mirror of https://github.com/F-Stack/f-stack.git
680 lines
18 KiB
C
680 lines
18 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2018 Cavium Networks
|
|
*/
|
|
|
|
#ifndef _RTE_CRYPTO_ASYM_H_
|
|
#define _RTE_CRYPTO_ASYM_H_
|
|
|
|
/**
|
|
* @file rte_crypto_asym.h
|
|
*
|
|
* RTE Definitions for Asymmetric Cryptography
|
|
*
|
|
* Defines asymmetric algorithms and modes, as well as supported
|
|
* asymmetric crypto operations.
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
|
|
#include <rte_memory.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_common.h>
|
|
|
|
#include "rte_crypto_sym.h"
|
|
|
|
struct rte_cryptodev_asym_session;
|
|
|
|
/** asym xform type name strings */
|
|
extern const char *
|
|
rte_crypto_asym_xform_strings[];
|
|
|
|
/** asym key exchange operation type name strings */
|
|
extern const char *
|
|
rte_crypto_asym_ke_strings[];
|
|
|
|
/** asym operations type name strings */
|
|
extern const char *
|
|
rte_crypto_asym_op_strings[];
|
|
|
|
#define RTE_CRYPTO_ASYM_FLAG_PUB_KEY_NO_PADDING RTE_BIT32(0)
|
|
/**<
|
|
* Flag to denote public key will be returned without leading zero bytes
|
|
* and if the flag is not set, public key will be padded to the left with
|
|
* zeros to the size of the underlying algorithm (default)
|
|
*/
|
|
#define RTE_CRYPTO_ASYM_FLAG_SHARED_KEY_NO_PADDING RTE_BIT32(1)
|
|
/**<
|
|
* Flag to denote shared secret will be returned without leading zero bytes
|
|
* and if the flag is not set, shared secret will be padded to the left with
|
|
* zeros to the size of the underlying algorithm (default)
|
|
*/
|
|
|
|
/**
|
|
* List of elliptic curves. This enum aligns with
|
|
* TLS "Supported Groups" registry (previously known as
|
|
* NamedCurve registry). FFDH groups are not, and will not
|
|
* be included in this list.
|
|
* Deprecation for selected curve in TLS does not deprecate
|
|
* the selected curve in Cryptodev.
|
|
* https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
|
|
*/
|
|
enum rte_crypto_curve_id {
|
|
RTE_CRYPTO_EC_GROUP_SECP192R1 = 19,
|
|
RTE_CRYPTO_EC_GROUP_SECP224R1 = 21,
|
|
RTE_CRYPTO_EC_GROUP_SECP256R1 = 23,
|
|
RTE_CRYPTO_EC_GROUP_SECP384R1 = 24,
|
|
RTE_CRYPTO_EC_GROUP_SECP521R1 = 25
|
|
};
|
|
|
|
/**
|
|
* Asymmetric crypto transformation types.
|
|
* Each xform type maps to one asymmetric algorithm
|
|
* performing specific operation
|
|
*
|
|
*/
|
|
enum rte_crypto_asym_xform_type {
|
|
RTE_CRYPTO_ASYM_XFORM_UNSPECIFIED = 0,
|
|
/**< Invalid xform. */
|
|
RTE_CRYPTO_ASYM_XFORM_NONE,
|
|
/**< Xform type None.
|
|
* May be supported by PMD to support
|
|
* passthrough op for debugging purpose.
|
|
* if xform_type none , op_type is disregarded.
|
|
*/
|
|
RTE_CRYPTO_ASYM_XFORM_RSA,
|
|
/**< RSA. Performs Encrypt, Decrypt, Sign and Verify.
|
|
* Refer to rte_crypto_asym_op_type
|
|
*/
|
|
RTE_CRYPTO_ASYM_XFORM_DH,
|
|
/**< Diffie-Hellman.
|
|
* Performs Key Generate and Shared Secret Compute.
|
|
* Refer to rte_crypto_asym_op_type
|
|
*/
|
|
RTE_CRYPTO_ASYM_XFORM_DSA,
|
|
/**< Digital Signature Algorithm
|
|
* Performs Signature Generation and Verification.
|
|
* Refer to rte_crypto_asym_op_type
|
|
*/
|
|
RTE_CRYPTO_ASYM_XFORM_MODINV,
|
|
/**< Modular Multiplicative Inverse
|
|
* Perform Modular Multiplicative Inverse b^(-1) mod n
|
|
*/
|
|
RTE_CRYPTO_ASYM_XFORM_MODEX,
|
|
/**< Modular Exponentiation
|
|
* Perform Modular Exponentiation b^e mod n
|
|
*/
|
|
RTE_CRYPTO_ASYM_XFORM_ECDSA,
|
|
/**< Elliptic Curve Digital Signature Algorithm
|
|
* Perform Signature Generation and Verification.
|
|
*/
|
|
RTE_CRYPTO_ASYM_XFORM_ECDH,
|
|
/**< Elliptic Curve Diffie Hellman */
|
|
RTE_CRYPTO_ASYM_XFORM_ECPM,
|
|
/**< Elliptic Curve Point Multiplication */
|
|
RTE_CRYPTO_ASYM_XFORM_ECFPM,
|
|
/**< Elliptic Curve Fixed Point Multiplication */
|
|
RTE_CRYPTO_ASYM_XFORM_TYPE_LIST_END
|
|
/**< End of list */
|
|
};
|
|
|
|
/**
|
|
* Asymmetric crypto operation type variants
|
|
*/
|
|
enum rte_crypto_asym_op_type {
|
|
RTE_CRYPTO_ASYM_OP_ENCRYPT,
|
|
/**< Asymmetric Encrypt operation */
|
|
RTE_CRYPTO_ASYM_OP_DECRYPT,
|
|
/**< Asymmetric Decrypt operation */
|
|
RTE_CRYPTO_ASYM_OP_SIGN,
|
|
/**< Signature Generation operation */
|
|
RTE_CRYPTO_ASYM_OP_VERIFY,
|
|
/**< Signature Verification operation */
|
|
RTE_CRYPTO_ASYM_OP_LIST_END
|
|
};
|
|
|
|
/**
|
|
* Asymmetric crypto key exchange operation type
|
|
*/
|
|
enum rte_crypto_asym_ke_type {
|
|
RTE_CRYPTO_ASYM_KE_PRIV_KEY_GENERATE,
|
|
/**< Private Key generation operation */
|
|
RTE_CRYPTO_ASYM_KE_PUB_KEY_GENERATE,
|
|
/**< Public Key generation operation */
|
|
RTE_CRYPTO_ASYM_KE_SHARED_SECRET_COMPUTE,
|
|
/**< Shared Secret compute operation */
|
|
RTE_CRYPTO_ASYM_KE_PUB_KEY_VERIFY
|
|
/**< Public Key Verification - can be used for
|
|
* elliptic curve point validation.
|
|
*/
|
|
};
|
|
|
|
/**
|
|
* Padding types for RSA signature.
|
|
*/
|
|
enum rte_crypto_rsa_padding_type {
|
|
RTE_CRYPTO_RSA_PADDING_NONE = 0,
|
|
/**< RSA no padding scheme */
|
|
RTE_CRYPTO_RSA_PADDING_PKCS1_5,
|
|
/**< RSA PKCS#1 PKCS1-v1_5 padding scheme. For signatures block type 01,
|
|
* for encryption block type 02 are used.
|
|
*/
|
|
RTE_CRYPTO_RSA_PADDING_OAEP,
|
|
/**< RSA PKCS#1 OAEP padding scheme */
|
|
RTE_CRYPTO_RSA_PADDING_PSS,
|
|
/**< RSA PKCS#1 PSS padding scheme */
|
|
RTE_CRYPTO_RSA_PADDING_TYPE_LIST_END
|
|
};
|
|
|
|
/**
|
|
* RSA private key type enumeration
|
|
*
|
|
* enumerates private key format required to perform RSA crypto
|
|
* transform.
|
|
*
|
|
*/
|
|
enum rte_crypto_rsa_priv_key_type {
|
|
RTE_RSA_KEY_TYPE_EXP,
|
|
/**< RSA private key is an exponent */
|
|
RTE_RSA_KEY_TYPE_QT,
|
|
/**< RSA private key is in quintuple format
|
|
* See rte_crypto_rsa_priv_key_qt
|
|
*/
|
|
};
|
|
|
|
/**
|
|
* Buffer to hold crypto params required for asym operations.
|
|
*
|
|
* These buffers can be used for both input to PMD and output from PMD. When
|
|
* used for output from PMD, application has to ensure the buffer is large
|
|
* enough to hold the target data.
|
|
*
|
|
* If an operation requires the PMD to generate a random number,
|
|
* and the device supports CSRNG, 'data' should be set to NULL.
|
|
* The crypto parameter in question will not be used by the PMD,
|
|
* as it is internally generated.
|
|
*/
|
|
typedef struct rte_crypto_param_t {
|
|
uint8_t *data;
|
|
/**< pointer to buffer holding data */
|
|
rte_iova_t iova;
|
|
/**< IO address of data buffer */
|
|
size_t length;
|
|
/**< length of data in bytes */
|
|
} rte_crypto_param;
|
|
|
|
/** Unsigned big-integer in big-endian format */
|
|
typedef rte_crypto_param rte_crypto_uint;
|
|
|
|
/**
|
|
* Structure for elliptic curve point
|
|
*/
|
|
struct rte_crypto_ec_point {
|
|
rte_crypto_param x;
|
|
/**< X coordinate */
|
|
rte_crypto_param y;
|
|
/**< Y coordinate */
|
|
};
|
|
|
|
/**
|
|
* Structure describing RSA private key in quintuple format.
|
|
* See PKCS V1.5 RSA Cryptography Standard.
|
|
*/
|
|
struct rte_crypto_rsa_priv_key_qt {
|
|
rte_crypto_uint p;
|
|
/**< the first factor */
|
|
rte_crypto_uint q;
|
|
/**< the second factor */
|
|
rte_crypto_uint dP;
|
|
/**< the first factor's CRT exponent */
|
|
rte_crypto_uint dQ;
|
|
/**< the second's factor's CRT exponent */
|
|
rte_crypto_uint qInv;
|
|
/**< the CRT coefficient */
|
|
};
|
|
|
|
/**
|
|
* RSA padding type
|
|
*/
|
|
struct rte_crypto_rsa_padding {
|
|
enum rte_crypto_rsa_padding_type type;
|
|
/**< RSA padding scheme to be used for transform */
|
|
enum rte_crypto_auth_algorithm hash;
|
|
/**<
|
|
* RSA padding hash algorithm
|
|
* Valid hash algorithms are:
|
|
* MD5, SHA1, SHA224, SHA256, SHA384, SHA512
|
|
*
|
|
* When a specific padding type is selected, the following rules apply:
|
|
* - RTE_CRYPTO_RSA_PADDING_NONE:
|
|
* This field is ignored by the PMD
|
|
*
|
|
* - RTE_CRYPTO_RSA_PADDING_PKCS1_5:
|
|
* When signing an operation this field is used to determine value
|
|
* of the DigestInfo structure, therefore specifying which algorithm
|
|
* was used to create the message digest.
|
|
* When doing encryption/decryption this field is ignored for this
|
|
* padding type.
|
|
*
|
|
* - RTE_CRYPTO_RSA_PADDING_OAEP
|
|
* This field shall be set with the hash algorithm used
|
|
* in the padding scheme
|
|
*
|
|
* - RTE_CRYPTO_RSA_PADDING_PSS
|
|
* This field shall be set with the hash algorithm used
|
|
* in the padding scheme (and to create the input message digest)
|
|
*/
|
|
enum rte_crypto_auth_algorithm mgf1hash;
|
|
/**<
|
|
* Hash algorithm to be used for mask generation if the
|
|
* padding scheme is either OAEP or PSS. If the padding
|
|
* scheme is unspecified a data hash algorithm is used
|
|
* for mask generation. Valid hash algorithms are:
|
|
* MD5, SHA1, SHA224, SHA256, SHA384, SHA512
|
|
*/
|
|
uint16_t pss_saltlen;
|
|
/**<
|
|
* RSA PSS padding salt length
|
|
*
|
|
* Used only when RTE_CRYPTO_RSA_PADDING_PSS padding is selected,
|
|
* otherwise ignored.
|
|
*/
|
|
rte_crypto_param oaep_label;
|
|
/**<
|
|
* RSA OAEP padding optional label
|
|
*
|
|
* Used only when RTE_CRYPTO_RSA_PADDING_OAEP padding is selected,
|
|
* otherwise ignored. If label.data == NULL, a default
|
|
* label (empty string) is used.
|
|
*/
|
|
};
|
|
|
|
/**
|
|
* Asymmetric RSA transform data
|
|
*
|
|
* Structure describing RSA xform params
|
|
*
|
|
*/
|
|
struct rte_crypto_rsa_xform {
|
|
rte_crypto_uint n;
|
|
/**< the RSA modulus */
|
|
rte_crypto_uint e;
|
|
/**< the RSA public exponent */
|
|
|
|
enum rte_crypto_rsa_priv_key_type key_type;
|
|
|
|
RTE_STD_C11
|
|
union {
|
|
rte_crypto_uint d;
|
|
/**< the RSA private exponent */
|
|
struct rte_crypto_rsa_priv_key_qt qt;
|
|
/**< qt - Private key in quintuple format */
|
|
};
|
|
};
|
|
|
|
/**
|
|
* Asymmetric Modular exponentiation transform data
|
|
*
|
|
* Structure describing modular exponentiation xform param
|
|
*
|
|
*/
|
|
struct rte_crypto_modex_xform {
|
|
rte_crypto_uint modulus;
|
|
/**< Modulus data for modexp transform operation */
|
|
rte_crypto_uint exponent;
|
|
/**< Exponent of the modexp transform operation */
|
|
};
|
|
|
|
/**
|
|
* Asymmetric modular multiplicative inverse transform operation
|
|
*
|
|
* Structure describing modular multiplicative inverse transform
|
|
*
|
|
*/
|
|
struct rte_crypto_modinv_xform {
|
|
rte_crypto_uint modulus;
|
|
/**< Modulus data for modular multiplicative inverse operation */
|
|
};
|
|
|
|
/**
|
|
* Asymmetric DH transform data
|
|
*
|
|
* Structure describing deffie-hellman xform params
|
|
*
|
|
*/
|
|
struct rte_crypto_dh_xform {
|
|
rte_crypto_uint p;
|
|
/**< Prime modulus data */
|
|
rte_crypto_uint g;
|
|
/**< DH Generator */
|
|
};
|
|
|
|
/**
|
|
* Asymmetric Digital Signature transform operation
|
|
*
|
|
* Structure describing DSA xform params
|
|
*
|
|
*/
|
|
struct rte_crypto_dsa_xform {
|
|
rte_crypto_uint p;
|
|
/**< Prime modulus */
|
|
rte_crypto_uint q;
|
|
/**< Order of the subgroup */
|
|
rte_crypto_uint g;
|
|
/**< Generator of the subgroup */
|
|
rte_crypto_uint x;
|
|
/**< x: Private key of the signer */
|
|
};
|
|
|
|
/**
|
|
* Asymmetric elliptic curve transform data
|
|
*
|
|
* Structure describing all EC based xform params
|
|
*
|
|
*/
|
|
struct rte_crypto_ec_xform {
|
|
enum rte_crypto_curve_id curve_id;
|
|
/**< Pre-defined ec groups */
|
|
};
|
|
|
|
/**
|
|
* Operations params for modular operations:
|
|
* exponentiation and multiplicative inverse
|
|
*
|
|
*/
|
|
struct rte_crypto_mod_op_param {
|
|
rte_crypto_uint base;
|
|
/**< Base of modular exponentiation/multiplicative inverse. */
|
|
rte_crypto_uint result;
|
|
/**< Result of modular exponentiation/multiplicative inverse. */
|
|
};
|
|
|
|
/**
|
|
* RSA operation params
|
|
*
|
|
*/
|
|
struct rte_crypto_rsa_op_param {
|
|
enum rte_crypto_asym_op_type op_type;
|
|
/**< Type of RSA operation for transform */
|
|
|
|
rte_crypto_param message;
|
|
/**<
|
|
* Pointer to input data
|
|
* - to be encrypted for RSA public encrypt.
|
|
* - to be signed for RSA sign generation.
|
|
* - to be authenticated for RSA sign verification.
|
|
*
|
|
* Pointer to output data
|
|
* - for RSA private decrypt.
|
|
* In this case the underlying array should have been
|
|
* allocated with enough memory to hold plaintext output
|
|
* (i.e. must be at least RSA key size). The message.length
|
|
* field should be 0 and will be overwritten by the PMD
|
|
* with the decrypted length.
|
|
*/
|
|
|
|
rte_crypto_param cipher;
|
|
/**<
|
|
* Pointer to input data
|
|
* - to be decrypted for RSA private decrypt.
|
|
*
|
|
* Pointer to output data
|
|
* - for RSA public encrypt.
|
|
* In this case the underlying array should have been allocated
|
|
* with enough memory to hold ciphertext output (i.e. must be
|
|
* at least RSA key size). The cipher.length field should
|
|
* be 0 and will be overwritten by the PMD with the encrypted length.
|
|
*
|
|
* When RTE_CRYPTO_RSA_PADDING_NONE and RTE_CRYPTO_ASYM_OP_VERIFY
|
|
* selected, this is an output of decrypted signature.
|
|
*/
|
|
|
|
rte_crypto_param sign;
|
|
/**<
|
|
* Pointer to input data
|
|
* - to be verified for RSA public decrypt.
|
|
*
|
|
* Pointer to output data
|
|
* - for RSA private encrypt.
|
|
* In this case the underlying array should have been allocated
|
|
* with enough memory to hold signature output (i.e. must be
|
|
* at least RSA key size). The sign.length field should
|
|
* be 0 and will be overwritten by the PMD with the signature length.
|
|
*/
|
|
|
|
struct rte_crypto_rsa_padding padding;
|
|
/**< RSA padding information */
|
|
};
|
|
|
|
/**
|
|
* Diffie-Hellman Operations params.
|
|
* @note:
|
|
*/
|
|
struct rte_crypto_dh_op_param {
|
|
enum rte_crypto_asym_ke_type ke_type;
|
|
/**< Key exchange operation type */
|
|
rte_crypto_uint priv_key;
|
|
/**<
|
|
* Output - generated private key when ke_type is
|
|
* RTE_CRYPTO_ASYM_KE_PRIV_KEY_GENERATE.
|
|
*
|
|
* Input - private key when ke_type is one of:
|
|
* RTE_CRYPTO_ASYM_KE_PUB_KEY_GENERATE,
|
|
* RTE_CRYPTO_ASYM_KE_SHARED_SECRET_COMPUTE.
|
|
*
|
|
* In case priv_key.length is 0 and ke_type is set with
|
|
* RTE_CRYPTO_ASYM_KE_PUB_KEY_GENERATE, CSRNG capable
|
|
* device will generate a private key and use it for public
|
|
* key generation.
|
|
*/
|
|
rte_crypto_uint pub_key;
|
|
/**<
|
|
* Output - generated public key when ke_type is
|
|
* RTE_CRYPTO_ASYM_KE_PUB_KEY_GENERATE.
|
|
*
|
|
* Input - peer's public key when ke_type is
|
|
* RTE_CRYPTO_ASYM_KE_SHARED_SECRET_COMPUTE.
|
|
*/
|
|
rte_crypto_uint shared_secret;
|
|
/**<
|
|
* Output - calculated shared secret when ke_type is
|
|
* RTE_CRYPTO_ASYM_KE_SHARED_SECRET_COMPUTE.
|
|
*/
|
|
};
|
|
|
|
/**
|
|
* Elliptic Curve Diffie-Hellman Operations params.
|
|
*/
|
|
struct rte_crypto_ecdh_op_param {
|
|
enum rte_crypto_asym_ke_type ke_type;
|
|
/**< Key exchange operation type */
|
|
rte_crypto_uint priv_key;
|
|
/**<
|
|
* Output - generated private key when ke_type is
|
|
* RTE_CRYPTO_ASYM_KE_PRIVATE_KEY_GENERATE.
|
|
*
|
|
* Input - private key when ke_type is one of:
|
|
* RTE_CRYPTO_ASYM_KE_PUBLIC_KEY_GENERATE,
|
|
* RTE_CRYPTO_ASYM_KE_SHARED_SECRET_COMPUTE.
|
|
*
|
|
* In case priv_key.length is 0 and ke_type is set with
|
|
* RTE_CRYPTO_ASYM_KE_PUBLIC_KEY_GENERATE, CSRNG capable
|
|
* device will generate private key and use it for public
|
|
* key generation.
|
|
*/
|
|
struct rte_crypto_ec_point pub_key;
|
|
/**<
|
|
* Output - generated public key when ke_type is
|
|
* RTE_CRYPTO_ASYM_KE_PUBLIC_KEY_GENERATE.
|
|
*
|
|
* Input - peer's public key, when ke_type is one of:
|
|
* RTE_CRYPTO_ASYM_KE_SHARED_SECRET_COMPUTE,
|
|
* RTE_CRYPTO_ASYM_KE_EC_PUBLIC_KEY_VERIFY.
|
|
*/
|
|
struct rte_crypto_ec_point shared_secret;
|
|
/**<
|
|
* Output - calculated shared secret when ke_type is
|
|
* RTE_CRYPTO_ASYM_KE_SHARED_SECRET_COMPUTE.
|
|
*/
|
|
};
|
|
|
|
/**
|
|
* DSA Operations params
|
|
*
|
|
*/
|
|
struct rte_crypto_dsa_op_param {
|
|
enum rte_crypto_asym_op_type op_type;
|
|
/**< Signature Generation or Verification */
|
|
rte_crypto_param message;
|
|
/**< input message to be signed or verified */
|
|
rte_crypto_uint k;
|
|
/**< Per-message secret number, which is an integer
|
|
* in the interval (1, q-1).
|
|
* If the random number is generated by the PMD,
|
|
* the 'rte_crypto_param.data' parameter should be set to NULL.
|
|
*/
|
|
rte_crypto_uint r;
|
|
/**< dsa sign component 'r' value
|
|
*
|
|
* output if op_type = sign generate,
|
|
* input if op_type = sign verify
|
|
*/
|
|
rte_crypto_uint s;
|
|
/**< dsa sign component 's' value
|
|
*
|
|
* output if op_type = sign generate,
|
|
* input if op_type = sign verify
|
|
*/
|
|
rte_crypto_uint y;
|
|
/**< y : Public key of the signer.
|
|
* y = g^x mod p
|
|
*/
|
|
};
|
|
|
|
/**
|
|
* ECDSA operation params
|
|
*/
|
|
struct rte_crypto_ecdsa_op_param {
|
|
enum rte_crypto_asym_op_type op_type;
|
|
/**< Signature generation or verification */
|
|
|
|
rte_crypto_uint pkey;
|
|
/**< Private key of the signer for signature generation */
|
|
|
|
struct rte_crypto_ec_point q;
|
|
/**< Public key of the signer for verification */
|
|
|
|
rte_crypto_param message;
|
|
/**< Input message digest to be signed or verified */
|
|
|
|
rte_crypto_uint k;
|
|
/**< The ECDSA per-message secret number, which is an integer
|
|
* in the interval (1, n-1).
|
|
* If the random number is generated by the PMD,
|
|
* the 'rte_crypto_param.data' parameter should be set to NULL.
|
|
*/
|
|
|
|
rte_crypto_uint r;
|
|
/**< r component of elliptic curve signature
|
|
* output : for signature generation
|
|
* input : for signature verification
|
|
*/
|
|
rte_crypto_uint s;
|
|
/**< s component of elliptic curve signature
|
|
* output : for signature generation
|
|
* input : for signature verification
|
|
*/
|
|
};
|
|
|
|
/**
|
|
* Structure for EC point multiplication operation param
|
|
*/
|
|
struct rte_crypto_ecpm_op_param {
|
|
struct rte_crypto_ec_point p;
|
|
/**< x and y coordinates of input point */
|
|
|
|
struct rte_crypto_ec_point r;
|
|
/**< x and y coordinates of resultant point */
|
|
|
|
rte_crypto_param scalar;
|
|
/**< Scalar to multiply the input point */
|
|
};
|
|
|
|
/**
|
|
* Asymmetric crypto transform data
|
|
*
|
|
* Structure describing asym xforms.
|
|
*/
|
|
struct rte_crypto_asym_xform {
|
|
struct rte_crypto_asym_xform *next;
|
|
/**< Pointer to next xform to set up xform chain.*/
|
|
enum rte_crypto_asym_xform_type xform_type;
|
|
/**< Asymmetric crypto transform */
|
|
|
|
RTE_STD_C11
|
|
union {
|
|
struct rte_crypto_rsa_xform rsa;
|
|
/**< RSA xform parameters */
|
|
|
|
struct rte_crypto_modex_xform modex;
|
|
/**< Modular Exponentiation xform parameters */
|
|
|
|
struct rte_crypto_modinv_xform modinv;
|
|
/**< Modular Multiplicative Inverse xform parameters */
|
|
|
|
struct rte_crypto_dh_xform dh;
|
|
/**< DH xform parameters */
|
|
|
|
struct rte_crypto_dsa_xform dsa;
|
|
/**< DSA xform parameters */
|
|
|
|
struct rte_crypto_ec_xform ec;
|
|
/**< EC xform parameters, used by elliptic curve based
|
|
* operations.
|
|
*/
|
|
};
|
|
};
|
|
|
|
/**
|
|
* Asymmetric Cryptographic Operation.
|
|
*
|
|
* Structure describing asymmetric crypto operation params.
|
|
*
|
|
*/
|
|
struct rte_crypto_asym_op {
|
|
RTE_STD_C11
|
|
union {
|
|
struct rte_cryptodev_asym_session *session;
|
|
/**< Handle for the initialised session context */
|
|
struct rte_crypto_asym_xform *xform;
|
|
/**< Session-less API crypto operation parameters */
|
|
};
|
|
|
|
RTE_STD_C11
|
|
union {
|
|
struct rte_crypto_rsa_op_param rsa;
|
|
struct rte_crypto_mod_op_param modex;
|
|
struct rte_crypto_mod_op_param modinv;
|
|
struct rte_crypto_dh_op_param dh;
|
|
struct rte_crypto_ecdh_op_param ecdh;
|
|
struct rte_crypto_dsa_op_param dsa;
|
|
struct rte_crypto_ecdsa_op_param ecdsa;
|
|
struct rte_crypto_ecpm_op_param ecpm;
|
|
};
|
|
uint16_t flags;
|
|
/**<
|
|
* Asymmetric crypto operation flags.
|
|
* Please refer to the RTE_CRYPTO_ASYM_FLAG_*.
|
|
*/
|
|
};
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* _RTE_CRYPTO_ASYM_H_ */
|