_next[lvl];
prev[lvl]->sl_next[lvl] = tim;
lvl--;
}
tim->sl_next[0] = prev[0]->sl_next[0];
prev[0]->sl_next[0] = tim;
/* save the lowest list entry into the expire field of the dummy hdr
* NOTE: this is not atomic on 32-bit*/
priv_timer[tim_lcore].pending_head.expire = priv_timer[tim_lcore].\
pending_head.sl_next[0]->expire;
}
/*
* del from list, lock if needed
* timer must be in config state
* timer must be in a list
*/
static void
timer_del(struct rte_timer *tim, union rte_timer_status prev_status,
int local_is_locked, struct priv_timer *priv_timer)
{
unsigned lcore_id = rte_lcore_id();
unsigned prev_owner = prev_status.owner;
int i;
struct rte_timer *prev[MAX_SKIPLIST_DEPTH+1];
/* if timer needs is pending another core, we need to lock the
* list; if it is on local core, we need to lock if we are not
* called from rte_timer_manage() */
if (prev_owner != lcore_id || !local_is_locked)
rte_spinlock_lock(&priv_timer[prev_owner].list_lock);
/* save the lowest list entry into the expire field of the dummy hdr.
* NOTE: this is not atomic on 32-bit */
if (tim == priv_timer[prev_owner].pending_head.sl_next[0])
priv_timer[prev_owner].pending_head.expire =
((tim->sl_next[0] == NULL) ? 0 : tim->sl_next[0]->expire);
/* adjust pointers from previous entries to point past this */
timer_get_prev_entries_for_node(tim, prev_owner, prev, priv_timer);
for (i = priv_timer[prev_owner].curr_skiplist_depth - 1; i >= 0; i--) {
if (prev[i]->sl_next[i] == tim)
prev[i]->sl_next[i] = tim->sl_next[i];
}
/* in case we deleted last entry at a level, adjust down max level */
for (i = priv_timer[prev_owner].curr_skiplist_depth - 1; i >= 0; i--)
if (priv_timer[prev_owner].pending_head.sl_next[i] == NULL)
priv_timer[prev_owner].curr_skiplist_depth --;
else
break;
if (prev_owner != lcore_id || !local_is_locked)
rte_spinlock_unlock(&priv_timer[prev_owner].list_lock);
}
/* Reset and start the timer associated with the timer handle (private func) */
static int
__rte_timer_reset(struct rte_timer *tim, uint64_t expire,
uint64_t period, unsigned tim_lcore,
rte_timer_cb_t fct, void *arg,
int local_is_locked,
struct rte_timer_data *timer_data)
{
union rte_timer_status prev_status, status;
int ret;
unsigned lcore_id = rte_lcore_id();
struct priv_timer *priv_timer = timer_data->priv_timer;
/* round robin for tim_lcore */
if (tim_lcore == (unsigned)LCORE_ID_ANY) {
if (lcore_id < RTE_MAX_LCORE) {
/* EAL thread with valid lcore_id */
tim_lcore = rte_get_next_lcore(
priv_timer[lcore_id].prev_lcore,
0, 1);
priv_timer[lcore_id].prev_lcore = tim_lcore;
} else
/* non-EAL thread do not run rte_timer_manage(),
* so schedule the timer on the first enabled lcore. */
tim_lcore = rte_get_next_lcore(LCORE_ID_ANY, 0, 1);
}
/* wait that the timer is in correct status before update,
* and mark it as being configured */
ret = timer_set_config_state(tim, &prev_status, priv_timer);
if (ret < 0)
return -1;
__TIMER_STAT_ADD(priv_timer, reset, 1);
if (prev_status.state == RTE_TIMER_RUNNING &&
lcore_id < RTE_MAX_LCORE) {
priv_timer[lcore_id].updated = 1;
}
/* remove it from list */
if (prev_status.state == RTE_TIMER_PENDING) {
timer_del(tim, prev_status, local_is_locked, priv_timer);
__TIMER_STAT_ADD(priv_timer, pending, -1);
}
tim->period = period;
tim->expire = expire;
tim->f = fct;
tim->arg = arg;
/* if timer needs to be scheduled on another core, we need to
* lock the destination list; if it is on local core, we need to lock if
* we are not called from rte_timer_manage()
*/
if (tim_lcore != lcore_id || !local_is_locked)
rte_spinlock_lock(&priv_timer[tim_lcore].list_lock);
__TIMER_STAT_ADD(priv_timer, pending, 1);
timer_add(tim, tim_lcore, priv_timer);
/* update state: as we are in CONFIG state, only us can modify
* the state so we don't need to use cmpset() here */
status.state = RTE_TIMER_PENDING;
status.owner = (int16_t)tim_lcore;
/* The "RELEASE" ordering guarantees the memory operations above
* the status update are observed before the update by all threads
*/
__atomic_store_n(&tim->status.u32, status.u32, __ATOMIC_RELEASE);
if (tim_lcore != lcore_id || !local_is_locked)
rte_spinlock_unlock(&priv_timer[tim_lcore].list_lock);
return 0;
}
/* Reset and start the timer associated with the timer handle tim */
int
rte_timer_reset(struct rte_timer *tim, uint64_t ticks,
enum rte_timer_type type, unsigned int tim_lcore,
rte_timer_cb_t fct, void *arg)
{
return rte_timer_alt_reset(default_data_id, tim, ticks, type,
tim_lcore, fct, arg);
}
int
rte_timer_alt_reset(uint32_t timer_data_id, struct rte_timer *tim,
uint64_t ticks, enum rte_timer_type type,
unsigned int tim_lcore, rte_timer_cb_t fct, void *arg)
{
uint64_t cur_time = rte_get_timer_cycles();
uint64_t period;
struct rte_timer_data *timer_data;
TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
if (type == PERIODICAL)
period = ticks;
else
period = 0;
return __rte_timer_reset(tim, cur_time + ticks, period, tim_lcore,
fct, arg, 0, timer_data);
}
/* loop until rte_timer_reset() succeed */
void
rte_timer_reset_sync(struct rte_timer *tim, uint64_t ticks,
enum rte_timer_type type, unsigned tim_lcore,
rte_timer_cb_t fct, void *arg)
{
while (rte_timer_reset(tim, ticks, type, tim_lcore,
fct, arg) != 0)
rte_pause();
}
static int
__rte_timer_stop(struct rte_timer *tim,
struct rte_timer_data *timer_data)
{
union rte_timer_status prev_status, status;
unsigned lcore_id = rte_lcore_id();
int ret;
struct priv_timer *priv_timer = timer_data->priv_timer;
/* wait that the timer is in correct status before update,
* and mark it as being configured */
ret = timer_set_config_state(tim, &prev_status, priv_timer);
if (ret < 0)
return -1;
__TIMER_STAT_ADD(priv_timer, stop, 1);
if (prev_status.state == RTE_TIMER_RUNNING &&
lcore_id < RTE_MAX_LCORE) {
priv_timer[lcore_id].updated = 1;
}
/* remove it from list */
if (prev_status.state == RTE_TIMER_PENDING) {
timer_del(tim, prev_status, 0, priv_timer);
__TIMER_STAT_ADD(priv_timer, pending, -1);
}
/* mark timer as stopped */
status.state = RTE_TIMER_STOP;
status.owner = RTE_TIMER_NO_OWNER;
/* The "RELEASE" ordering guarantees the memory operations above
* the status update are observed before the update by all threads
*/
__atomic_store_n(&tim->status.u32, status.u32, __ATOMIC_RELEASE);
return 0;
}
/* Stop the timer associated with the timer handle tim */
int
rte_timer_stop(struct rte_timer *tim)
{
return rte_timer_alt_stop(default_data_id, tim);
}
int
rte_timer_alt_stop(uint32_t timer_data_id, struct rte_timer *tim)
{
struct rte_timer_data *timer_data;
TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
return __rte_timer_stop(tim, timer_data);
}
/* loop until rte_timer_stop() succeed */
void
rte_timer_stop_sync(struct rte_timer *tim)
{
while (rte_timer_stop(tim) != 0)
rte_pause();
}
/* Test the PENDING status of the timer handle tim */
int
rte_timer_pending(struct rte_timer *tim)
{
return __atomic_load_n(&tim->status.state,
__ATOMIC_RELAXED) == RTE_TIMER_PENDING;
}
/* must be called periodically, run all timer that expired */
static void
__rte_timer_manage(struct rte_timer_data *timer_data)
{
union rte_timer_status status;
struct rte_timer *tim, *next_tim;
struct rte_timer *run_first_tim, **pprev;
unsigned lcore_id = rte_lcore_id();
struct rte_timer *prev[MAX_SKIPLIST_DEPTH + 1];
uint64_t cur_time;
int i, ret;
struct priv_timer *priv_timer = timer_data->priv_timer;
/* timer manager only runs on EAL thread with valid lcore_id */
assert(lcore_id < RTE_MAX_LCORE);
__TIMER_STAT_ADD(priv_timer, manage, 1);
/* optimize for the case where per-cpu list is empty */
if (priv_timer[lcore_id].pending_head.sl_next[0] == NULL)
return;
cur_time = rte_get_timer_cycles();
#ifdef RTE_ARCH_64
/* on 64-bit the value cached in the pending_head.expired will be
* updated atomically, so we can consult that for a quick check here
* outside the lock */
if (likely(priv_timer[lcore_id].pending_head.expire > cur_time))
return;
#endif
/* browse ordered list, add expired timers in 'expired' list */
rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
/* if nothing to do just unlock and return */
if (priv_timer[lcore_id].pending_head.sl_next[0] == NULL ||
priv_timer[lcore_id].pending_head.sl_next[0]->expire > cur_time) {
rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
return;
}
/* save start of list of expired timers */
tim = priv_timer[lcore_id].pending_head.sl_next[0];
/* break the existing list at current time point */
timer_get_prev_entries(cur_time, lcore_id, prev, priv_timer);
for (i = priv_timer[lcore_id].curr_skiplist_depth -1; i >= 0; i--) {
if (prev[i] == &priv_timer[lcore_id].pending_head)
continue;
priv_timer[lcore_id].pending_head.sl_next[i] =
prev[i]->sl_next[i];
if (prev[i]->sl_next[i] == NULL)
priv_timer[lcore_id].curr_skiplist_depth--;
prev[i] ->sl_next[i] = NULL;
}
/* transition run-list from PENDING to RUNNING */
run_first_tim = tim;
pprev = &run_first_tim;
for ( ; tim != NULL; tim = next_tim) {
next_tim = tim->sl_next[0];
ret = timer_set_running_state(tim);
if (likely(ret == 0)) {
pprev = &tim->sl_next[0];
} else {
/* another core is trying to re-config this one,
* remove it from local expired list
*/
*pprev = next_tim;
}
}
/* update the next to expire timer value */
priv_timer[lcore_id].pending_head.expire =
(priv_timer[lcore_id].pending_head.sl_next[0] == NULL) ? 0 :
priv_timer[lcore_id].pending_head.sl_next[0]->expire;
rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
/* now scan expired list and call callbacks */
for (tim = run_first_tim; tim != NULL; tim = next_tim) {
next_tim = tim->sl_next[0];
priv_timer[lcore_id].updated = 0;
priv_timer[lcore_id].running_tim = tim;
/* execute callback function with list unlocked */
tim->f(tim, tim->arg);
__TIMER_STAT_ADD(priv_timer, pending, -1);
/* the timer was stopped or reloaded by the callback
* function, we have nothing to do here */
if (priv_timer[lcore_id].updated == 1)
continue;
if (tim->period == 0) {
/* remove from done list and mark timer as stopped */
status.state = RTE_TIMER_STOP;
status.owner = RTE_TIMER_NO_OWNER;
/* The "RELEASE" ordering guarantees the memory
* operations above the status update are observed
* before the update by all threads
*/
__atomic_store_n(&tim->status.u32, status.u32,
__ATOMIC_RELEASE);
}
else {
/* keep it in list and mark timer as pending */
rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
status.state = RTE_TIMER_PENDING;
__TIMER_STAT_ADD(priv_timer, pending, 1);
status.owner = (int16_t)lcore_id;
/* The "RELEASE" ordering guarantees the memory
* operations above the status update are observed
* before the update by all threads
*/
__atomic_store_n(&tim->status.u32, status.u32,
__ATOMIC_RELEASE);
__rte_timer_reset(tim, tim->expire + tim->period,
tim->period, lcore_id, tim->f, tim->arg, 1,
timer_data);
rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
}
}
priv_timer[lcore_id].running_tim = NULL;
}
int
rte_timer_manage(void)
{
struct rte_timer_data *timer_data;
TIMER_DATA_VALID_GET_OR_ERR_RET(default_data_id, timer_data, -EINVAL);
__rte_timer_manage(timer_data);
return 0;
}
int
rte_timer_alt_manage(uint32_t timer_data_id,
unsigned int *poll_lcores,
int nb_poll_lcores,
rte_timer_alt_manage_cb_t f)
{
unsigned int default_poll_lcores[] = {rte_lcore_id()};
union rte_timer_status status;
struct rte_timer *tim, *next_tim, **pprev;
struct rte_timer *run_first_tims[RTE_MAX_LCORE];
unsigned int this_lcore = rte_lcore_id();
struct rte_timer *prev[MAX_SKIPLIST_DEPTH + 1];
uint64_t cur_time;
int i, j, ret;
int nb_runlists = 0;
struct rte_timer_data *data;
struct priv_timer *privp;
uint32_t poll_lcore;
TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, data, -EINVAL);
/* timer manager only runs on EAL thread with valid lcore_id */
assert(this_lcore < RTE_MAX_LCORE);
__TIMER_STAT_ADD(data->priv_timer, manage, 1);
if (poll_lcores == NULL) {
poll_lcores = default_poll_lcores;
nb_poll_lcores = RTE_DIM(default_poll_lcores);
}
for (i = 0; i < nb_poll_lcores; i++) {
poll_lcore = poll_lcores[i];
privp = &data->priv_timer[poll_lcore];
/* optimize for the case where per-cpu list is empty */
if (privp->pending_head.sl_next[0] == NULL)
continue;
cur_time = rte_get_timer_cycles();
#ifdef RTE_ARCH_64
/* on 64-bit the value cached in the pending_head.expired will
* be updated atomically, so we can consult that for a quick
* check here outside the lock
*/
if (likely(privp->pending_head.expire > cur_time))
continue;
#endif
/* browse ordered list, add expired timers in 'expired' list */
rte_spinlock_lock(&privp->list_lock);
/* if nothing to do just unlock and return */
if (privp->pending_head.sl_next[0] == NULL ||
privp->pending_head.sl_next[0]->expire > cur_time) {
rte_spinlock_unlock(&privp->list_lock);
continue;
}
/* save start of list of expired timers */
tim = privp->pending_head.sl_next[0];
/* break the existing list at current time point */
timer_get_prev_entries(cur_time, poll_lcore, prev,
data->priv_timer);
for (j = privp->curr_skiplist_depth - 1; j >= 0; j--) {
if (prev[j] == &privp->pending_head)
continue;
privp->pending_head.sl_next[j] =
prev[j]->sl_next[j];
if (prev[j]->sl_next[j] == NULL)
privp->curr_skiplist_depth--;
prev[j]->sl_next[j] = NULL;
}
/* transition run-list from PENDING to RUNNING */
run_first_tims[nb_runlists] = tim;
pprev = &run_first_tims[nb_runlists];
nb_runlists++;
for ( ; tim != NULL; tim = next_tim) {
next_tim = tim->sl_next[0];
ret = timer_set_running_state(tim);
if (likely(ret == 0)) {
pprev = &tim->sl_next[0];
} else {
/* another core is trying to re-config this one,
* remove it from local expired list
*/
*pprev = next_tim;
}
}
/* update the next to expire timer value */
privp->pending_head.expire =
(privp->pending_head.sl_next[0] == NULL) ? 0 :
privp->pending_head.sl_next[0]->expire;
rte_spinlock_unlock(&privp->list_lock);
}
/* Now process the run lists */
while (1) {
bool done = true;
uint64_t min_expire = UINT64_MAX;
int min_idx = 0;
/* Find the next oldest timer to process */
for (i = 0; i < nb_runlists; i++) {
tim = run_first_tims[i];
if (tim != NULL && tim->expire < min_expire) {
min_expire = tim->expire;
min_idx = i;
done = false;
}
}
if (done)
break;
tim = run_first_tims[min_idx];
/* Move down the runlist from which we picked a timer to
* execute
*/
run_first_tims[min_idx] = run_first_tims[min_idx]->sl_next[0];
data->priv_timer[this_lcore].updated = 0;
data->priv_timer[this_lcore].running_tim = tim;
/* Call the provided callback function */
f(tim);
__TIMER_STAT_ADD(data->priv_timer, pending, -1);
/* the timer was stopped or reloaded by the callback
* function, we have nothing to do here
*/
if (data->priv_timer[this_lcore].updated == 1)
continue;
if (tim->period == 0) {
/* remove from done list and mark timer as stopped */
status.state = RTE_TIMER_STOP;
status.owner = RTE_TIMER_NO_OWNER;
/* The "RELEASE" ordering guarantees the memory
* operations above the status update are observed
* before the update by all threads
*/
__atomic_store_n(&tim->status.u32, status.u32,
__ATOMIC_RELEASE);
} else {
/* keep it in list and mark timer as pending */
rte_spinlock_lock(
&data->priv_timer[this_lcore].list_lock);
status.state = RTE_TIMER_PENDING;
__TIMER_STAT_ADD(data->priv_timer, pending, 1);
status.owner = (int16_t)this_lcore;
/* The "RELEASE" ordering guarantees the memory
* operations above the status update are observed
* before the update by all threads
*/
__atomic_store_n(&tim->status.u32, status.u32,
__ATOMIC_RELEASE);
__rte_timer_reset(tim, tim->expire + tim->period,
tim->period, this_lcore, tim->f, tim->arg, 1,
data);
rte_spinlock_unlock(
&data->priv_timer[this_lcore].list_lock);
}
data->priv_timer[this_lcore].running_tim = NULL;
}
return 0;
}
/* Walk pending lists, stopping timers and calling user-specified function */
int
rte_timer_stop_all(uint32_t timer_data_id, unsigned int *walk_lcores,
int nb_walk_lcores,
rte_timer_stop_all_cb_t f, void *f_arg)
{
int i;
struct priv_timer *priv_timer;
uint32_t walk_lcore;
struct rte_timer *tim, *next_tim;
struct rte_timer_data *timer_data;
TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
for (i = 0; i < nb_walk_lcores; i++) {
walk_lcore = walk_lcores[i];
priv_timer = &timer_data->priv_timer[walk_lcore];
for (tim = priv_timer->pending_head.sl_next[0];
tim != NULL;
tim = next_tim) {
next_tim = tim->sl_next[0];
__rte_timer_stop(tim, timer_data);
if (f)
f(tim, f_arg);
}
}
return 0;
}
int64_t
rte_timer_next_ticks(void)
{
unsigned int lcore_id = rte_lcore_id();
struct rte_timer_data *timer_data;
struct priv_timer *priv_timer;
const struct rte_timer *tm;
uint64_t cur_time;
int64_t left = -ENOENT;
TIMER_DATA_VALID_GET_OR_ERR_RET(default_data_id, timer_data, -EINVAL);
priv_timer = timer_data->priv_timer;
cur_time = rte_get_timer_cycles();
rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
tm = priv_timer[lcore_id].pending_head.sl_next[0];
if (tm) {
left = tm->expire - cur_time;
if (left < 0)
left = 0;
}
rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
return left;
}
/* dump statistics about timers */
static void
__rte_timer_dump_stats(struct rte_timer_data *timer_data __rte_unused, FILE *f)
{
#ifdef RTE_LIBRTE_TIMER_DEBUG
struct rte_timer_debug_stats sum;
unsigned lcore_id;
struct priv_timer *priv_timer = timer_data->priv_timer;
memset(&sum, 0, sizeof(sum));
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
sum.reset += priv_timer[lcore_id].stats.reset;
sum.stop += priv_timer[lcore_id].stats.stop;
sum.manage += priv_timer[lcore_id].stats.manage;
sum.pending += priv_timer[lcore_id].stats.pending;
}
fprintf(f, "Timer statistics:\n");
fprintf(f, " reset = %"PRIu64"\n", sum.reset);
fprintf(f, " stop = %"PRIu64"\n", sum.stop);
fprintf(f, " manage = %"PRIu64"\n", sum.manage);
fprintf(f, " pending = %"PRIu64"\n", sum.pending);
#else
fprintf(f, "No timer statistics, RTE_LIBRTE_TIMER_DEBUG is disabled\n");
#endif
}
int
rte_timer_dump_stats(FILE *f)
{
return rte_timer_alt_dump_stats(default_data_id, f);
}
int
rte_timer_alt_dump_stats(uint32_t timer_data_id __rte_unused, FILE *f)
{
struct rte_timer_data *timer_data;
TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
__rte_timer_dump_stats(timer_data, f);
return 0;
}