mirror of https://github.com/F-Stack/f-stack.git
1679 lines
43 KiB
C
1679 lines
43 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2017-2018 Intel Corporation
|
|
*/
|
|
|
|
#define _FILE_OFFSET_BITS 64
|
|
#include <errno.h>
|
|
#include <stdarg.h>
|
|
#include <stdbool.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/file.h>
|
|
#include <unistd.h>
|
|
#include <limits.h>
|
|
#include <fcntl.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/time.h>
|
|
#include <signal.h>
|
|
#include <setjmp.h>
|
|
#ifdef F_ADD_SEALS /* if file sealing is supported, so is memfd */
|
|
#include <linux/memfd.h>
|
|
#define MEMFD_SUPPORTED
|
|
#endif
|
|
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
#include <numa.h>
|
|
#include <numaif.h>
|
|
#endif
|
|
#include <linux/falloc.h>
|
|
#include <linux/mman.h> /* for hugetlb-related mmap flags */
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_log.h>
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_spinlock.h>
|
|
|
|
#include "eal_filesystem.h"
|
|
#include "eal_internal_cfg.h"
|
|
#include "eal_memalloc.h"
|
|
#include "eal_private.h"
|
|
|
|
const int anonymous_hugepages_supported =
|
|
#ifdef MAP_HUGE_SHIFT
|
|
1;
|
|
#define RTE_MAP_HUGE_SHIFT MAP_HUGE_SHIFT
|
|
#else
|
|
0;
|
|
#define RTE_MAP_HUGE_SHIFT 26
|
|
#endif
|
|
|
|
/*
|
|
* we've already checked memfd support at compile-time, but we also need to
|
|
* check if we can create hugepage files with memfd.
|
|
*
|
|
* also, this is not a constant, because while we may be *compiled* with memfd
|
|
* hugetlbfs support, we might not be *running* on a system that supports memfd
|
|
* and/or memfd with hugetlbfs, so we need to be able to adjust this flag at
|
|
* runtime, and fall back to anonymous memory.
|
|
*/
|
|
static int memfd_create_supported =
|
|
#ifdef MFD_HUGETLB
|
|
1;
|
|
#define RTE_MFD_HUGETLB MFD_HUGETLB
|
|
#else
|
|
0;
|
|
#define RTE_MFD_HUGETLB 4U
|
|
#endif
|
|
|
|
/*
|
|
* not all kernel version support fallocate on hugetlbfs, so fall back to
|
|
* ftruncate and disallow deallocation if fallocate is not supported.
|
|
*/
|
|
static int fallocate_supported = -1; /* unknown */
|
|
|
|
/*
|
|
* we have two modes - single file segments, and file-per-page mode.
|
|
*
|
|
* for single-file segments, we need some kind of mechanism to keep track of
|
|
* which hugepages can be freed back to the system, and which cannot. we cannot
|
|
* use flock() because they don't allow locking parts of a file, and we cannot
|
|
* use fcntl() due to issues with their semantics, so we will have to rely on a
|
|
* bunch of lockfiles for each page. so, we will use 'fds' array to keep track
|
|
* of per-page lockfiles. we will store the actual segment list fd in the
|
|
* 'memseg_list_fd' field.
|
|
*
|
|
* for file-per-page mode, each page will have its own fd, so 'memseg_list_fd'
|
|
* will be invalid (set to -1), and we'll use 'fds' to keep track of page fd's.
|
|
*
|
|
* we cannot know how many pages a system will have in advance, but we do know
|
|
* that they come in lists, and we know lengths of these lists. so, simply store
|
|
* a malloc'd array of fd's indexed by list and segment index.
|
|
*
|
|
* they will be initialized at startup, and filled as we allocate/deallocate
|
|
* segments.
|
|
*/
|
|
static struct {
|
|
int *fds; /**< dynamically allocated array of segment lock fd's */
|
|
int memseg_list_fd; /**< memseg list fd */
|
|
int len; /**< total length of the array */
|
|
int count; /**< entries used in an array */
|
|
} fd_list[RTE_MAX_MEMSEG_LISTS];
|
|
|
|
/** local copy of a memory map, used to synchronize memory hotplug in MP */
|
|
static struct rte_memseg_list local_memsegs[RTE_MAX_MEMSEG_LISTS];
|
|
|
|
static sigjmp_buf huge_jmpenv;
|
|
|
|
static void __rte_unused huge_sigbus_handler(int signo __rte_unused)
|
|
{
|
|
siglongjmp(huge_jmpenv, 1);
|
|
}
|
|
|
|
/* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
|
|
* non-static local variable in the stack frame calling sigsetjmp might be
|
|
* clobbered by a call to longjmp.
|
|
*/
|
|
static int __rte_unused huge_wrap_sigsetjmp(void)
|
|
{
|
|
return sigsetjmp(huge_jmpenv, 1);
|
|
}
|
|
|
|
static struct sigaction huge_action_old;
|
|
static int huge_need_recover;
|
|
|
|
static void __rte_unused
|
|
huge_register_sigbus(void)
|
|
{
|
|
sigset_t mask;
|
|
struct sigaction action;
|
|
|
|
sigemptyset(&mask);
|
|
sigaddset(&mask, SIGBUS);
|
|
action.sa_flags = 0;
|
|
action.sa_mask = mask;
|
|
action.sa_handler = huge_sigbus_handler;
|
|
|
|
huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
|
|
}
|
|
|
|
static void __rte_unused
|
|
huge_recover_sigbus(void)
|
|
{
|
|
if (huge_need_recover) {
|
|
sigaction(SIGBUS, &huge_action_old, NULL);
|
|
huge_need_recover = 0;
|
|
}
|
|
}
|
|
|
|
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
static bool
|
|
check_numa(void)
|
|
{
|
|
bool ret = true;
|
|
/* Check if kernel supports NUMA. */
|
|
if (numa_available() != 0) {
|
|
RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
|
|
ret = false;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
prepare_numa(int *oldpolicy, struct bitmask *oldmask, int socket_id)
|
|
{
|
|
RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
|
|
if (get_mempolicy(oldpolicy, oldmask->maskp,
|
|
oldmask->size + 1, 0, 0) < 0) {
|
|
RTE_LOG(ERR, EAL,
|
|
"Failed to get current mempolicy: %s. "
|
|
"Assuming MPOL_DEFAULT.\n", strerror(errno));
|
|
*oldpolicy = MPOL_DEFAULT;
|
|
}
|
|
RTE_LOG(DEBUG, EAL,
|
|
"Setting policy MPOL_PREFERRED for socket %d\n",
|
|
socket_id);
|
|
numa_set_preferred(socket_id);
|
|
}
|
|
|
|
static void
|
|
restore_numa(int *oldpolicy, struct bitmask *oldmask)
|
|
{
|
|
RTE_LOG(DEBUG, EAL,
|
|
"Restoring previous memory policy: %d\n", *oldpolicy);
|
|
if (*oldpolicy == MPOL_DEFAULT) {
|
|
numa_set_localalloc();
|
|
} else if (set_mempolicy(*oldpolicy, oldmask->maskp,
|
|
oldmask->size + 1) < 0) {
|
|
RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
|
|
strerror(errno));
|
|
numa_set_localalloc();
|
|
}
|
|
numa_free_cpumask(oldmask);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* uses fstat to report the size of a file on disk
|
|
*/
|
|
static off_t
|
|
get_file_size(int fd)
|
|
{
|
|
struct stat st;
|
|
if (fstat(fd, &st) < 0)
|
|
return 0;
|
|
return st.st_size;
|
|
}
|
|
|
|
static inline uint32_t
|
|
bsf64(uint64_t v)
|
|
{
|
|
return (uint32_t)__builtin_ctzll(v);
|
|
}
|
|
|
|
static inline uint32_t
|
|
log2_u64(uint64_t v)
|
|
{
|
|
if (v == 0)
|
|
return 0;
|
|
v = rte_align64pow2(v);
|
|
return bsf64(v);
|
|
}
|
|
|
|
static int
|
|
pagesz_flags(uint64_t page_sz)
|
|
{
|
|
/* as per mmap() manpage, all page sizes are log2 of page size
|
|
* shifted by MAP_HUGE_SHIFT
|
|
*/
|
|
int log2 = log2_u64(page_sz);
|
|
return log2 << RTE_MAP_HUGE_SHIFT;
|
|
}
|
|
|
|
/* returns 1 on successful lock, 0 on unsuccessful lock, -1 on error */
|
|
static int lock(int fd, int type)
|
|
{
|
|
int ret;
|
|
|
|
/* flock may be interrupted */
|
|
do {
|
|
ret = flock(fd, type | LOCK_NB);
|
|
} while (ret && errno == EINTR);
|
|
|
|
if (ret && errno == EWOULDBLOCK) {
|
|
/* couldn't lock */
|
|
return 0;
|
|
} else if (ret) {
|
|
RTE_LOG(ERR, EAL, "%s(): error calling flock(): %s\n",
|
|
__func__, strerror(errno));
|
|
return -1;
|
|
}
|
|
/* lock was successful */
|
|
return 1;
|
|
}
|
|
|
|
static int get_segment_lock_fd(int list_idx, int seg_idx)
|
|
{
|
|
char path[PATH_MAX] = {0};
|
|
int fd;
|
|
|
|
if (list_idx < 0 || list_idx >= (int)RTE_DIM(fd_list))
|
|
return -1;
|
|
if (seg_idx < 0 || seg_idx >= fd_list[list_idx].len)
|
|
return -1;
|
|
|
|
fd = fd_list[list_idx].fds[seg_idx];
|
|
/* does this lock already exist? */
|
|
if (fd >= 0)
|
|
return fd;
|
|
|
|
eal_get_hugefile_lock_path(path, sizeof(path),
|
|
list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx);
|
|
|
|
fd = open(path, O_CREAT | O_RDWR, 0660);
|
|
if (fd < 0) {
|
|
RTE_LOG(ERR, EAL, "%s(): error creating lockfile '%s': %s\n",
|
|
__func__, path, strerror(errno));
|
|
return -1;
|
|
}
|
|
/* take out a read lock */
|
|
if (lock(fd, LOCK_SH) != 1) {
|
|
RTE_LOG(ERR, EAL, "%s(): failed to take out a readlock on '%s': %s\n",
|
|
__func__, path, strerror(errno));
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
/* store it for future reference */
|
|
fd_list[list_idx].fds[seg_idx] = fd;
|
|
fd_list[list_idx].count++;
|
|
return fd;
|
|
}
|
|
|
|
static int unlock_segment(int list_idx, int seg_idx)
|
|
{
|
|
int fd, ret;
|
|
|
|
if (list_idx < 0 || list_idx >= (int)RTE_DIM(fd_list))
|
|
return -1;
|
|
if (seg_idx < 0 || seg_idx >= fd_list[list_idx].len)
|
|
return -1;
|
|
|
|
fd = fd_list[list_idx].fds[seg_idx];
|
|
|
|
/* upgrade lock to exclusive to see if we can remove the lockfile */
|
|
ret = lock(fd, LOCK_EX);
|
|
if (ret == 1) {
|
|
/* we've succeeded in taking exclusive lock, this lockfile may
|
|
* be removed.
|
|
*/
|
|
char path[PATH_MAX] = {0};
|
|
eal_get_hugefile_lock_path(path, sizeof(path),
|
|
list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx);
|
|
if (unlink(path)) {
|
|
RTE_LOG(ERR, EAL, "%s(): error removing lockfile '%s': %s\n",
|
|
__func__, path, strerror(errno));
|
|
}
|
|
}
|
|
/* we don't want to leak the fd, so even if we fail to lock, close fd
|
|
* and remove it from list anyway.
|
|
*/
|
|
close(fd);
|
|
fd_list[list_idx].fds[seg_idx] = -1;
|
|
fd_list[list_idx].count--;
|
|
|
|
if (ret < 0)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
get_seg_memfd(struct hugepage_info *hi __rte_unused,
|
|
unsigned int list_idx __rte_unused,
|
|
unsigned int seg_idx __rte_unused)
|
|
{
|
|
#ifdef MEMFD_SUPPORTED
|
|
int fd;
|
|
char segname[250]; /* as per manpage, limit is 249 bytes plus null */
|
|
|
|
int flags = RTE_MFD_HUGETLB | pagesz_flags(hi->hugepage_sz);
|
|
|
|
if (internal_config.single_file_segments) {
|
|
fd = fd_list[list_idx].memseg_list_fd;
|
|
|
|
if (fd < 0) {
|
|
snprintf(segname, sizeof(segname), "seg_%i", list_idx);
|
|
fd = memfd_create(segname, flags);
|
|
if (fd < 0) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): memfd create failed: %s\n",
|
|
__func__, strerror(errno));
|
|
return -1;
|
|
}
|
|
fd_list[list_idx].memseg_list_fd = fd;
|
|
}
|
|
} else {
|
|
fd = fd_list[list_idx].fds[seg_idx];
|
|
|
|
if (fd < 0) {
|
|
snprintf(segname, sizeof(segname), "seg_%i-%i",
|
|
list_idx, seg_idx);
|
|
fd = memfd_create(segname, flags);
|
|
if (fd < 0) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): memfd create failed: %s\n",
|
|
__func__, strerror(errno));
|
|
return -1;
|
|
}
|
|
fd_list[list_idx].fds[seg_idx] = fd;
|
|
}
|
|
}
|
|
return fd;
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
get_seg_fd(char *path, int buflen, struct hugepage_info *hi,
|
|
unsigned int list_idx, unsigned int seg_idx)
|
|
{
|
|
int fd;
|
|
|
|
/* for in-memory mode, we only make it here when we're sure we support
|
|
* memfd, and this is a special case.
|
|
*/
|
|
if (internal_config.in_memory)
|
|
return get_seg_memfd(hi, list_idx, seg_idx);
|
|
|
|
if (internal_config.single_file_segments) {
|
|
/* create a hugepage file path */
|
|
eal_get_hugefile_path(path, buflen, hi->hugedir, list_idx);
|
|
|
|
fd = fd_list[list_idx].memseg_list_fd;
|
|
|
|
if (fd < 0) {
|
|
fd = open(path, O_CREAT | O_RDWR, 0600);
|
|
if (fd < 0) {
|
|
RTE_LOG(ERR, EAL, "%s(): open failed: %s\n",
|
|
__func__, strerror(errno));
|
|
return -1;
|
|
}
|
|
/* take out a read lock and keep it indefinitely */
|
|
if (lock(fd, LOCK_SH) < 0) {
|
|
RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n",
|
|
__func__, strerror(errno));
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
fd_list[list_idx].memseg_list_fd = fd;
|
|
}
|
|
} else {
|
|
/* create a hugepage file path */
|
|
eal_get_hugefile_path(path, buflen, hi->hugedir,
|
|
list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx);
|
|
|
|
fd = fd_list[list_idx].fds[seg_idx];
|
|
|
|
if (fd < 0) {
|
|
fd = open(path, O_CREAT | O_RDWR, 0600);
|
|
if (fd < 0) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n",
|
|
__func__, strerror(errno));
|
|
return -1;
|
|
}
|
|
/* take out a read lock */
|
|
if (lock(fd, LOCK_SH) < 0) {
|
|
RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n",
|
|
__func__, strerror(errno));
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
fd_list[list_idx].fds[seg_idx] = fd;
|
|
}
|
|
}
|
|
return fd;
|
|
}
|
|
|
|
static int
|
|
resize_hugefile(int fd, char *path, int list_idx, int seg_idx,
|
|
uint64_t fa_offset, uint64_t page_sz, bool grow)
|
|
{
|
|
bool again = false;
|
|
|
|
/* in-memory mode is a special case, because we don't need to perform
|
|
* any locking, and we can be sure that fallocate() is supported.
|
|
*/
|
|
if (internal_config.in_memory) {
|
|
int flags = grow ? 0 : FALLOC_FL_PUNCH_HOLE |
|
|
FALLOC_FL_KEEP_SIZE;
|
|
int ret;
|
|
|
|
/* grow or shrink the file */
|
|
ret = fallocate(fd, flags, fa_offset, page_sz);
|
|
|
|
if (ret < 0) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): fallocate() failed: %s\n",
|
|
__func__,
|
|
strerror(errno));
|
|
return -1;
|
|
}
|
|
/* increase/decrease total segment count */
|
|
fd_list[list_idx].count += (grow ? 1 : -1);
|
|
if (!grow && fd_list[list_idx].count == 0) {
|
|
close(fd_list[list_idx].memseg_list_fd);
|
|
fd_list[list_idx].memseg_list_fd = -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
do {
|
|
if (fallocate_supported == 0) {
|
|
/* we cannot deallocate memory if fallocate() is not
|
|
* supported, and hugepage file is already locked at
|
|
* creation, so no further synchronization needed.
|
|
*/
|
|
|
|
if (!grow) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): fallocate not supported, not freeing page back to the system\n",
|
|
__func__);
|
|
return -1;
|
|
}
|
|
uint64_t new_size = fa_offset + page_sz;
|
|
uint64_t cur_size = get_file_size(fd);
|
|
|
|
/* fallocate isn't supported, fall back to ftruncate */
|
|
if (new_size > cur_size &&
|
|
ftruncate(fd, new_size) < 0) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n",
|
|
__func__, strerror(errno));
|
|
return -1;
|
|
}
|
|
} else {
|
|
int flags = grow ? 0 : FALLOC_FL_PUNCH_HOLE |
|
|
FALLOC_FL_KEEP_SIZE;
|
|
int ret, lock_fd;
|
|
|
|
/* if fallocate() is supported, we need to take out a
|
|
* read lock on allocate (to prevent other processes
|
|
* from deallocating this page), and take out a write
|
|
* lock on deallocate (to ensure nobody else is using
|
|
* this page).
|
|
*
|
|
* read locks on page itself are already taken out at
|
|
* file creation, in get_seg_fd().
|
|
*
|
|
* we cannot rely on simple use of flock() call, because
|
|
* we need to be able to lock a section of the file,
|
|
* and we cannot use fcntl() locks, because of numerous
|
|
* problems with their semantics, so we will use
|
|
* deterministically named lock files for each section
|
|
* of the file.
|
|
*
|
|
* if we're shrinking the file, we want to upgrade our
|
|
* lock from shared to exclusive.
|
|
*
|
|
* lock_fd is an fd for a lockfile, not for the segment
|
|
* list.
|
|
*/
|
|
lock_fd = get_segment_lock_fd(list_idx, seg_idx);
|
|
|
|
if (!grow) {
|
|
/* we are using this lockfile to determine
|
|
* whether this particular page is locked, as we
|
|
* are in single file segments mode and thus
|
|
* cannot use regular flock() to get this info.
|
|
*
|
|
* we want to try and take out an exclusive lock
|
|
* on the lock file to determine if we're the
|
|
* last ones using this page, and if not, we
|
|
* won't be shrinking it, and will instead exit
|
|
* prematurely.
|
|
*/
|
|
ret = lock(lock_fd, LOCK_EX);
|
|
|
|
/* drop the lock on the lockfile, so that even
|
|
* if we couldn't shrink the file ourselves, we
|
|
* are signalling to other processes that we're
|
|
* no longer using this page.
|
|
*/
|
|
if (unlock_segment(list_idx, seg_idx))
|
|
RTE_LOG(ERR, EAL, "Could not unlock segment\n");
|
|
|
|
/* additionally, if this was the last lock on
|
|
* this segment list, we can safely close the
|
|
* page file fd, so that one of the processes
|
|
* could then delete the file after shrinking.
|
|
*/
|
|
if (ret < 1 && fd_list[list_idx].count == 0) {
|
|
close(fd);
|
|
fd_list[list_idx].memseg_list_fd = -1;
|
|
}
|
|
|
|
if (ret < 0) {
|
|
RTE_LOG(ERR, EAL, "Could not lock segment\n");
|
|
return -1;
|
|
}
|
|
if (ret == 0)
|
|
/* failed to lock, not an error. */
|
|
return 0;
|
|
}
|
|
|
|
/* grow or shrink the file */
|
|
ret = fallocate(fd, flags, fa_offset, page_sz);
|
|
|
|
if (ret < 0) {
|
|
if (fallocate_supported == -1 &&
|
|
errno == ENOTSUP) {
|
|
RTE_LOG(ERR, EAL, "%s(): fallocate() not supported, hugepage deallocation will be disabled\n",
|
|
__func__);
|
|
again = true;
|
|
fallocate_supported = 0;
|
|
} else {
|
|
RTE_LOG(DEBUG, EAL, "%s(): fallocate() failed: %s\n",
|
|
__func__,
|
|
strerror(errno));
|
|
return -1;
|
|
}
|
|
} else {
|
|
fallocate_supported = 1;
|
|
|
|
/* we've grew/shrunk the file, and we hold an
|
|
* exclusive lock now. check if there are no
|
|
* more segments active in this segment list,
|
|
* and remove the file if there aren't.
|
|
*/
|
|
if (fd_list[list_idx].count == 0) {
|
|
if (unlink(path))
|
|
RTE_LOG(ERR, EAL, "%s(): unlinking '%s' failed: %s\n",
|
|
__func__, path,
|
|
strerror(errno));
|
|
close(fd);
|
|
fd_list[list_idx].memseg_list_fd = -1;
|
|
}
|
|
}
|
|
}
|
|
} while (again);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
alloc_seg(struct rte_memseg *ms, void *addr, int socket_id,
|
|
struct hugepage_info *hi, unsigned int list_idx,
|
|
unsigned int seg_idx)
|
|
{
|
|
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
int cur_socket_id = 0;
|
|
#endif
|
|
uint64_t map_offset;
|
|
rte_iova_t iova;
|
|
void *va;
|
|
char path[PATH_MAX];
|
|
int ret = 0;
|
|
int fd;
|
|
size_t alloc_sz;
|
|
int flags;
|
|
void *new_addr;
|
|
|
|
alloc_sz = hi->hugepage_sz;
|
|
|
|
/* these are checked at init, but code analyzers don't know that */
|
|
if (internal_config.in_memory && !anonymous_hugepages_supported) {
|
|
RTE_LOG(ERR, EAL, "Anonymous hugepages not supported, in-memory mode cannot allocate memory\n");
|
|
return -1;
|
|
}
|
|
if (internal_config.in_memory && !memfd_create_supported &&
|
|
internal_config.single_file_segments) {
|
|
RTE_LOG(ERR, EAL, "Single-file segments are not supported without memfd support\n");
|
|
return -1;
|
|
}
|
|
|
|
/* in-memory without memfd is a special case */
|
|
int mmap_flags;
|
|
|
|
if (internal_config.in_memory && !memfd_create_supported) {
|
|
const int in_memory_flags = MAP_HUGETLB | MAP_FIXED |
|
|
MAP_PRIVATE | MAP_ANONYMOUS;
|
|
int pagesz_flag;
|
|
|
|
pagesz_flag = pagesz_flags(alloc_sz);
|
|
fd = -1;
|
|
mmap_flags = in_memory_flags | pagesz_flag;
|
|
|
|
/* single-file segments codepath will never be active
|
|
* here because in-memory mode is incompatible with the
|
|
* fallback path, and it's stopped at EAL initialization
|
|
* stage.
|
|
*/
|
|
map_offset = 0;
|
|
} else {
|
|
/* takes out a read lock on segment or segment list */
|
|
fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx);
|
|
if (fd < 0) {
|
|
RTE_LOG(ERR, EAL, "Couldn't get fd on hugepage file\n");
|
|
return -1;
|
|
}
|
|
|
|
if (internal_config.single_file_segments) {
|
|
map_offset = seg_idx * alloc_sz;
|
|
ret = resize_hugefile(fd, path, list_idx, seg_idx,
|
|
map_offset, alloc_sz, true);
|
|
if (ret < 0)
|
|
goto resized;
|
|
} else {
|
|
map_offset = 0;
|
|
if (ftruncate(fd, alloc_sz) < 0) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n",
|
|
__func__, strerror(errno));
|
|
goto resized;
|
|
}
|
|
if (internal_config.hugepage_unlink &&
|
|
!internal_config.in_memory) {
|
|
if (unlink(path)) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): unlink() failed: %s\n",
|
|
__func__, strerror(errno));
|
|
goto resized;
|
|
}
|
|
}
|
|
}
|
|
mmap_flags = MAP_SHARED | MAP_POPULATE | MAP_FIXED;
|
|
}
|
|
|
|
/*
|
|
* map the segment, and populate page tables, the kernel fills
|
|
* this segment with zeros if it's a new page.
|
|
*/
|
|
va = mmap(addr, alloc_sz, PROT_READ | PROT_WRITE, mmap_flags, fd,
|
|
map_offset);
|
|
|
|
if (va == MAP_FAILED) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): mmap() failed: %s\n", __func__,
|
|
strerror(errno));
|
|
/* mmap failed, but the previous region might have been
|
|
* unmapped anyway. try to remap it
|
|
*/
|
|
goto unmapped;
|
|
}
|
|
if (va != addr) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): wrong mmap() address\n", __func__);
|
|
munmap(va, alloc_sz);
|
|
goto resized;
|
|
}
|
|
|
|
/* In linux, hugetlb limitations, like cgroup, are
|
|
* enforced at fault time instead of mmap(), even
|
|
* with the option of MAP_POPULATE. Kernel will send
|
|
* a SIGBUS signal. To avoid to be killed, save stack
|
|
* environment here, if SIGBUS happens, we can jump
|
|
* back here.
|
|
*/
|
|
if (huge_wrap_sigsetjmp()) {
|
|
RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more hugepages of size %uMB\n",
|
|
(unsigned int)(alloc_sz >> 20));
|
|
goto mapped;
|
|
}
|
|
|
|
/* we need to trigger a write to the page to enforce page fault and
|
|
* ensure that page is accessible to us, but we can't overwrite value
|
|
* that is already there, so read the old value, and write itback.
|
|
* kernel populates the page with zeroes initially.
|
|
*/
|
|
*(volatile int *)addr = *(volatile int *)addr;
|
|
|
|
iova = rte_mem_virt2iova(addr);
|
|
if (iova == RTE_BAD_PHYS_ADDR) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): can't get IOVA addr\n",
|
|
__func__);
|
|
goto mapped;
|
|
}
|
|
|
|
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
move_pages(getpid(), 1, &addr, NULL, &cur_socket_id, 0);
|
|
|
|
if (cur_socket_id != socket_id) {
|
|
RTE_LOG(DEBUG, EAL,
|
|
"%s(): allocation happened on wrong socket (wanted %d, got %d)\n",
|
|
__func__, socket_id, cur_socket_id);
|
|
goto mapped;
|
|
}
|
|
#else
|
|
if (rte_socket_count() > 1)
|
|
RTE_LOG(DEBUG, EAL, "%s(): not checking hugepage NUMA node.\n",
|
|
__func__);
|
|
#endif
|
|
|
|
ms->addr = addr;
|
|
ms->hugepage_sz = alloc_sz;
|
|
ms->len = alloc_sz;
|
|
ms->nchannel = rte_memory_get_nchannel();
|
|
ms->nrank = rte_memory_get_nrank();
|
|
ms->iova = iova;
|
|
ms->socket_id = socket_id;
|
|
|
|
return 0;
|
|
|
|
mapped:
|
|
munmap(addr, alloc_sz);
|
|
unmapped:
|
|
flags = MAP_FIXED;
|
|
new_addr = eal_get_virtual_area(addr, &alloc_sz, alloc_sz, 0, flags);
|
|
if (new_addr != addr) {
|
|
if (new_addr != NULL)
|
|
munmap(new_addr, alloc_sz);
|
|
/* we're leaving a hole in our virtual address space. if
|
|
* somebody else maps this hole now, we could accidentally
|
|
* override it in the future.
|
|
*/
|
|
RTE_LOG(CRIT, EAL, "Can't mmap holes in our virtual address space\n");
|
|
}
|
|
resized:
|
|
/* some codepaths will return negative fd, so exit early */
|
|
if (fd < 0)
|
|
return -1;
|
|
|
|
if (internal_config.single_file_segments) {
|
|
resize_hugefile(fd, path, list_idx, seg_idx, map_offset,
|
|
alloc_sz, false);
|
|
/* ignore failure, can't make it any worse */
|
|
} else {
|
|
/* only remove file if we can take out a write lock */
|
|
if (internal_config.hugepage_unlink == 0 &&
|
|
internal_config.in_memory == 0 &&
|
|
lock(fd, LOCK_EX) == 1)
|
|
unlink(path);
|
|
close(fd);
|
|
fd_list[list_idx].fds[seg_idx] = -1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
free_seg(struct rte_memseg *ms, struct hugepage_info *hi,
|
|
unsigned int list_idx, unsigned int seg_idx)
|
|
{
|
|
uint64_t map_offset;
|
|
char path[PATH_MAX];
|
|
int fd, ret = 0;
|
|
bool exit_early;
|
|
|
|
/* erase page data */
|
|
memset(ms->addr, 0, ms->len);
|
|
|
|
if (mmap(ms->addr, ms->len, PROT_READ,
|
|
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0) ==
|
|
MAP_FAILED) {
|
|
RTE_LOG(DEBUG, EAL, "couldn't unmap page\n");
|
|
return -1;
|
|
}
|
|
|
|
exit_early = false;
|
|
|
|
/* if we're using anonymous hugepages, nothing to be done */
|
|
if (internal_config.in_memory && !memfd_create_supported)
|
|
exit_early = true;
|
|
|
|
/* if we've already unlinked the page, nothing needs to be done */
|
|
if (!internal_config.in_memory && internal_config.hugepage_unlink)
|
|
exit_early = true;
|
|
|
|
if (exit_early) {
|
|
memset(ms, 0, sizeof(*ms));
|
|
return 0;
|
|
}
|
|
|
|
/* if we are not in single file segments mode, we're going to unmap the
|
|
* segment and thus drop the lock on original fd, but hugepage dir is
|
|
* now locked so we can take out another one without races.
|
|
*/
|
|
fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx);
|
|
if (fd < 0)
|
|
return -1;
|
|
|
|
if (internal_config.single_file_segments) {
|
|
map_offset = seg_idx * ms->len;
|
|
if (resize_hugefile(fd, path, list_idx, seg_idx, map_offset,
|
|
ms->len, false))
|
|
return -1;
|
|
ret = 0;
|
|
} else {
|
|
/* if we're able to take out a write lock, we're the last one
|
|
* holding onto this page.
|
|
*/
|
|
if (!internal_config.in_memory) {
|
|
ret = lock(fd, LOCK_EX);
|
|
if (ret >= 0) {
|
|
/* no one else is using this page */
|
|
if (ret == 1)
|
|
unlink(path);
|
|
}
|
|
}
|
|
/* closing fd will drop the lock */
|
|
close(fd);
|
|
fd_list[list_idx].fds[seg_idx] = -1;
|
|
}
|
|
|
|
memset(ms, 0, sizeof(*ms));
|
|
|
|
return ret < 0 ? -1 : 0;
|
|
}
|
|
|
|
struct alloc_walk_param {
|
|
struct hugepage_info *hi;
|
|
struct rte_memseg **ms;
|
|
size_t page_sz;
|
|
unsigned int segs_allocated;
|
|
unsigned int n_segs;
|
|
int socket;
|
|
bool exact;
|
|
};
|
|
static int
|
|
alloc_seg_walk(const struct rte_memseg_list *msl, void *arg)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct alloc_walk_param *wa = arg;
|
|
struct rte_memseg_list *cur_msl;
|
|
size_t page_sz;
|
|
int cur_idx, start_idx, j, dir_fd = -1;
|
|
unsigned int msl_idx, need, i;
|
|
|
|
if (msl->page_sz != wa->page_sz)
|
|
return 0;
|
|
if (msl->socket_id != wa->socket)
|
|
return 0;
|
|
|
|
page_sz = (size_t)msl->page_sz;
|
|
|
|
msl_idx = msl - mcfg->memsegs;
|
|
cur_msl = &mcfg->memsegs[msl_idx];
|
|
|
|
need = wa->n_segs;
|
|
|
|
/* try finding space in memseg list */
|
|
cur_idx = rte_fbarray_find_next_n_free(&cur_msl->memseg_arr, 0, need);
|
|
if (cur_idx < 0)
|
|
return 0;
|
|
start_idx = cur_idx;
|
|
|
|
/* do not allow any page allocations during the time we're allocating,
|
|
* because file creation and locking operations are not atomic,
|
|
* and we might be the first or the last ones to use a particular page,
|
|
* so we need to ensure atomicity of every operation.
|
|
*
|
|
* during init, we already hold a write lock, so don't try to take out
|
|
* another one.
|
|
*/
|
|
if (wa->hi->lock_descriptor == -1 && !internal_config.in_memory) {
|
|
dir_fd = open(wa->hi->hugedir, O_RDONLY);
|
|
if (dir_fd < 0) {
|
|
RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n",
|
|
__func__, wa->hi->hugedir, strerror(errno));
|
|
return -1;
|
|
}
|
|
/* blocking writelock */
|
|
if (flock(dir_fd, LOCK_EX)) {
|
|
RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n",
|
|
__func__, wa->hi->hugedir, strerror(errno));
|
|
close(dir_fd);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < need; i++, cur_idx++) {
|
|
struct rte_memseg *cur;
|
|
void *map_addr;
|
|
|
|
cur = rte_fbarray_get(&cur_msl->memseg_arr, cur_idx);
|
|
map_addr = RTE_PTR_ADD(cur_msl->base_va,
|
|
cur_idx * page_sz);
|
|
|
|
if (alloc_seg(cur, map_addr, wa->socket, wa->hi,
|
|
msl_idx, cur_idx)) {
|
|
RTE_LOG(DEBUG, EAL, "attempted to allocate %i segments, but only %i were allocated\n",
|
|
need, i);
|
|
|
|
/* if exact number wasn't requested, stop */
|
|
if (!wa->exact)
|
|
goto out;
|
|
|
|
/* clean up */
|
|
for (j = start_idx; j < cur_idx; j++) {
|
|
struct rte_memseg *tmp;
|
|
struct rte_fbarray *arr =
|
|
&cur_msl->memseg_arr;
|
|
|
|
tmp = rte_fbarray_get(arr, j);
|
|
rte_fbarray_set_free(arr, j);
|
|
|
|
/* free_seg may attempt to create a file, which
|
|
* may fail.
|
|
*/
|
|
if (free_seg(tmp, wa->hi, msl_idx, j))
|
|
RTE_LOG(DEBUG, EAL, "Cannot free page\n");
|
|
}
|
|
/* clear the list */
|
|
if (wa->ms)
|
|
memset(wa->ms, 0, sizeof(*wa->ms) * wa->n_segs);
|
|
|
|
if (dir_fd >= 0)
|
|
close(dir_fd);
|
|
return -1;
|
|
}
|
|
if (wa->ms)
|
|
wa->ms[i] = cur;
|
|
|
|
rte_fbarray_set_used(&cur_msl->memseg_arr, cur_idx);
|
|
}
|
|
out:
|
|
wa->segs_allocated = i;
|
|
if (i > 0)
|
|
cur_msl->version++;
|
|
if (dir_fd >= 0)
|
|
close(dir_fd);
|
|
return 1;
|
|
}
|
|
|
|
struct free_walk_param {
|
|
struct hugepage_info *hi;
|
|
struct rte_memseg *ms;
|
|
};
|
|
static int
|
|
free_seg_walk(const struct rte_memseg_list *msl, void *arg)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct rte_memseg_list *found_msl;
|
|
struct free_walk_param *wa = arg;
|
|
uintptr_t start_addr, end_addr;
|
|
int msl_idx, seg_idx, ret, dir_fd = -1;
|
|
|
|
start_addr = (uintptr_t) msl->base_va;
|
|
end_addr = start_addr + msl->len;
|
|
|
|
if ((uintptr_t)wa->ms->addr < start_addr ||
|
|
(uintptr_t)wa->ms->addr >= end_addr)
|
|
return 0;
|
|
|
|
msl_idx = msl - mcfg->memsegs;
|
|
seg_idx = RTE_PTR_DIFF(wa->ms->addr, start_addr) / msl->page_sz;
|
|
|
|
/* msl is const */
|
|
found_msl = &mcfg->memsegs[msl_idx];
|
|
|
|
/* do not allow any page allocations during the time we're freeing,
|
|
* because file creation and locking operations are not atomic,
|
|
* and we might be the first or the last ones to use a particular page,
|
|
* so we need to ensure atomicity of every operation.
|
|
*
|
|
* during init, we already hold a write lock, so don't try to take out
|
|
* another one.
|
|
*/
|
|
if (wa->hi->lock_descriptor == -1 && !internal_config.in_memory) {
|
|
dir_fd = open(wa->hi->hugedir, O_RDONLY);
|
|
if (dir_fd < 0) {
|
|
RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n",
|
|
__func__, wa->hi->hugedir, strerror(errno));
|
|
return -1;
|
|
}
|
|
/* blocking writelock */
|
|
if (flock(dir_fd, LOCK_EX)) {
|
|
RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n",
|
|
__func__, wa->hi->hugedir, strerror(errno));
|
|
close(dir_fd);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
found_msl->version++;
|
|
|
|
rte_fbarray_set_free(&found_msl->memseg_arr, seg_idx);
|
|
|
|
ret = free_seg(wa->ms, wa->hi, msl_idx, seg_idx);
|
|
|
|
if (dir_fd >= 0)
|
|
close(dir_fd);
|
|
|
|
if (ret < 0)
|
|
return -1;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
eal_memalloc_alloc_seg_bulk(struct rte_memseg **ms, int n_segs, size_t page_sz,
|
|
int socket, bool exact)
|
|
{
|
|
int i, ret = -1;
|
|
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
bool have_numa = false;
|
|
int oldpolicy;
|
|
struct bitmask *oldmask;
|
|
#endif
|
|
struct alloc_walk_param wa;
|
|
struct hugepage_info *hi = NULL;
|
|
|
|
memset(&wa, 0, sizeof(wa));
|
|
|
|
/* dynamic allocation not supported in legacy mode */
|
|
if (internal_config.legacy_mem)
|
|
return -1;
|
|
|
|
for (i = 0; i < (int) RTE_DIM(internal_config.hugepage_info); i++) {
|
|
if (page_sz ==
|
|
internal_config.hugepage_info[i].hugepage_sz) {
|
|
hi = &internal_config.hugepage_info[i];
|
|
break;
|
|
}
|
|
}
|
|
if (!hi) {
|
|
RTE_LOG(ERR, EAL, "%s(): can't find relevant hugepage_info entry\n",
|
|
__func__);
|
|
return -1;
|
|
}
|
|
|
|
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
if (check_numa()) {
|
|
oldmask = numa_allocate_nodemask();
|
|
prepare_numa(&oldpolicy, oldmask, socket);
|
|
have_numa = true;
|
|
}
|
|
#endif
|
|
|
|
wa.exact = exact;
|
|
wa.hi = hi;
|
|
wa.ms = ms;
|
|
wa.n_segs = n_segs;
|
|
wa.page_sz = page_sz;
|
|
wa.socket = socket;
|
|
wa.segs_allocated = 0;
|
|
|
|
/* memalloc is locked, so it's safe to use thread-unsafe version */
|
|
ret = rte_memseg_list_walk_thread_unsafe(alloc_seg_walk, &wa);
|
|
if (ret == 0) {
|
|
RTE_LOG(ERR, EAL, "%s(): couldn't find suitable memseg_list\n",
|
|
__func__);
|
|
ret = -1;
|
|
} else if (ret > 0) {
|
|
ret = (int)wa.segs_allocated;
|
|
}
|
|
|
|
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
if (have_numa)
|
|
restore_numa(&oldpolicy, oldmask);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
struct rte_memseg *
|
|
eal_memalloc_alloc_seg(size_t page_sz, int socket)
|
|
{
|
|
struct rte_memseg *ms;
|
|
if (eal_memalloc_alloc_seg_bulk(&ms, 1, page_sz, socket, true) < 0)
|
|
return NULL;
|
|
/* return pointer to newly allocated memseg */
|
|
return ms;
|
|
}
|
|
|
|
int
|
|
eal_memalloc_free_seg_bulk(struct rte_memseg **ms, int n_segs)
|
|
{
|
|
int seg, ret = 0;
|
|
|
|
/* dynamic free not supported in legacy mode */
|
|
if (internal_config.legacy_mem)
|
|
return -1;
|
|
|
|
for (seg = 0; seg < n_segs; seg++) {
|
|
struct rte_memseg *cur = ms[seg];
|
|
struct hugepage_info *hi = NULL;
|
|
struct free_walk_param wa;
|
|
int i, walk_res;
|
|
|
|
/* if this page is marked as unfreeable, fail */
|
|
if (cur->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) {
|
|
RTE_LOG(DEBUG, EAL, "Page is not allowed to be freed\n");
|
|
ret = -1;
|
|
continue;
|
|
}
|
|
|
|
memset(&wa, 0, sizeof(wa));
|
|
|
|
for (i = 0; i < (int)RTE_DIM(internal_config.hugepage_info);
|
|
i++) {
|
|
hi = &internal_config.hugepage_info[i];
|
|
if (cur->hugepage_sz == hi->hugepage_sz)
|
|
break;
|
|
}
|
|
if (i == (int)RTE_DIM(internal_config.hugepage_info)) {
|
|
RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n");
|
|
ret = -1;
|
|
continue;
|
|
}
|
|
|
|
wa.ms = cur;
|
|
wa.hi = hi;
|
|
|
|
/* memalloc is locked, so it's safe to use thread-unsafe version
|
|
*/
|
|
walk_res = rte_memseg_list_walk_thread_unsafe(free_seg_walk,
|
|
&wa);
|
|
if (walk_res == 1)
|
|
continue;
|
|
if (walk_res == 0)
|
|
RTE_LOG(ERR, EAL, "Couldn't find memseg list\n");
|
|
ret = -1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
eal_memalloc_free_seg(struct rte_memseg *ms)
|
|
{
|
|
/* dynamic free not supported in legacy mode */
|
|
if (internal_config.legacy_mem)
|
|
return -1;
|
|
|
|
return eal_memalloc_free_seg_bulk(&ms, 1);
|
|
}
|
|
|
|
static int
|
|
sync_chunk(struct rte_memseg_list *primary_msl,
|
|
struct rte_memseg_list *local_msl, struct hugepage_info *hi,
|
|
unsigned int msl_idx, bool used, int start, int end)
|
|
{
|
|
struct rte_fbarray *l_arr, *p_arr;
|
|
int i, ret, chunk_len, diff_len;
|
|
|
|
l_arr = &local_msl->memseg_arr;
|
|
p_arr = &primary_msl->memseg_arr;
|
|
|
|
/* we need to aggregate allocations/deallocations into bigger chunks,
|
|
* as we don't want to spam the user with per-page callbacks.
|
|
*
|
|
* to avoid any potential issues, we also want to trigger
|
|
* deallocation callbacks *before* we actually deallocate
|
|
* memory, so that the user application could wrap up its use
|
|
* before it goes away.
|
|
*/
|
|
|
|
chunk_len = end - start;
|
|
|
|
/* find how many contiguous pages we can map/unmap for this chunk */
|
|
diff_len = used ?
|
|
rte_fbarray_find_contig_free(l_arr, start) :
|
|
rte_fbarray_find_contig_used(l_arr, start);
|
|
|
|
/* has to be at least one page */
|
|
if (diff_len < 1)
|
|
return -1;
|
|
|
|
diff_len = RTE_MIN(chunk_len, diff_len);
|
|
|
|
/* if we are freeing memory, notify the application */
|
|
if (!used) {
|
|
struct rte_memseg *ms;
|
|
void *start_va;
|
|
size_t len, page_sz;
|
|
|
|
ms = rte_fbarray_get(l_arr, start);
|
|
start_va = ms->addr;
|
|
page_sz = (size_t)primary_msl->page_sz;
|
|
len = page_sz * diff_len;
|
|
|
|
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
|
|
start_va, len);
|
|
}
|
|
|
|
for (i = 0; i < diff_len; i++) {
|
|
struct rte_memseg *p_ms, *l_ms;
|
|
int seg_idx = start + i;
|
|
|
|
l_ms = rte_fbarray_get(l_arr, seg_idx);
|
|
p_ms = rte_fbarray_get(p_arr, seg_idx);
|
|
|
|
if (l_ms == NULL || p_ms == NULL)
|
|
return -1;
|
|
|
|
if (used) {
|
|
ret = alloc_seg(l_ms, p_ms->addr,
|
|
p_ms->socket_id, hi,
|
|
msl_idx, seg_idx);
|
|
if (ret < 0)
|
|
return -1;
|
|
rte_fbarray_set_used(l_arr, seg_idx);
|
|
} else {
|
|
ret = free_seg(l_ms, hi, msl_idx, seg_idx);
|
|
rte_fbarray_set_free(l_arr, seg_idx);
|
|
if (ret < 0)
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* if we just allocated memory, notify the application */
|
|
if (used) {
|
|
struct rte_memseg *ms;
|
|
void *start_va;
|
|
size_t len, page_sz;
|
|
|
|
ms = rte_fbarray_get(l_arr, start);
|
|
start_va = ms->addr;
|
|
page_sz = (size_t)primary_msl->page_sz;
|
|
len = page_sz * diff_len;
|
|
|
|
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC,
|
|
start_va, len);
|
|
}
|
|
|
|
/* calculate how much we can advance until next chunk */
|
|
diff_len = used ?
|
|
rte_fbarray_find_contig_used(l_arr, start) :
|
|
rte_fbarray_find_contig_free(l_arr, start);
|
|
ret = RTE_MIN(chunk_len, diff_len);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
sync_status(struct rte_memseg_list *primary_msl,
|
|
struct rte_memseg_list *local_msl, struct hugepage_info *hi,
|
|
unsigned int msl_idx, bool used)
|
|
{
|
|
struct rte_fbarray *l_arr, *p_arr;
|
|
int p_idx, l_chunk_len, p_chunk_len, ret;
|
|
int start, end;
|
|
|
|
/* this is a little bit tricky, but the basic idea is - walk both lists
|
|
* and spot any places where there are discrepancies. walking both lists
|
|
* and noting discrepancies in a single go is a hard problem, so we do
|
|
* it in two passes - first we spot any places where allocated segments
|
|
* mismatch (i.e. ensure that everything that's allocated in the primary
|
|
* is also allocated in the secondary), and then we do it by looking at
|
|
* free segments instead.
|
|
*
|
|
* we also need to aggregate changes into chunks, as we have to call
|
|
* callbacks per allocation, not per page.
|
|
*/
|
|
l_arr = &local_msl->memseg_arr;
|
|
p_arr = &primary_msl->memseg_arr;
|
|
|
|
if (used)
|
|
p_idx = rte_fbarray_find_next_used(p_arr, 0);
|
|
else
|
|
p_idx = rte_fbarray_find_next_free(p_arr, 0);
|
|
|
|
while (p_idx >= 0) {
|
|
int next_chunk_search_idx;
|
|
|
|
if (used) {
|
|
p_chunk_len = rte_fbarray_find_contig_used(p_arr,
|
|
p_idx);
|
|
l_chunk_len = rte_fbarray_find_contig_used(l_arr,
|
|
p_idx);
|
|
} else {
|
|
p_chunk_len = rte_fbarray_find_contig_free(p_arr,
|
|
p_idx);
|
|
l_chunk_len = rte_fbarray_find_contig_free(l_arr,
|
|
p_idx);
|
|
}
|
|
/* best case scenario - no differences (or bigger, which will be
|
|
* fixed during next iteration), look for next chunk
|
|
*/
|
|
if (l_chunk_len >= p_chunk_len) {
|
|
next_chunk_search_idx = p_idx + p_chunk_len;
|
|
goto next_chunk;
|
|
}
|
|
|
|
/* if both chunks start at the same point, skip parts we know
|
|
* are identical, and sync the rest. each call to sync_chunk
|
|
* will only sync contiguous segments, so we need to call this
|
|
* until we are sure there are no more differences in this
|
|
* chunk.
|
|
*/
|
|
start = p_idx + l_chunk_len;
|
|
end = p_idx + p_chunk_len;
|
|
do {
|
|
ret = sync_chunk(primary_msl, local_msl, hi, msl_idx,
|
|
used, start, end);
|
|
start += ret;
|
|
} while (start < end && ret >= 0);
|
|
/* if ret is negative, something went wrong */
|
|
if (ret < 0)
|
|
return -1;
|
|
|
|
next_chunk_search_idx = p_idx + p_chunk_len;
|
|
next_chunk:
|
|
/* skip to end of this chunk */
|
|
if (used) {
|
|
p_idx = rte_fbarray_find_next_used(p_arr,
|
|
next_chunk_search_idx);
|
|
} else {
|
|
p_idx = rte_fbarray_find_next_free(p_arr,
|
|
next_chunk_search_idx);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sync_existing(struct rte_memseg_list *primary_msl,
|
|
struct rte_memseg_list *local_msl, struct hugepage_info *hi,
|
|
unsigned int msl_idx)
|
|
{
|
|
int ret, dir_fd;
|
|
|
|
/* do not allow any page allocations during the time we're allocating,
|
|
* because file creation and locking operations are not atomic,
|
|
* and we might be the first or the last ones to use a particular page,
|
|
* so we need to ensure atomicity of every operation.
|
|
*/
|
|
dir_fd = open(hi->hugedir, O_RDONLY);
|
|
if (dir_fd < 0) {
|
|
RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n", __func__,
|
|
hi->hugedir, strerror(errno));
|
|
return -1;
|
|
}
|
|
/* blocking writelock */
|
|
if (flock(dir_fd, LOCK_EX)) {
|
|
RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n", __func__,
|
|
hi->hugedir, strerror(errno));
|
|
close(dir_fd);
|
|
return -1;
|
|
}
|
|
|
|
/* ensure all allocated space is the same in both lists */
|
|
ret = sync_status(primary_msl, local_msl, hi, msl_idx, true);
|
|
if (ret < 0)
|
|
goto fail;
|
|
|
|
/* ensure all unallocated space is the same in both lists */
|
|
ret = sync_status(primary_msl, local_msl, hi, msl_idx, false);
|
|
if (ret < 0)
|
|
goto fail;
|
|
|
|
/* update version number */
|
|
local_msl->version = primary_msl->version;
|
|
|
|
close(dir_fd);
|
|
|
|
return 0;
|
|
fail:
|
|
close(dir_fd);
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
sync_walk(const struct rte_memseg_list *msl, void *arg __rte_unused)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct rte_memseg_list *primary_msl, *local_msl;
|
|
struct hugepage_info *hi = NULL;
|
|
unsigned int i;
|
|
int msl_idx;
|
|
|
|
if (msl->external)
|
|
return 0;
|
|
|
|
msl_idx = msl - mcfg->memsegs;
|
|
primary_msl = &mcfg->memsegs[msl_idx];
|
|
local_msl = &local_memsegs[msl_idx];
|
|
|
|
for (i = 0; i < RTE_DIM(internal_config.hugepage_info); i++) {
|
|
uint64_t cur_sz =
|
|
internal_config.hugepage_info[i].hugepage_sz;
|
|
uint64_t msl_sz = primary_msl->page_sz;
|
|
if (msl_sz == cur_sz) {
|
|
hi = &internal_config.hugepage_info[i];
|
|
break;
|
|
}
|
|
}
|
|
if (!hi) {
|
|
RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n");
|
|
return -1;
|
|
}
|
|
|
|
/* if versions don't match, synchronize everything */
|
|
if (local_msl->version != primary_msl->version &&
|
|
sync_existing(primary_msl, local_msl, hi, msl_idx))
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
eal_memalloc_sync_with_primary(void)
|
|
{
|
|
/* nothing to be done in primary */
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
|
|
return 0;
|
|
|
|
/* memalloc is locked, so it's safe to call thread-unsafe version */
|
|
if (rte_memseg_list_walk_thread_unsafe(sync_walk, NULL))
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
secondary_msl_create_walk(const struct rte_memseg_list *msl,
|
|
void *arg __rte_unused)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct rte_memseg_list *primary_msl, *local_msl;
|
|
char name[PATH_MAX];
|
|
int msl_idx, ret;
|
|
|
|
if (msl->external)
|
|
return 0;
|
|
|
|
msl_idx = msl - mcfg->memsegs;
|
|
primary_msl = &mcfg->memsegs[msl_idx];
|
|
local_msl = &local_memsegs[msl_idx];
|
|
|
|
/* create distinct fbarrays for each secondary */
|
|
snprintf(name, RTE_FBARRAY_NAME_LEN, "%s_%i",
|
|
primary_msl->memseg_arr.name, getpid());
|
|
|
|
ret = rte_fbarray_init(&local_msl->memseg_arr, name,
|
|
primary_msl->memseg_arr.len,
|
|
primary_msl->memseg_arr.elt_sz);
|
|
if (ret < 0) {
|
|
RTE_LOG(ERR, EAL, "Cannot initialize local memory map\n");
|
|
return -1;
|
|
}
|
|
local_msl->base_va = primary_msl->base_va;
|
|
local_msl->len = primary_msl->len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
alloc_list(int list_idx, int len)
|
|
{
|
|
int *data;
|
|
int i;
|
|
|
|
/* ensure we have space to store fd per each possible segment */
|
|
data = malloc(sizeof(int) * len);
|
|
if (data == NULL) {
|
|
RTE_LOG(ERR, EAL, "Unable to allocate space for file descriptors\n");
|
|
return -1;
|
|
}
|
|
/* set all fd's as invalid */
|
|
for (i = 0; i < len; i++)
|
|
data[i] = -1;
|
|
|
|
fd_list[list_idx].fds = data;
|
|
fd_list[list_idx].len = len;
|
|
fd_list[list_idx].count = 0;
|
|
fd_list[list_idx].memseg_list_fd = -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fd_list_create_walk(const struct rte_memseg_list *msl,
|
|
void *arg __rte_unused)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
unsigned int len;
|
|
int msl_idx;
|
|
|
|
if (msl->external)
|
|
return 0;
|
|
|
|
msl_idx = msl - mcfg->memsegs;
|
|
len = msl->memseg_arr.len;
|
|
|
|
return alloc_list(msl_idx, len);
|
|
}
|
|
|
|
int
|
|
eal_memalloc_set_seg_fd(int list_idx, int seg_idx, int fd)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
|
|
/* if list is not allocated, allocate it */
|
|
if (fd_list[list_idx].len == 0) {
|
|
int len = mcfg->memsegs[list_idx].memseg_arr.len;
|
|
|
|
if (alloc_list(list_idx, len) < 0)
|
|
return -ENOMEM;
|
|
}
|
|
fd_list[list_idx].fds[seg_idx] = fd;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
eal_memalloc_get_seg_fd(int list_idx, int seg_idx)
|
|
{
|
|
int fd;
|
|
|
|
if (internal_config.in_memory || internal_config.no_hugetlbfs) {
|
|
#ifndef MEMFD_SUPPORTED
|
|
/* in in-memory or no-huge mode, we rely on memfd support */
|
|
return -ENOTSUP;
|
|
#endif
|
|
/* memfd supported, but hugetlbfs memfd may not be */
|
|
if (!internal_config.no_hugetlbfs && !memfd_create_supported)
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (internal_config.single_file_segments) {
|
|
fd = fd_list[list_idx].memseg_list_fd;
|
|
} else if (fd_list[list_idx].len == 0) {
|
|
/* list not initialized */
|
|
fd = -1;
|
|
} else {
|
|
fd = fd_list[list_idx].fds[seg_idx];
|
|
}
|
|
if (fd < 0)
|
|
return -ENODEV;
|
|
return fd;
|
|
}
|
|
|
|
static int
|
|
test_memfd_create(void)
|
|
{
|
|
#ifdef MEMFD_SUPPORTED
|
|
unsigned int i;
|
|
for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
|
|
uint64_t pagesz = internal_config.hugepage_info[i].hugepage_sz;
|
|
int pagesz_flag = pagesz_flags(pagesz);
|
|
int flags;
|
|
|
|
flags = pagesz_flag | RTE_MFD_HUGETLB;
|
|
int fd = memfd_create("test", flags);
|
|
if (fd < 0) {
|
|
/* we failed - let memalloc know this isn't working */
|
|
if (errno == EINVAL) {
|
|
memfd_create_supported = 0;
|
|
return 0; /* not supported */
|
|
}
|
|
|
|
/* we got other error - something's wrong */
|
|
return -1; /* error */
|
|
}
|
|
close(fd);
|
|
return 1; /* supported */
|
|
}
|
|
#endif
|
|
return 0; /* not supported */
|
|
}
|
|
|
|
int
|
|
eal_memalloc_get_seg_fd_offset(int list_idx, int seg_idx, size_t *offset)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
|
|
if (internal_config.in_memory || internal_config.no_hugetlbfs) {
|
|
#ifndef MEMFD_SUPPORTED
|
|
/* in in-memory or no-huge mode, we rely on memfd support */
|
|
return -ENOTSUP;
|
|
#endif
|
|
/* memfd supported, but hugetlbfs memfd may not be */
|
|
if (!internal_config.no_hugetlbfs && !memfd_create_supported)
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* fd_list not initialized? */
|
|
if (fd_list[list_idx].len == 0)
|
|
return -ENODEV;
|
|
if (internal_config.single_file_segments) {
|
|
size_t pgsz = mcfg->memsegs[list_idx].page_sz;
|
|
|
|
/* segment not active? */
|
|
if (fd_list[list_idx].memseg_list_fd < 0)
|
|
return -ENOENT;
|
|
*offset = pgsz * seg_idx;
|
|
} else {
|
|
/* segment not active? */
|
|
if (fd_list[list_idx].fds[seg_idx] < 0)
|
|
return -ENOENT;
|
|
*offset = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
eal_memalloc_init(void)
|
|
{
|
|
if (rte_eal_process_type() == RTE_PROC_SECONDARY)
|
|
if (rte_memseg_list_walk(secondary_msl_create_walk, NULL) < 0)
|
|
return -1;
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY &&
|
|
internal_config.in_memory) {
|
|
int mfd_res = test_memfd_create();
|
|
|
|
if (mfd_res < 0) {
|
|
RTE_LOG(ERR, EAL, "Unable to check if memfd is supported\n");
|
|
return -1;
|
|
}
|
|
if (mfd_res == 1)
|
|
RTE_LOG(DEBUG, EAL, "Using memfd for anonymous memory\n");
|
|
else
|
|
RTE_LOG(INFO, EAL, "Using memfd is not supported, falling back to anonymous hugepages\n");
|
|
|
|
/* we only support single-file segments mode with in-memory mode
|
|
* if we support hugetlbfs with memfd_create. this code will
|
|
* test if we do.
|
|
*/
|
|
if (internal_config.single_file_segments &&
|
|
mfd_res != 1) {
|
|
RTE_LOG(ERR, EAL, "Single-file segments mode cannot be used without memfd support\n");
|
|
return -1;
|
|
}
|
|
/* this cannot ever happen but better safe than sorry */
|
|
if (!anonymous_hugepages_supported) {
|
|
RTE_LOG(ERR, EAL, "Using anonymous memory is not supported\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* initialize all of the fd lists */
|
|
if (rte_memseg_list_walk(fd_list_create_walk, NULL))
|
|
return -1;
|
|
return 0;
|
|
}
|