f-stack/dpdk/lib/ip_frag/rte_ipv4_fragmentation.c

436 lines
12 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stddef.h>
#include <errno.h>
#include <rte_ether.h>
#include "ip_frag_common.h"
/* Fragment Offset */
#define RTE_IPV4_HDR_DF_SHIFT 14
#define RTE_IPV4_HDR_MF_SHIFT 13
#define RTE_IPV4_HDR_FO_SHIFT 3
#define IPV4_HDR_DF_MASK (1 << RTE_IPV4_HDR_DF_SHIFT)
#define IPV4_HDR_MF_MASK (1 << RTE_IPV4_HDR_MF_SHIFT)
#define IPV4_HDR_FO_ALIGN (1 << RTE_IPV4_HDR_FO_SHIFT)
#define IPV4_HDR_MAX_LEN 60
static inline void __fill_ipv4hdr_frag(struct rte_ipv4_hdr *dst,
const struct rte_ipv4_hdr *src, uint16_t header_len,
uint16_t len, uint16_t fofs, uint16_t dofs, uint32_t mf)
{
memcpy(dst, src, header_len);
fofs = (uint16_t)(fofs + (dofs >> RTE_IPV4_HDR_FO_SHIFT));
fofs = (uint16_t)(fofs | mf << RTE_IPV4_HDR_MF_SHIFT);
dst->fragment_offset = rte_cpu_to_be_16(fofs);
dst->total_length = rte_cpu_to_be_16(len);
dst->hdr_checksum = 0;
}
static inline void __free_fragments(struct rte_mbuf *mb[], uint32_t num)
{
uint32_t i;
for (i = 0; i != num; i++)
rte_pktmbuf_free(mb[i]);
}
static inline uint16_t __create_ipopt_frag_hdr(uint8_t *iph,
uint16_t ipopt_len, uint8_t *ipopt_frag_hdr)
{
uint16_t len = ipopt_len;
struct rte_ipv4_hdr *iph_opt = (struct rte_ipv4_hdr *)ipopt_frag_hdr;
ipopt_len = 0;
memcpy(ipopt_frag_hdr, iph, sizeof(struct rte_ipv4_hdr));
ipopt_frag_hdr += sizeof(struct rte_ipv4_hdr);
uint8_t *p_opt = iph + sizeof(struct rte_ipv4_hdr);
while (len > 0) {
if (unlikely(*p_opt == RTE_IPV4_HDR_OPT_NOP)) {
len--;
p_opt++;
continue;
} else if (unlikely(*p_opt == RTE_IPV4_HDR_OPT_EOL))
break;
if (unlikely(p_opt[1] < 2 || p_opt[1] > len))
break;
if (RTE_IPV4_HDR_OPT_COPIED(*p_opt)) {
memcpy(ipopt_frag_hdr + ipopt_len,
p_opt, p_opt[1]);
ipopt_len += p_opt[1];
}
len -= p_opt[1];
p_opt += p_opt[1];
}
len = RTE_ALIGN_CEIL(ipopt_len, RTE_IPV4_IHL_MULTIPLIER);
memset(ipopt_frag_hdr + ipopt_len,
RTE_IPV4_HDR_OPT_EOL, len - ipopt_len);
ipopt_len = len;
iph_opt->ihl = (sizeof(struct rte_ipv4_hdr) + ipopt_len) /
RTE_IPV4_IHL_MULTIPLIER;
return ipopt_len;
}
/**
* IPv4 fragmentation.
*
* This function implements the fragmentation of IPv4 packets.
*
* @param pkt_in
* The input packet.
* @param pkts_out
* Array storing the output fragments.
* @param mtu_size
* Size in bytes of the Maximum Transfer Unit (MTU) for the outgoing IPv4
* datagrams. This value includes the size of the IPv4 header.
* @param pool_direct
* MBUF pool used for allocating direct buffers for the output fragments.
* @param pool_indirect
* MBUF pool used for allocating indirect buffers for the output fragments.
* @return
* Upon successful completion - number of output fragments placed
* in the pkts_out array.
* Otherwise - (-1) * <errno>.
*/
int32_t
rte_ipv4_fragment_packet(struct rte_mbuf *pkt_in,
struct rte_mbuf **pkts_out,
uint16_t nb_pkts_out,
uint16_t mtu_size,
struct rte_mempool *pool_direct,
struct rte_mempool *pool_indirect)
{
struct rte_mbuf *in_seg = NULL;
struct rte_ipv4_hdr *in_hdr;
uint32_t out_pkt_pos, in_seg_data_pos;
uint32_t more_in_segs;
uint16_t fragment_offset, flag_offset, frag_size, header_len;
uint16_t frag_bytes_remaining;
uint8_t ipopt_frag_hdr[IPV4_HDR_MAX_LEN];
uint16_t ipopt_len;
/*
* Formal parameter checking.
*/
if (unlikely(pkt_in == NULL) || unlikely(pkts_out == NULL) ||
unlikely(nb_pkts_out == 0) ||
unlikely(pool_direct == NULL) || unlikely(pool_indirect == NULL) ||
unlikely(mtu_size < RTE_ETHER_MIN_MTU))
return -EINVAL;
in_hdr = rte_pktmbuf_mtod(pkt_in, struct rte_ipv4_hdr *);
header_len = (in_hdr->version_ihl & RTE_IPV4_HDR_IHL_MASK) *
RTE_IPV4_IHL_MULTIPLIER;
/* Check IP header length */
if (unlikely(pkt_in->data_len < header_len) ||
unlikely(mtu_size < header_len))
return -EINVAL;
/*
* Ensure the IP payload length of all fragments is aligned to a
* multiple of 8 bytes as per RFC791 section 2.3.
*/
frag_size = RTE_ALIGN_FLOOR((mtu_size - header_len),
IPV4_HDR_FO_ALIGN);
flag_offset = rte_cpu_to_be_16(in_hdr->fragment_offset);
/* If Don't Fragment flag is set */
if (unlikely ((flag_offset & IPV4_HDR_DF_MASK) != 0))
return -ENOTSUP;
/* Check that pkts_out is big enough to hold all fragments */
if (unlikely(frag_size * nb_pkts_out <
(uint16_t)(pkt_in->pkt_len - header_len)))
return -EINVAL;
in_seg = pkt_in;
in_seg_data_pos = header_len;
out_pkt_pos = 0;
fragment_offset = 0;
ipopt_len = header_len - sizeof(struct rte_ipv4_hdr);
if (unlikely(ipopt_len > RTE_IPV4_HDR_OPT_MAX_LEN))
return -EINVAL;
more_in_segs = 1;
while (likely(more_in_segs)) {
struct rte_mbuf *out_pkt = NULL, *out_seg_prev = NULL;
uint32_t more_out_segs;
struct rte_ipv4_hdr *out_hdr;
/* Allocate direct buffer */
out_pkt = rte_pktmbuf_alloc(pool_direct);
if (unlikely(out_pkt == NULL)) {
__free_fragments(pkts_out, out_pkt_pos);
return -ENOMEM;
}
/* Reserve space for the IP header that will be built later */
out_pkt->data_len = header_len;
out_pkt->pkt_len = header_len;
frag_bytes_remaining = frag_size;
out_seg_prev = out_pkt;
more_out_segs = 1;
while (likely(more_out_segs && more_in_segs)) {
struct rte_mbuf *out_seg = NULL;
uint32_t len;
/* Allocate indirect buffer */
out_seg = rte_pktmbuf_alloc(pool_indirect);
if (unlikely(out_seg == NULL)) {
rte_pktmbuf_free(out_pkt);
__free_fragments(pkts_out, out_pkt_pos);
return -ENOMEM;
}
out_seg_prev->next = out_seg;
out_seg_prev = out_seg;
/* Prepare indirect buffer */
rte_pktmbuf_attach(out_seg, in_seg);
len = frag_bytes_remaining;
if (len > (in_seg->data_len - in_seg_data_pos)) {
len = in_seg->data_len - in_seg_data_pos;
}
out_seg->data_off = in_seg->data_off + in_seg_data_pos;
out_seg->data_len = (uint16_t)len;
out_pkt->pkt_len = (uint16_t)(len +
out_pkt->pkt_len);
out_pkt->nb_segs += 1;
in_seg_data_pos += len;
frag_bytes_remaining -= len;
/* Current output packet (i.e. fragment) done ? */
if (unlikely(frag_bytes_remaining == 0))
more_out_segs = 0;
/* Current input segment done ? */
if (unlikely(in_seg_data_pos == in_seg->data_len)) {
in_seg = in_seg->next;
in_seg_data_pos = 0;
if (unlikely(in_seg == NULL))
more_in_segs = 0;
}
}
/* Build the IP header */
out_hdr = rte_pktmbuf_mtod(out_pkt, struct rte_ipv4_hdr *);
__fill_ipv4hdr_frag(out_hdr, in_hdr, header_len,
(uint16_t)out_pkt->pkt_len,
flag_offset, fragment_offset, more_in_segs);
if (unlikely((fragment_offset == 0) && (ipopt_len) &&
((flag_offset & RTE_IPV4_HDR_OFFSET_MASK) == 0))) {
ipopt_len = __create_ipopt_frag_hdr((uint8_t *)in_hdr,
ipopt_len, ipopt_frag_hdr);
fragment_offset = (uint16_t)(fragment_offset +
out_pkt->pkt_len - header_len);
out_pkt->l3_len = header_len;
header_len = sizeof(struct rte_ipv4_hdr) + ipopt_len;
in_hdr = (struct rte_ipv4_hdr *)ipopt_frag_hdr;
} else {
fragment_offset = (uint16_t)(fragment_offset +
out_pkt->pkt_len - header_len);
out_pkt->l3_len = header_len;
}
/* Write the fragment to the output list */
pkts_out[out_pkt_pos] = out_pkt;
out_pkt_pos ++;
}
return out_pkt_pos;
}
/**
* IPv4 fragmentation by copy.
*
* This function implements the fragmentation of IPv4 packets by copy
* non-segmented mbuf.
* This function is mainly used to adapt Tx MBUF_FAST_FREE offload.
* MBUF_FAST_FREE: Device supports optimization for fast release of mbufs.
* When set, application must guarantee that per-queue all mbufs comes from
* the same mempool, has refcnt = 1, direct and non-segmented.
*
* @param pkt_in
* The input packet.
* @param pkts_out
* Array storing the output fragments.
* @param nb_pkts_out
* Number of fragments.
* @param mtu_size
* Size in bytes of the Maximum Transfer Unit (MTU) for the outgoing IPv4
* datagrams. This value includes the size of the IPv4 header.
* @param pool_direct
* MBUF pool used for allocating direct buffers for the output fragments.
* @return
* Upon successful completion - number of output fragments placed
* in the pkts_out array.
* Otherwise - (-1) * errno.
*/
int32_t
rte_ipv4_fragment_copy_nonseg_packet(struct rte_mbuf *pkt_in,
struct rte_mbuf **pkts_out,
uint16_t nb_pkts_out,
uint16_t mtu_size,
struct rte_mempool *pool_direct)
{
struct rte_mbuf *in_seg = NULL;
struct rte_ipv4_hdr *in_hdr;
uint32_t out_pkt_pos, in_seg_data_pos;
uint32_t more_in_segs;
uint16_t fragment_offset, flag_offset, frag_size, header_len;
uint16_t frag_bytes_remaining;
uint8_t ipopt_frag_hdr[IPV4_HDR_MAX_LEN];
uint16_t ipopt_len;
/*
* Formal parameter checking.
*/
if (unlikely(pkt_in == NULL) || unlikely(pkts_out == NULL) ||
unlikely(nb_pkts_out == 0) || unlikely(pool_direct == NULL) ||
unlikely(mtu_size < RTE_ETHER_MIN_MTU))
return -EINVAL;
in_hdr = rte_pktmbuf_mtod(pkt_in, struct rte_ipv4_hdr *);
header_len = (in_hdr->version_ihl & RTE_IPV4_HDR_IHL_MASK) *
RTE_IPV4_IHL_MULTIPLIER;
/* Check IP header length */
if (unlikely(pkt_in->data_len < header_len) ||
unlikely(mtu_size < header_len))
return -EINVAL;
/*
* Ensure the IP payload length of all fragments is aligned to a
* multiple of 8 bytes as per RFC791 section 2.3.
*/
frag_size = RTE_ALIGN_FLOOR((mtu_size - header_len),
IPV4_HDR_FO_ALIGN);
flag_offset = rte_cpu_to_be_16(in_hdr->fragment_offset);
/* If Don't Fragment flag is set */
if (unlikely((flag_offset & IPV4_HDR_DF_MASK) != 0))
return -ENOTSUP;
/* Check that pkts_out is big enough to hold all fragments */
if (unlikely(frag_size * nb_pkts_out <
(uint16_t)(pkt_in->pkt_len - header_len)))
return -EINVAL;
in_seg = pkt_in;
in_seg_data_pos = header_len;
out_pkt_pos = 0;
fragment_offset = 0;
ipopt_len = header_len - sizeof(struct rte_ipv4_hdr);
if (unlikely(ipopt_len > RTE_IPV4_HDR_OPT_MAX_LEN))
return -EINVAL;
more_in_segs = 1;
while (likely(more_in_segs)) {
struct rte_mbuf *out_pkt = NULL;
uint32_t more_out_segs;
struct rte_ipv4_hdr *out_hdr;
/* Allocate direct buffer */
out_pkt = rte_pktmbuf_alloc(pool_direct);
if (unlikely(out_pkt == NULL)) {
__free_fragments(pkts_out, out_pkt_pos);
return -ENOMEM;
}
if (unlikely(rte_pktmbuf_tailroom(out_pkt) < frag_size)) {
rte_pktmbuf_free(out_pkt);
__free_fragments(pkts_out, out_pkt_pos);
return -EINVAL;
}
/* Reserve space for the IP header that will be built later */
out_pkt->data_len = header_len;
out_pkt->pkt_len = header_len;
frag_bytes_remaining = frag_size;
more_out_segs = 1;
while (likely(more_out_segs && more_in_segs)) {
uint32_t len;
len = frag_bytes_remaining;
if (len > (in_seg->data_len - in_seg_data_pos))
len = in_seg->data_len - in_seg_data_pos;
memcpy(rte_pktmbuf_mtod_offset(out_pkt, char *,
out_pkt->data_len),
rte_pktmbuf_mtod_offset(in_seg, char *,
in_seg_data_pos),
len);
in_seg_data_pos += len;
frag_bytes_remaining -= len;
out_pkt->data_len += len;
/* Current output packet (i.e. fragment) done ? */
if (unlikely(frag_bytes_remaining == 0))
more_out_segs = 0;
/* Current input segment done ? */
if (unlikely(in_seg_data_pos == in_seg->data_len)) {
in_seg = in_seg->next;
in_seg_data_pos = 0;
if (unlikely(in_seg == NULL))
more_in_segs = 0;
}
}
/* Build the IP header */
out_pkt->pkt_len = out_pkt->data_len;
out_hdr = rte_pktmbuf_mtod(out_pkt, struct rte_ipv4_hdr *);
__fill_ipv4hdr_frag(out_hdr, in_hdr, header_len,
(uint16_t)out_pkt->pkt_len,
flag_offset, fragment_offset, more_in_segs);
if (unlikely((fragment_offset == 0) && (ipopt_len) &&
((flag_offset & RTE_IPV4_HDR_OFFSET_MASK) == 0))) {
ipopt_len = __create_ipopt_frag_hdr((uint8_t *)in_hdr,
ipopt_len, ipopt_frag_hdr);
fragment_offset = (uint16_t)(fragment_offset +
out_pkt->pkt_len - header_len);
out_pkt->l3_len = header_len;
header_len = sizeof(struct rte_ipv4_hdr) + ipopt_len;
in_hdr = (struct rte_ipv4_hdr *)ipopt_frag_hdr;
} else {
fragment_offset = (uint16_t)(fragment_offset +
out_pkt->pkt_len - header_len);
out_pkt->l3_len = header_len;
}
/* Write the fragment to the output list */
pkts_out[out_pkt_pos] = out_pkt;
out_pkt_pos++;
}
return out_pkt_pos;
}