f-stack/dpdk/lib/security/rte_security.h

1278 lines
37 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2017,2019-2020 NXP
* Copyright(c) 2017-2020 Intel Corporation.
*/
#ifndef _RTE_SECURITY_H_
#define _RTE_SECURITY_H_
/**
* @file rte_security.h
*
* RTE Security Common Definitions
*
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <sys/types.h>
#include <rte_compat.h>
#include <rte_common.h>
#include <rte_crypto.h>
#include <rte_ip.h>
#include <rte_mbuf_dyn.h>
/** IPSec protocol mode */
enum rte_security_ipsec_sa_mode {
RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT = 1,
/**< IPSec Transport mode */
RTE_SECURITY_IPSEC_SA_MODE_TUNNEL,
/**< IPSec Tunnel mode */
};
/** IPSec Protocol */
enum rte_security_ipsec_sa_protocol {
RTE_SECURITY_IPSEC_SA_PROTO_AH = 1,
/**< AH protocol */
RTE_SECURITY_IPSEC_SA_PROTO_ESP,
/**< ESP protocol */
};
/** IPSEC tunnel type */
enum rte_security_ipsec_tunnel_type {
RTE_SECURITY_IPSEC_TUNNEL_IPV4 = 1,
/**< Outer header is IPv4 */
RTE_SECURITY_IPSEC_TUNNEL_IPV6,
/**< Outer header is IPv6 */
};
/**
* IPSEC tunnel header verification mode
*
* Controls how outer IP header is verified in inbound.
*/
#define RTE_SECURITY_IPSEC_TUNNEL_VERIFY_DST_ADDR 0x1
#define RTE_SECURITY_IPSEC_TUNNEL_VERIFY_SRC_DST_ADDR 0x2
/**
* Security context for crypto/eth devices
*
* Security instance for each driver to register security operations.
* The application can get the security context from the crypto/eth device id
* using the APIs rte_cryptodev_get_sec_ctx()/rte_eth_dev_get_sec_ctx()
* This structure is used to identify the device(crypto/eth) for which the
* security operations need to be performed.
*/
struct rte_security_ctx {
void *device;
/**< Crypto/ethernet device attached */
const struct rte_security_ops *ops;
/**< Pointer to security ops for the device */
uint16_t sess_cnt;
/**< Number of sessions attached to this context */
uint16_t macsec_sc_cnt;
/**< Number of MACsec SC attached to this context */
uint16_t macsec_sa_cnt;
/**< Number of MACsec SA attached to this context */
uint32_t flags;
/**< Flags for security context */
};
#define RTE_SEC_CTX_F_FAST_SET_MDATA 0x00000001
/**< Driver uses fast metadata update without using driver specific callback.
* For fast mdata, mbuf dynamic field would be registered by driver
* via rte_security_dynfield_register().
*/
/**
* IPSEC tunnel parameters
*
* These parameters are used to build outbound tunnel headers.
*/
struct rte_security_ipsec_tunnel_param {
enum rte_security_ipsec_tunnel_type type;
/**< Tunnel type: IPv4 or IPv6 */
RTE_STD_C11
union {
struct {
struct in_addr src_ip;
/**< IPv4 source address */
struct in_addr dst_ip;
/**< IPv4 destination address */
uint8_t dscp;
/**< IPv4 Differentiated Services Code Point */
uint8_t df;
/**< IPv4 Don't Fragment bit */
uint8_t ttl;
/**< IPv4 Time To Live */
} ipv4;
/**< IPv4 header parameters */
struct {
struct in6_addr src_addr;
/**< IPv6 source address */
struct in6_addr dst_addr;
/**< IPv6 destination address */
uint8_t dscp;
/**< IPv6 Differentiated Services Code Point */
uint32_t flabel;
/**< IPv6 flow label */
uint8_t hlimit;
/**< IPv6 hop limit */
} ipv6;
/**< IPv6 header parameters */
};
};
struct rte_security_ipsec_udp_param {
uint16_t sport;
uint16_t dport;
};
/**
* IPsec Security Association option flags
*/
struct rte_security_ipsec_sa_options {
/** Extended Sequence Numbers (ESN)
*
* * 1: Use extended (64 bit) sequence numbers
* * 0: Use normal sequence numbers
*/
uint32_t esn : 1;
/** UDP encapsulation
*
* * 1: Do UDP encapsulation/decapsulation so that IPSEC packets can
* traverse through NAT boxes.
* * 0: No UDP encapsulation
*/
uint32_t udp_encap : 1;
/** Copy DSCP bits
*
* * 1: Copy IPv4 or IPv6 DSCP bits from inner IP header to
* the outer IP header in encapsulation, and vice versa in
* decapsulation.
* * 0: Do not change DSCP field.
*/
uint32_t copy_dscp : 1;
/** Copy IPv6 Flow Label
*
* * 1: Copy IPv6 flow label from inner IPv6 header to the
* outer IPv6 header.
* * 0: Outer header is not modified.
*/
uint32_t copy_flabel : 1;
/** Copy IPv4 Don't Fragment bit
*
* * 1: Copy the DF bit from the inner IPv4 header to the outer
* IPv4 header.
* * 0: Outer header is not modified.
*/
uint32_t copy_df : 1;
/** Decrement inner packet Time To Live (TTL) field
*
* * 1: In tunnel mode, decrement inner packet IPv4 TTL or
* IPv6 Hop Limit after tunnel decapsulation, or before tunnel
* encapsulation.
* * 0: Inner packet is not modified.
*/
uint32_t dec_ttl : 1;
/** Explicit Congestion Notification (ECN)
*
* * 1: In tunnel mode, enable outer header ECN Field copied from
* inner header in tunnel encapsulation, or inner header ECN
* field construction in decapsulation.
* * 0: Inner/outer header are not modified.
*/
uint32_t ecn : 1;
/** Security statistics
*
* * 1: Enable per session security statistics collection for
* this SA, if supported by the driver.
* * 0: Disable per session security statistics collection for this SA.
*/
uint32_t stats : 1;
/** Disable IV generation in PMD
*
* * 1: Disable IV generation in PMD. When disabled, IV provided in
* rte_crypto_op will be used by the PMD.
*
* * 0: Enable IV generation in PMD. When enabled, PMD generated random
* value would be used and application is not required to provide
* IV.
*
* Note: For inline cases, IV generation would always need to be handled
* by the PMD.
*/
uint32_t iv_gen_disable : 1;
/** Verify tunnel header in inbound
* * ``RTE_SECURITY_IPSEC_TUNNEL_VERIFY_DST_ADDR``: Verify destination
* IP address.
*
* * ``RTE_SECURITY_IPSEC_TUNNEL_VERIFY_SRC_DST_ADDR``: Verify both
* source and destination IP addresses.
*/
uint32_t tunnel_hdr_verify : 2;
/** Verify UDP encapsulation ports in inbound
*
* * 1: Match UDP source and destination ports
* * 0: Do not match UDP ports
*/
uint32_t udp_ports_verify : 1;
/** Compute/verify inner packet IPv4 header checksum in tunnel mode
*
* * 1: For outbound, compute inner packet IPv4 header checksum
* before tunnel encapsulation and for inbound, verify after
* tunnel decapsulation.
* * 0: Inner packet IP header checksum is not computed/verified.
*
* The checksum verification status would be set in mbuf using
* RTE_MBUF_F_RX_IP_CKSUM_xxx flags.
*
* Inner IP checksum computation can also be enabled(per operation)
* by setting the flag RTE_MBUF_F_TX_IP_CKSUM in mbuf.
*/
uint32_t ip_csum_enable : 1;
/** Compute/verify inner packet L4 checksum in tunnel mode
*
* * 1: For outbound, compute inner packet L4 checksum before
* tunnel encapsulation and for inbound, verify after
* tunnel decapsulation.
* * 0: Inner packet L4 checksum is not computed/verified.
*
* The checksum verification status would be set in mbuf using
* RTE_MBUF_F_RX_L4_CKSUM_xxx flags.
*
* Inner L4 checksum computation can also be enabled(per operation)
* by setting the flags RTE_MBUF_F_TX_TCP_CKSUM or RTE_MBUF_F_TX_SCTP_CKSUM or
* RTE_MBUF_F_TX_UDP_CKSUM or RTE_MBUF_F_TX_L4_MASK in mbuf.
*/
uint32_t l4_csum_enable : 1;
/** Enable IP reassembly on inline inbound packets.
*
* * 1: Enable driver to try reassembly of encrypted IP packets for
* this SA, if supported by the driver. This feature will work
* only if user has successfully set IP reassembly config params
* using rte_eth_ip_reassembly_conf_set() for the inline Ethernet
* device. PMD need to register mbuf dynamic fields using
* rte_eth_ip_reassembly_dynfield_register() and security session
* creation would fail if dynfield is not registered successfully.
* * 0: Disable IP reassembly of packets (default).
*/
uint32_t ip_reassembly_en : 1;
/** Reserved bit fields for future extension
*
* User should ensure reserved_opts is cleared as it may change in
* subsequent releases to support new options.
*
* Note: Reduce number of bits in reserved_opts for every new option.
*/
uint32_t reserved_opts : 17;
};
/** IPSec security association direction */
enum rte_security_ipsec_sa_direction {
RTE_SECURITY_IPSEC_SA_DIR_EGRESS,
/**< Encrypt and generate digest */
RTE_SECURITY_IPSEC_SA_DIR_INGRESS,
/**< Verify digest and decrypt */
};
/**
* Configure soft and hard lifetime of an IPsec SA
*
* Lifetime of an IPsec SA would specify the maximum number of packets or bytes
* that can be processed. IPsec operations would start failing once any hard
* limit is reached.
*
* Soft limits can be specified to generate notification when the SA is
* approaching hard limits for lifetime. For inline operations, reaching soft
* expiry limit would result in raising an eth event for the same. For lookaside
* operations, this would result in a warning returned in
* ``rte_crypto_op.aux_flags``.
*/
struct rte_security_ipsec_lifetime {
uint64_t packets_soft_limit;
/**< Soft expiry limit in number of packets */
uint64_t bytes_soft_limit;
/**< Soft expiry limit in bytes */
uint64_t packets_hard_limit;
/**< Hard expiry limit in number of packets */
uint64_t bytes_hard_limit;
/**< Hard expiry limit in bytes */
};
/**
* IPsec security association configuration data.
*
* This structure contains data required to create an IPsec SA security session.
*/
struct rte_security_ipsec_xform {
uint32_t spi;
/**< SA security parameter index */
uint32_t salt;
/**< SA salt */
struct rte_security_ipsec_sa_options options;
/**< various SA options */
enum rte_security_ipsec_sa_direction direction;
/**< IPSec SA Direction - Egress/Ingress */
enum rte_security_ipsec_sa_protocol proto;
/**< IPsec SA Protocol - AH/ESP */
enum rte_security_ipsec_sa_mode mode;
/**< IPsec SA Mode - transport/tunnel */
struct rte_security_ipsec_tunnel_param tunnel;
/**< Tunnel parameters, NULL for transport mode */
struct rte_security_ipsec_lifetime life;
/**< IPsec SA lifetime */
uint32_t replay_win_sz;
/**< Anti replay window size to enable sequence replay attack handling.
* replay checking is disabled if the window size is 0.
*/
union {
uint64_t value;
struct {
uint32_t low;
uint32_t hi;
};
} esn;
/**< Extended Sequence Number */
struct rte_security_ipsec_udp_param udp;
/**< UDP parameters, ignored when udp_encap option not specified */
};
/**
* MACSec packet flow direction
*/
enum rte_security_macsec_direction {
/** Generate SecTag and encrypt/authenticate */
RTE_SECURITY_MACSEC_DIR_TX,
/** Remove SecTag and decrypt/verify */
RTE_SECURITY_MACSEC_DIR_RX,
};
/** Maximum number of association numbers for a secure channel. */
#define RTE_SECURITY_MACSEC_NUM_AN 4
/** Salt length for MACsec SA. */
#define RTE_SECURITY_MACSEC_SALT_LEN 12
/**
* MACsec secure association (SA) configuration structure.
*/
struct rte_security_macsec_sa {
/** Direction of SA */
enum rte_security_macsec_direction dir;
/** MACsec SA key for AES-GCM 128/256 */
struct {
const uint8_t *data; /**< pointer to key data */
uint16_t length; /**< key length in bytes */
} key;
/** 96-bit value distributed by key agreement protocol */
uint8_t salt[RTE_SECURITY_MACSEC_SALT_LEN];
/** Association number to be used */
uint8_t an : 2;
/** Short Secure Channel Identifier, to be used for XPN cases */
uint32_t ssci;
/** Extended packet number */
uint32_t xpn;
/** Packet number expected/ to be used for next packet of this SA */
uint32_t next_pn;
};
/**
* MACsec Secure Channel configuration parameters.
*/
struct rte_security_macsec_sc {
/** Direction of SC */
enum rte_security_macsec_direction dir;
union {
struct {
/** SAs for each association number */
uint16_t sa_id[RTE_SECURITY_MACSEC_NUM_AN];
/** flag to denote which all SAs are in use for each association number */
uint8_t sa_in_use[RTE_SECURITY_MACSEC_NUM_AN];
/** Channel is active */
uint8_t active : 1;
/** Reserved bitfields for future */
uint8_t reserved : 7;
} sc_rx;
struct {
uint16_t sa_id; /**< SA ID to be used for encryption */
uint16_t sa_id_rekey; /**< Rekeying SA ID to be used for encryption */
uint64_t sci; /**< SCI value to be used if send_sci is set */
uint8_t active : 1; /**< Channel is active */
uint8_t re_key_en : 1; /**< Enable Rekeying */
/** Reserved bitfields for future */
uint8_t reserved : 6;
} sc_tx;
};
};
/**
* MACsec Supported Algorithm list as per IEEE Std 802.1AE.
*/
enum rte_security_macsec_alg {
RTE_SECURITY_MACSEC_ALG_GCM_128, /**< AES-GCM 128 bit block cipher */
RTE_SECURITY_MACSEC_ALG_GCM_256, /**< AES-GCM 256 bit block cipher */
RTE_SECURITY_MACSEC_ALG_GCM_XPN_128, /**< AES-GCM 128 bit block cipher with unique SSCI */
RTE_SECURITY_MACSEC_ALG_GCM_XPN_256, /**< AES-GCM 256 bit block cipher with unique SSCI */
};
/** Disable Validation of MACsec frame. */
#define RTE_SECURITY_MACSEC_VALIDATE_DISABLE 0
/** Validate MACsec frame but do not discard invalid frame. */
#define RTE_SECURITY_MACSEC_VALIDATE_NO_DISCARD 1
/** Validate MACsec frame and discart invalid frame. */
#define RTE_SECURITY_MACSEC_VALIDATE_STRICT 2
/** Do not perform any MACsec operation. */
#define RTE_SECURITY_MACSEC_VALIDATE_NO_OP 3
/**
* MACsec security session configuration
*/
struct rte_security_macsec_xform {
/** Direction of flow/secure channel */
enum rte_security_macsec_direction dir;
/** MACsec algorithm to be used */
enum rte_security_macsec_alg alg;
/** Cipher offset from start of Ethernet header */
uint8_t cipher_off;
/**
* SCI to be used for RX flow identification or
* to set SCI in packet for TX when send_sci is set
*/
uint64_t sci;
/** Receive/transmit secure channel ID created by *rte_security_macsec_sc_create* */
uint16_t sc_id;
union {
struct {
/** MTU for transmit frame (valid for inline processing) */
uint16_t mtu;
/**
* Offset to insert sectag from start of ethernet header or
* from a matching VLAN tag
*/
uint8_t sectag_off;
/** Enable MACsec protection of frames */
uint16_t protect_frames : 1;
/**
* Sectag insertion mode
* If 1, Sectag is inserted at fixed sectag_off set above.
* If 0, Sectag is inserted at relative sectag_off from a matching
* VLAN tag set.
*/
uint16_t sectag_insert_mode : 1;
/** ICV includes source and destination MAC addresses */
uint16_t icv_include_da_sa : 1;
/** Control port is enabled */
uint16_t ctrl_port_enable : 1;
/** Version of MACsec header. Should be 0 */
uint16_t sectag_version : 1;
/** Enable end station. SCI is not valid */
uint16_t end_station : 1;
/** Send SCI along with sectag */
uint16_t send_sci : 1;
/** enable secure channel support EPON - single copy broadcast */
uint16_t scb : 1;
/**
* Enable packet encryption and set RTE_MACSEC_TCI_C and
* RTE_MACSEC_TCI_E in sectag
*/
uint16_t encrypt : 1;
/** Reserved bitfields for future */
uint16_t reserved : 7;
} tx_secy;
struct {
/** Replay Window size to be supported */
uint32_t replay_win_sz;
/** Set bits as per RTE_SECURITY_MACSEC_VALIDATE_* */
uint16_t validate_frames : 2;
/** ICV includes source and destination MAC addresses */
uint16_t icv_include_da_sa : 1;
/** Control port is enabled */
uint16_t ctrl_port_enable : 1;
/** Do not strip SecTAG after processing */
uint16_t preserve_sectag : 1;
/** Do not strip ICV from the packet after processing */
uint16_t preserve_icv : 1;
/** Enable anti-replay protection */
uint16_t replay_protect : 1;
/** Reserved bitfields for future */
uint16_t reserved : 9;
} rx_secy;
};
};
/**
* PDCP Mode of session
*/
enum rte_security_pdcp_domain {
RTE_SECURITY_PDCP_MODE_CONTROL, /**< PDCP control plane */
RTE_SECURITY_PDCP_MODE_DATA, /**< PDCP data plane */
RTE_SECURITY_PDCP_MODE_SHORT_MAC, /**< PDCP short mac */
};
/** PDCP Frame direction */
enum rte_security_pdcp_direction {
RTE_SECURITY_PDCP_UPLINK, /**< Uplink */
RTE_SECURITY_PDCP_DOWNLINK, /**< Downlink */
};
/** PDCP Sequence Number Size selectors */
enum rte_security_pdcp_sn_size {
/** PDCP_SN_SIZE_5: 5bit sequence number */
RTE_SECURITY_PDCP_SN_SIZE_5 = 5,
/** PDCP_SN_SIZE_7: 7bit sequence number */
RTE_SECURITY_PDCP_SN_SIZE_7 = 7,
/** PDCP_SN_SIZE_12: 12bit sequence number */
RTE_SECURITY_PDCP_SN_SIZE_12 = 12,
/** PDCP_SN_SIZE_15: 15bit sequence number */
RTE_SECURITY_PDCP_SN_SIZE_15 = 15,
/** PDCP_SN_SIZE_18: 18bit sequence number */
RTE_SECURITY_PDCP_SN_SIZE_18 = 18
};
/**
* PDCP security association configuration data.
*
* This structure contains data required to create a PDCP security session.
*/
struct rte_security_pdcp_xform {
int8_t bearer; /**< PDCP bearer ID */
/** Enable in order delivery, this field shall be set only if
* driver/HW is capable. See RTE_SECURITY_PDCP_ORDERING_CAP.
*/
uint8_t en_ordering;
/** Notify driver/HW to detect and remove duplicate packets.
* This field should be set only when driver/hw is capable.
* See RTE_SECURITY_PDCP_DUP_DETECT_CAP.
*/
uint8_t remove_duplicates;
/** PDCP mode of operation: Control or data */
enum rte_security_pdcp_domain domain;
/** PDCP Frame Direction 0:UL 1:DL */
enum rte_security_pdcp_direction pkt_dir;
/** Sequence number size, 5/7/12/15/18 */
enum rte_security_pdcp_sn_size sn_size;
/** Starting Hyper Frame Number to be used together with the SN
* from the PDCP frames
*/
uint32_t hfn;
/** HFN Threshold for key renegotiation */
uint32_t hfn_threshold;
/** HFN can be given as a per packet value also.
* As we do not have IV in case of PDCP, and HFN is
* used to generate IV. IV field can be used to get the
* per packet HFN while enq/deq.
* If hfn_ovrd field is set, user is expected to set the
* per packet HFN in place of IV. PMDs will extract the HFN
* and perform operations accordingly.
*/
uint8_t hfn_ovrd;
/** In case of 5G NR, a new protocol (SDAP) header may be set
* inside PDCP payload which should be authenticated but not
* encrypted. Hence, driver should be notified if SDAP is
* enabled or not, so that SDAP header is not encrypted.
*/
uint8_t sdap_enabled;
/** Reserved for future */
uint16_t reserved;
};
/** DOCSIS direction */
enum rte_security_docsis_direction {
RTE_SECURITY_DOCSIS_UPLINK,
/**< Uplink
* - Decryption, followed by CRC Verification
*/
RTE_SECURITY_DOCSIS_DOWNLINK,
/**< Downlink
* - CRC Generation, followed by Encryption
*/
};
/**
* DOCSIS security session configuration.
*
* This structure contains data required to create a DOCSIS security session.
*/
struct rte_security_docsis_xform {
enum rte_security_docsis_direction direction;
/**< DOCSIS direction */
};
/**
* Security session action type.
*/
enum rte_security_session_action_type {
RTE_SECURITY_ACTION_TYPE_NONE,
/**< No security actions */
RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO,
/**< Crypto processing for security protocol is processed inline
* during transmission
*/
RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL,
/**< All security protocol processing is performed inline during
* transmission
*/
RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,
/**< All security protocol processing including crypto is performed
* on a lookaside accelerator
*/
RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO
/**< Similar to ACTION_TYPE_NONE but crypto processing for security
* protocol is processed synchronously by a CPU.
*/
};
/** Security session protocol definition */
enum rte_security_session_protocol {
RTE_SECURITY_PROTOCOL_IPSEC = 1,
/**< IPsec Protocol */
RTE_SECURITY_PROTOCOL_MACSEC,
/**< MACSec Protocol */
RTE_SECURITY_PROTOCOL_PDCP,
/**< PDCP Protocol */
RTE_SECURITY_PROTOCOL_DOCSIS,
/**< DOCSIS Protocol */
};
/**
* Security session configuration
*/
struct rte_security_session_conf {
enum rte_security_session_action_type action_type;
/**< Type of action to be performed on the session */
enum rte_security_session_protocol protocol;
/**< Security protocol to be configured */
RTE_STD_C11
union {
struct rte_security_ipsec_xform ipsec;
struct rte_security_macsec_xform macsec;
struct rte_security_pdcp_xform pdcp;
struct rte_security_docsis_xform docsis;
};
/**< Configuration parameters for security session */
struct rte_crypto_sym_xform *crypto_xform;
/**< Security Session Crypto Transformations. NULL in case of MACsec. */
void *userdata;
/**< Application specific userdata to be saved with session */
};
/**
* Create security session as specified by the session configuration
*
* @param instance security instance
* @param conf session configuration parameters
* @param mp mempool to allocate session objects from
* @return
* - On success, pointer to session
* - On failure, NULL
*/
void *
rte_security_session_create(struct rte_security_ctx *instance,
struct rte_security_session_conf *conf,
struct rte_mempool *mp);
/**
* Update security session as specified by the session configuration
*
* @param instance security instance
* @param sess session to update parameters
* @param conf update configuration parameters
* @return
* - On success returns 0
* - On failure returns a negative errno value.
*/
__rte_experimental
int
rte_security_session_update(struct rte_security_ctx *instance,
void *sess,
struct rte_security_session_conf *conf);
/**
* Get the size of the security session data for a device.
*
* @param instance security instance.
*
* @return
* - Size of the private data, if successful
* - 0 if device is invalid or does not support the operation.
*/
unsigned int
rte_security_session_get_size(struct rte_security_ctx *instance);
/**
* Free security session header and the session private data and
* return it to its original mempool.
*
* @param instance security instance
* @param sess security session to be freed
*
* @return
* - 0 if successful.
* - -EINVAL if session or context instance is NULL.
* - -EBUSY if not all device private data has been freed.
* - -ENOTSUP if destroying private data is not supported.
* - other negative values in case of freeing private data errors.
*/
int
rte_security_session_destroy(struct rte_security_ctx *instance, void *sess);
/**
* @warning
* @b EXPERIMENTAL: this API may change without prior notice
*
* Create MACsec security channel (SC).
*
* @param instance security instance
* @param conf MACsec SC configuration params
* @return
* - secure channel ID if successful.
* - -EINVAL if configuration params are invalid of instance is NULL.
* - -ENOTSUP if device does not support MACsec.
* - -ENOMEM if PMD is not capable to create more SC.
* - other negative value for other errors.
*/
__rte_experimental
int
rte_security_macsec_sc_create(struct rte_security_ctx *instance,
struct rte_security_macsec_sc *conf);
/**
* @warning
* @b EXPERIMENTAL: this API may change without prior notice
*
* Destroy MACsec security channel (SC).
*
* @param instance security instance
* @param sc_id SC ID to be destroyed
* @return
* - 0 if successful.
* - -EINVAL if sc_id is invalid or instance is NULL.
* - -EBUSY if sc is being used by some session.
*/
__rte_experimental
int
rte_security_macsec_sc_destroy(struct rte_security_ctx *instance, uint16_t sc_id);
/**
* @warning
* @b EXPERIMENTAL: this API may change without prior notice
*
* Create MACsec security association (SA).
*
* @param instance security instance
* @param conf MACsec SA configuration params
* @return
* - positive SA ID if successful.
* - -EINVAL if configuration params are invalid of instance is NULL.
* - -ENOTSUP if device does not support MACsec.
* - -ENOMEM if PMD is not capable to create more SAs.
* - other negative value for other errors.
*/
__rte_experimental
int
rte_security_macsec_sa_create(struct rte_security_ctx *instance,
struct rte_security_macsec_sa *conf);
/**
* @warning
* @b EXPERIMENTAL: this API may change without prior notice
*
* Destroy MACsec security association (SA).
*
* @param instance security instance
* @param sa_id SA ID to be destroyed
* @return
* - 0 if successful.
* - -EINVAL if sa_id is invalid or instance is NULL.
* - -EBUSY if sa is being used by some session.
*/
__rte_experimental
int
rte_security_macsec_sa_destroy(struct rte_security_ctx *instance, uint16_t sa_id);
/** Device-specific metadata field type */
typedef uint64_t rte_security_dynfield_t;
/** Dynamic mbuf field for device-specific metadata */
extern int rte_security_dynfield_offset;
/**
* @warning
* @b EXPERIMENTAL: this API may change without prior notice
*
* Get pointer to mbuf field for device-specific metadata.
*
* For performance reason, no check is done,
* the dynamic field may not be registered.
* @see rte_security_dynfield_is_registered
*
* @param mbuf packet to access
* @return pointer to mbuf field
*/
__rte_experimental
static inline rte_security_dynfield_t *
rte_security_dynfield(struct rte_mbuf *mbuf)
{
return RTE_MBUF_DYNFIELD(mbuf,
rte_security_dynfield_offset,
rte_security_dynfield_t *);
}
/**
* @warning
* @b EXPERIMENTAL: this API may change without prior notice
*
* Check whether the dynamic field is registered.
*
* @return true if rte_security_dynfield_register() has been called.
*/
__rte_experimental
static inline bool rte_security_dynfield_is_registered(void)
{
return rte_security_dynfield_offset >= 0;
}
#define RTE_SECURITY_SESS_OPAQUE_DATA_OFF 0
#define RTE_SECURITY_SESS_FAST_MDATA_OFF 1
/**
* Get opaque data from session handle
*/
static inline uint64_t
rte_security_session_opaque_data_get(void *sess)
{
return *((uint64_t *)sess + RTE_SECURITY_SESS_OPAQUE_DATA_OFF);
}
/**
* Set opaque data in session handle
*/
static inline void
rte_security_session_opaque_data_set(void *sess, uint64_t opaque)
{
uint64_t *data;
data = (((uint64_t *)sess) + RTE_SECURITY_SESS_OPAQUE_DATA_OFF);
*data = opaque;
}
/**
* Get fast mdata from session handle
*/
static inline uint64_t
rte_security_session_fast_mdata_get(void *sess)
{
return *((uint64_t *)sess + RTE_SECURITY_SESS_FAST_MDATA_OFF);
}
/**
* Set fast mdata in session handle
*/
static inline void
rte_security_session_fast_mdata_set(void *sess, uint64_t fdata)
{
uint64_t *data;
data = (((uint64_t *)sess) + RTE_SECURITY_SESS_FAST_MDATA_OFF);
*data = fdata;
}
/** Function to call PMD specific function pointer set_pkt_metadata() */
__rte_experimental
extern int __rte_security_set_pkt_metadata(struct rte_security_ctx *instance,
void *sess,
struct rte_mbuf *m, void *params);
/**
* Updates the buffer with device-specific defined metadata
*
* @param instance security instance
* @param sess security session
* @param mb packet mbuf to set metadata on.
* @param params device-specific defined parameters
* required for metadata
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static inline int
rte_security_set_pkt_metadata(struct rte_security_ctx *instance,
void *sess,
struct rte_mbuf *mb, void *params)
{
/* Fast Path */
if (instance->flags & RTE_SEC_CTX_F_FAST_SET_MDATA) {
*rte_security_dynfield(mb) = (rte_security_dynfield_t)
rte_security_session_fast_mdata_get(sess);
return 0;
}
/* Jump to PMD specific function pointer */
return __rte_security_set_pkt_metadata(instance, sess, mb, params);
}
/**
* Attach a session to a symmetric crypto operation
*
* @param sym_op crypto operation
* @param sess security session
*/
static inline int
__rte_security_attach_session(struct rte_crypto_sym_op *sym_op, void *sess)
{
sym_op->session = sess;
return 0;
}
/**
* Attach a session to a crypto operation.
* This API is needed only in case of RTE_SECURITY_SESS_CRYPTO_PROTO_OFFLOAD
* For other rte_security_session_action_type, ol_flags in rte_mbuf may be
* defined to perform security operations.
*
* @param op crypto operation
* @param sess security session
*/
static inline int
rte_security_attach_session(struct rte_crypto_op *op,
void *sess)
{
if (unlikely(op->type != RTE_CRYPTO_OP_TYPE_SYMMETRIC))
return -EINVAL;
op->sess_type = RTE_CRYPTO_OP_SECURITY_SESSION;
return __rte_security_attach_session(op->sym, sess);
}
struct rte_security_macsec_secy_stats {
uint64_t ctl_pkt_bcast_cnt;
uint64_t ctl_pkt_mcast_cnt;
uint64_t ctl_pkt_ucast_cnt;
uint64_t ctl_octet_cnt;
uint64_t unctl_pkt_bcast_cnt;
uint64_t unctl_pkt_mcast_cnt;
uint64_t unctl_pkt_ucast_cnt;
uint64_t unctl_octet_cnt;
/* Valid only for Rx */
uint64_t octet_decrypted_cnt;
uint64_t octet_validated_cnt;
uint64_t pkt_port_disabled_cnt;
uint64_t pkt_badtag_cnt;
uint64_t pkt_nosa_cnt;
uint64_t pkt_nosaerror_cnt;
uint64_t pkt_tagged_ctl_cnt;
uint64_t pkt_untaged_cnt;
uint64_t pkt_ctl_cnt;
uint64_t pkt_notag_cnt;
/* Valid only for Tx */
uint64_t octet_encrypted_cnt;
uint64_t octet_protected_cnt;
uint64_t pkt_noactivesa_cnt;
uint64_t pkt_toolong_cnt;
uint64_t pkt_untagged_cnt;
};
struct rte_security_macsec_sc_stats {
/* Rx */
uint64_t hit_cnt;
uint64_t pkt_invalid_cnt;
uint64_t pkt_late_cnt;
uint64_t pkt_notvalid_cnt;
uint64_t pkt_unchecked_cnt;
uint64_t pkt_delay_cnt;
uint64_t pkt_ok_cnt;
uint64_t octet_decrypt_cnt;
uint64_t octet_validate_cnt;
/* Tx */
uint64_t pkt_encrypt_cnt;
uint64_t pkt_protected_cnt;
uint64_t octet_encrypt_cnt;
uint64_t octet_protected_cnt;
};
struct rte_security_macsec_sa_stats {
/* Rx */
uint64_t pkt_invalid_cnt;
uint64_t pkt_nosaerror_cnt;
uint64_t pkt_notvalid_cnt;
uint64_t pkt_ok_cnt;
uint64_t pkt_nosa_cnt;
/* Tx */
uint64_t pkt_encrypt_cnt;
uint64_t pkt_protected_cnt;
};
struct rte_security_ipsec_stats {
uint64_t ipackets; /**< Successfully received IPsec packets. */
uint64_t opackets; /**< Successfully transmitted IPsec packets.*/
uint64_t ibytes; /**< Successfully received IPsec bytes. */
uint64_t obytes; /**< Successfully transmitted IPsec bytes. */
uint64_t ierrors; /**< IPsec packets receive/decrypt errors. */
uint64_t oerrors; /**< IPsec packets transmit/encrypt errors. */
uint64_t reserved1; /**< Reserved for future use. */
uint64_t reserved2; /**< Reserved for future use. */
};
struct rte_security_pdcp_stats {
uint64_t reserved;
};
struct rte_security_docsis_stats {
uint64_t reserved;
};
struct rte_security_stats {
enum rte_security_session_protocol protocol;
/**< Security protocol to be configured */
RTE_STD_C11
union {
struct rte_security_macsec_secy_stats macsec;
struct rte_security_ipsec_stats ipsec;
struct rte_security_pdcp_stats pdcp;
struct rte_security_docsis_stats docsis;
};
};
/**
* Get security session statistics
*
* @param instance security instance
* @param sess security session
* If security session is NULL then global (per security instance) statistics
* will be retrieved, if supported. Global statistics collection is not
* dependent on the per session statistics configuration.
* @param stats statistics
* @return
* - On success, return 0
* - On failure, a negative value
*/
__rte_experimental
int
rte_security_session_stats_get(struct rte_security_ctx *instance,
void *sess,
struct rte_security_stats *stats);
/**
* @warning
* @b EXPERIMENTAL: this API may change without prior notice
*
* Get MACsec SA statistics.
*
* @param instance security instance
* @param sa_id SA ID for which stats are needed
* @param stats statistics
* @return
* - On success, return 0.
* - On failure, a negative value.
*/
__rte_experimental
int
rte_security_macsec_sa_stats_get(struct rte_security_ctx *instance,
uint16_t sa_id,
struct rte_security_macsec_sa_stats *stats);
/**
* @warning
* @b EXPERIMENTAL: this API may change without prior notice
*
* Get MACsec SC statistics.
*
* @param instance security instance
* @param sc_id SC ID for which stats are needed
* @param stats SC statistics
* @return
* - On success, return 0.
* - On failure, a negative value.
*/
__rte_experimental
int
rte_security_macsec_sc_stats_get(struct rte_security_ctx *instance,
uint16_t sc_id,
struct rte_security_macsec_sc_stats *stats);
/**
* Security capability definition
*/
struct rte_security_capability {
enum rte_security_session_action_type action;
/**< Security action type*/
enum rte_security_session_protocol protocol;
/**< Security protocol */
RTE_STD_C11
union {
struct {
enum rte_security_ipsec_sa_protocol proto;
/**< IPsec SA protocol */
enum rte_security_ipsec_sa_mode mode;
/**< IPsec SA mode */
enum rte_security_ipsec_sa_direction direction;
/**< IPsec SA direction */
struct rte_security_ipsec_sa_options options;
/**< IPsec SA supported options */
uint32_t replay_win_sz_max;
/**< IPsec Anti Replay Window Size. A '0' value
* indicates that Anti Replay is not supported.
*/
} ipsec;
/**< IPsec capability */
struct {
/** MTU supported for inline TX */
uint16_t mtu;
/** MACsec algorithm to be used */
enum rte_security_macsec_alg alg;
/** Maximum number of secure channels supported */
uint16_t max_nb_sc;
/** Maximum number of SAs supported */
uint16_t max_nb_sa;
/** Maximum number of SAs supported */
uint16_t max_nb_sess;
/** MACsec anti replay window size */
uint32_t replay_win_sz;
/** Support Sectag insertion at relative offset */
uint16_t relative_sectag_insert : 1;
/** Support Sectag insertion at fixed offset */
uint16_t fixed_sectag_insert : 1;
/** ICV includes source and destination MAC addresses */
uint16_t icv_include_da_sa : 1;
/** Control port traffic is supported */
uint16_t ctrl_port_enable : 1;
/** Do not strip SecTAG after processing */
uint16_t preserve_sectag : 1;
/** Do not strip ICV from the packet after processing */
uint16_t preserve_icv : 1;
/** Support frame validation as per RTE_SECURITY_MACSEC_VALIDATE_* */
uint16_t validate_frames : 1;
/** support re-keying on SA expiry */
uint16_t re_key : 1;
/** support anti replay */
uint16_t anti_replay : 1;
/** Reserved bitfields for future capabilities */
uint16_t reserved : 7;
} macsec;
/**< MACsec capability */
struct {
enum rte_security_pdcp_domain domain;
/**< PDCP mode of operation: Control or data */
uint32_t capa_flags;
/**< Capability flags, see RTE_SECURITY_PDCP_* */
} pdcp;
/**< PDCP capability */
struct {
enum rte_security_docsis_direction direction;
/**< DOCSIS direction */
} docsis;
/**< DOCSIS capability */
};
const struct rte_cryptodev_capabilities *crypto_capabilities;
/**< Corresponding crypto capabilities for security capability */
uint32_t ol_flags;
/**< Device offload flags */
};
/** Underlying Hardware/driver which support PDCP may or may not support
* packet ordering. Set RTE_SECURITY_PDCP_ORDERING_CAP if it support.
* If it is not set, driver/HW assumes packets received are in order
* and it will be application's responsibility to maintain ordering.
*/
#define RTE_SECURITY_PDCP_ORDERING_CAP 0x00000001
/** Underlying Hardware/driver which support PDCP may or may not detect
* duplicate packet. Set RTE_SECURITY_PDCP_DUP_DETECT_CAP if it support.
* If it is not set, driver/HW assumes there is no duplicate packet received.
*/
#define RTE_SECURITY_PDCP_DUP_DETECT_CAP 0x00000002
#define RTE_SECURITY_TX_OLOAD_NEED_MDATA 0x00000001
/**< HW needs metadata update, see rte_security_set_pkt_metadata().
*/
#define RTE_SECURITY_TX_HW_TRAILER_OFFLOAD 0x00000002
/**< HW constructs trailer of packets
* Transmitted packets will have the trailer added to them
* by hardware. The next protocol field will be based on
* the mbuf->inner_esp_next_proto field.
*/
#define RTE_SECURITY_RX_HW_TRAILER_OFFLOAD 0x00010000
/**< HW removes trailer of packets
* Received packets have no trailer, the next protocol field
* is supplied in the mbuf->inner_esp_next_proto field.
* Inner packet is not modified.
*/
/**
* Security capability index used to query a security instance for a specific
* security capability
*/
struct rte_security_capability_idx {
enum rte_security_session_action_type action;
enum rte_security_session_protocol protocol;
RTE_STD_C11
union {
struct {
enum rte_security_ipsec_sa_protocol proto;
enum rte_security_ipsec_sa_mode mode;
enum rte_security_ipsec_sa_direction direction;
} ipsec;
struct {
enum rte_security_pdcp_domain domain;
uint32_t capa_flags;
} pdcp;
struct {
enum rte_security_docsis_direction direction;
} docsis;
};
};
/**
* Returns array of security instance capabilities
*
* @param instance Security instance.
*
* @return
* - Returns array of security capabilities.
* - Return NULL if no capabilities available.
*/
const struct rte_security_capability *
rte_security_capabilities_get(struct rte_security_ctx *instance);
/**
* Query if a specific capability is available on security instance
*
* @param instance security instance.
* @param idx security capability index to match against
*
* @return
* - Returns pointer to security capability on match of capability
* index criteria.
* - Return NULL if the capability not matched on security instance.
*/
const struct rte_security_capability *
rte_security_capability_get(struct rte_security_ctx *instance,
struct rte_security_capability_idx *idx);
#ifdef __cplusplus
}
#endif
#endif /* _RTE_SECURITY_H_ */