f-stack/dpdk/drivers/crypto/dpaa2_sec/dpaa2_sec_dpseci.c

3492 lines
98 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2016 Freescale Semiconductor, Inc. All rights reserved.
* Copyright 2016-2018 NXP
*
*/
#include <time.h>
#include <net/if.h>
#include <rte_mbuf.h>
#include <rte_cryptodev.h>
#include <rte_malloc.h>
#include <rte_memcpy.h>
#include <rte_string_fns.h>
#include <rte_cycles.h>
#include <rte_kvargs.h>
#include <rte_dev.h>
#include <rte_cryptodev_pmd.h>
#include <rte_common.h>
#include <rte_fslmc.h>
#include <fslmc_vfio.h>
#include <dpaa2_hw_pvt.h>
#include <dpaa2_hw_dpio.h>
#include <dpaa2_hw_mempool.h>
#include <fsl_dpopr.h>
#include <fsl_dpseci.h>
#include <fsl_mc_sys.h>
#include "dpaa2_sec_priv.h"
#include "dpaa2_sec_event.h"
#include "dpaa2_sec_logs.h"
/* Required types */
typedef uint64_t dma_addr_t;
/* RTA header files */
#include <hw/desc/ipsec.h>
#include <hw/desc/pdcp.h>
#include <hw/desc/algo.h>
/* Minimum job descriptor consists of a oneword job descriptor HEADER and
* a pointer to the shared descriptor
*/
#define MIN_JOB_DESC_SIZE (CAAM_CMD_SZ + CAAM_PTR_SZ)
#define FSL_VENDOR_ID 0x1957
#define FSL_DEVICE_ID 0x410
#define FSL_SUBSYSTEM_SEC 1
#define FSL_MC_DPSECI_DEVID 3
#define NO_PREFETCH 0
/* FLE_POOL_NUM_BUFS is set as per the ipsec-secgw application */
#define FLE_POOL_NUM_BUFS 32000
#define FLE_POOL_BUF_SIZE 256
#define FLE_POOL_CACHE_SIZE 512
#define FLE_SG_MEM_SIZE 2048
#define SEC_FLC_DHR_OUTBOUND -114
#define SEC_FLC_DHR_INBOUND 0
enum rta_sec_era rta_sec_era = RTA_SEC_ERA_8;
static uint8_t cryptodev_driver_id;
int dpaa2_logtype_sec;
static inline int
build_proto_compound_fd(dpaa2_sec_session *sess,
struct rte_crypto_op *op,
struct qbman_fd *fd, uint16_t bpid)
{
struct rte_crypto_sym_op *sym_op = op->sym;
struct ctxt_priv *priv = sess->ctxt;
struct qbman_fle *fle, *ip_fle, *op_fle;
struct sec_flow_context *flc;
struct rte_mbuf *src_mbuf = sym_op->m_src;
struct rte_mbuf *dst_mbuf = sym_op->m_dst;
int retval;
if (!dst_mbuf)
dst_mbuf = src_mbuf;
/* Save the shared descriptor */
flc = &priv->flc_desc[0].flc;
/* we are using the first FLE entry to store Mbuf */
retval = rte_mempool_get(priv->fle_pool, (void **)(&fle));
if (retval) {
DPAA2_SEC_ERR("Memory alloc failed");
return -1;
}
memset(fle, 0, FLE_POOL_BUF_SIZE);
DPAA2_SET_FLE_ADDR(fle, (size_t)op);
DPAA2_FLE_SAVE_CTXT(fle, (ptrdiff_t)priv);
op_fle = fle + 1;
ip_fle = fle + 2;
if (likely(bpid < MAX_BPID)) {
DPAA2_SET_FD_BPID(fd, bpid);
DPAA2_SET_FLE_BPID(op_fle, bpid);
DPAA2_SET_FLE_BPID(ip_fle, bpid);
} else {
DPAA2_SET_FD_IVP(fd);
DPAA2_SET_FLE_IVP(op_fle);
DPAA2_SET_FLE_IVP(ip_fle);
}
/* Configure FD as a FRAME LIST */
DPAA2_SET_FD_ADDR(fd, DPAA2_VADDR_TO_IOVA(op_fle));
DPAA2_SET_FD_COMPOUND_FMT(fd);
DPAA2_SET_FD_FLC(fd, DPAA2_VADDR_TO_IOVA(flc));
/* Configure Output FLE with dst mbuf data */
DPAA2_SET_FLE_ADDR(op_fle, DPAA2_MBUF_VADDR_TO_IOVA(dst_mbuf));
DPAA2_SET_FLE_OFFSET(op_fle, dst_mbuf->data_off);
DPAA2_SET_FLE_LEN(op_fle, dst_mbuf->buf_len);
/* Configure Input FLE with src mbuf data */
DPAA2_SET_FLE_ADDR(ip_fle, DPAA2_MBUF_VADDR_TO_IOVA(src_mbuf));
DPAA2_SET_FLE_OFFSET(ip_fle, src_mbuf->data_off);
DPAA2_SET_FLE_LEN(ip_fle, src_mbuf->pkt_len);
DPAA2_SET_FD_LEN(fd, ip_fle->length);
DPAA2_SET_FLE_FIN(ip_fle);
#ifdef ENABLE_HFN_OVERRIDE
if (sess->ctxt_type == DPAA2_SEC_PDCP && sess->pdcp.hfn_ovd) {
/*enable HFN override override */
DPAA2_SET_FLE_INTERNAL_JD(ip_fle, sess->pdcp.hfn_ovd);
DPAA2_SET_FLE_INTERNAL_JD(op_fle, sess->pdcp.hfn_ovd);
DPAA2_SET_FD_INTERNAL_JD(fd, sess->pdcp.hfn_ovd);
}
#endif
return 0;
}
static inline int
build_proto_fd(dpaa2_sec_session *sess,
struct rte_crypto_op *op,
struct qbman_fd *fd, uint16_t bpid)
{
struct rte_crypto_sym_op *sym_op = op->sym;
if (sym_op->m_dst)
return build_proto_compound_fd(sess, op, fd, bpid);
struct ctxt_priv *priv = sess->ctxt;
struct sec_flow_context *flc;
struct rte_mbuf *mbuf = sym_op->m_src;
if (likely(bpid < MAX_BPID))
DPAA2_SET_FD_BPID(fd, bpid);
else
DPAA2_SET_FD_IVP(fd);
/* Save the shared descriptor */
flc = &priv->flc_desc[0].flc;
DPAA2_SET_FD_ADDR(fd, DPAA2_MBUF_VADDR_TO_IOVA(sym_op->m_src));
DPAA2_SET_FD_OFFSET(fd, sym_op->m_src->data_off);
DPAA2_SET_FD_LEN(fd, sym_op->m_src->pkt_len);
DPAA2_SET_FD_FLC(fd, DPAA2_VADDR_TO_IOVA(flc));
/* save physical address of mbuf */
op->sym->aead.digest.phys_addr = mbuf->buf_iova;
mbuf->buf_iova = (size_t)op;
return 0;
}
static inline int
build_authenc_gcm_sg_fd(dpaa2_sec_session *sess,
struct rte_crypto_op *op,
struct qbman_fd *fd, __rte_unused uint16_t bpid)
{
struct rte_crypto_sym_op *sym_op = op->sym;
struct ctxt_priv *priv = sess->ctxt;
struct qbman_fle *fle, *sge, *ip_fle, *op_fle;
struct sec_flow_context *flc;
uint32_t auth_only_len = sess->ext_params.aead_ctxt.auth_only_len;
int icv_len = sess->digest_length;
uint8_t *old_icv;
struct rte_mbuf *mbuf;
uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
sess->iv.offset);
PMD_INIT_FUNC_TRACE();
if (sym_op->m_dst)
mbuf = sym_op->m_dst;
else
mbuf = sym_op->m_src;
/* first FLE entry used to store mbuf and session ctxt */
fle = (struct qbman_fle *)rte_malloc(NULL, FLE_SG_MEM_SIZE,
RTE_CACHE_LINE_SIZE);
if (unlikely(!fle)) {
DPAA2_SEC_ERR("GCM SG: Memory alloc failed for SGE");
return -1;
}
memset(fle, 0, FLE_SG_MEM_SIZE);
DPAA2_SET_FLE_ADDR(fle, (size_t)op);
DPAA2_FLE_SAVE_CTXT(fle, (size_t)priv);
op_fle = fle + 1;
ip_fle = fle + 2;
sge = fle + 3;
/* Save the shared descriptor */
flc = &priv->flc_desc[0].flc;
/* Configure FD as a FRAME LIST */
DPAA2_SET_FD_ADDR(fd, DPAA2_VADDR_TO_IOVA(op_fle));
DPAA2_SET_FD_COMPOUND_FMT(fd);
DPAA2_SET_FD_FLC(fd, DPAA2_VADDR_TO_IOVA(flc));
DPAA2_SEC_DP_DEBUG("GCM SG: auth_off: 0x%x/length %d, digest-len=%d\n"
"iv-len=%d data_off: 0x%x\n",
sym_op->aead.data.offset,
sym_op->aead.data.length,
sess->digest_length,
sess->iv.length,
sym_op->m_src->data_off);
/* Configure Output FLE with Scatter/Gather Entry */
DPAA2_SET_FLE_SG_EXT(op_fle);
DPAA2_SET_FLE_ADDR(op_fle, DPAA2_VADDR_TO_IOVA(sge));
if (auth_only_len)
DPAA2_SET_FLE_INTERNAL_JD(op_fle, auth_only_len);
op_fle->length = (sess->dir == DIR_ENC) ?
(sym_op->aead.data.length + icv_len + auth_only_len) :
sym_op->aead.data.length + auth_only_len;
/* Configure Output SGE for Encap/Decap */
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(mbuf));
DPAA2_SET_FLE_OFFSET(sge, mbuf->data_off +
RTE_ALIGN_CEIL(auth_only_len, 16) - auth_only_len);
sge->length = mbuf->data_len - sym_op->aead.data.offset + auth_only_len;
mbuf = mbuf->next;
/* o/p segs */
while (mbuf) {
sge++;
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(mbuf));
DPAA2_SET_FLE_OFFSET(sge, mbuf->data_off);
sge->length = mbuf->data_len;
mbuf = mbuf->next;
}
sge->length -= icv_len;
if (sess->dir == DIR_ENC) {
sge++;
DPAA2_SET_FLE_ADDR(sge,
DPAA2_VADDR_TO_IOVA(sym_op->aead.digest.data));
sge->length = icv_len;
}
DPAA2_SET_FLE_FIN(sge);
sge++;
mbuf = sym_op->m_src;
/* Configure Input FLE with Scatter/Gather Entry */
DPAA2_SET_FLE_ADDR(ip_fle, DPAA2_VADDR_TO_IOVA(sge));
DPAA2_SET_FLE_SG_EXT(ip_fle);
DPAA2_SET_FLE_FIN(ip_fle);
ip_fle->length = (sess->dir == DIR_ENC) ?
(sym_op->aead.data.length + sess->iv.length + auth_only_len) :
(sym_op->aead.data.length + sess->iv.length + auth_only_len +
icv_len);
/* Configure Input SGE for Encap/Decap */
DPAA2_SET_FLE_ADDR(sge, DPAA2_VADDR_TO_IOVA(IV_ptr));
sge->length = sess->iv.length;
sge++;
if (auth_only_len) {
DPAA2_SET_FLE_ADDR(sge,
DPAA2_VADDR_TO_IOVA(sym_op->aead.aad.data));
sge->length = auth_only_len;
sge++;
}
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(mbuf));
DPAA2_SET_FLE_OFFSET(sge, sym_op->aead.data.offset +
mbuf->data_off);
sge->length = mbuf->data_len - sym_op->aead.data.offset;
mbuf = mbuf->next;
/* i/p segs */
while (mbuf) {
sge++;
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(mbuf));
DPAA2_SET_FLE_OFFSET(sge, mbuf->data_off);
sge->length = mbuf->data_len;
mbuf = mbuf->next;
}
if (sess->dir == DIR_DEC) {
sge++;
old_icv = (uint8_t *)(sge + 1);
memcpy(old_icv, sym_op->aead.digest.data, icv_len);
DPAA2_SET_FLE_ADDR(sge, DPAA2_VADDR_TO_IOVA(old_icv));
sge->length = icv_len;
}
DPAA2_SET_FLE_FIN(sge);
if (auth_only_len) {
DPAA2_SET_FLE_INTERNAL_JD(ip_fle, auth_only_len);
DPAA2_SET_FD_INTERNAL_JD(fd, auth_only_len);
}
DPAA2_SET_FD_LEN(fd, ip_fle->length);
return 0;
}
static inline int
build_authenc_gcm_fd(dpaa2_sec_session *sess,
struct rte_crypto_op *op,
struct qbman_fd *fd, uint16_t bpid)
{
struct rte_crypto_sym_op *sym_op = op->sym;
struct ctxt_priv *priv = sess->ctxt;
struct qbman_fle *fle, *sge;
struct sec_flow_context *flc;
uint32_t auth_only_len = sess->ext_params.aead_ctxt.auth_only_len;
int icv_len = sess->digest_length, retval;
uint8_t *old_icv;
struct rte_mbuf *dst;
uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
sess->iv.offset);
PMD_INIT_FUNC_TRACE();
if (sym_op->m_dst)
dst = sym_op->m_dst;
else
dst = sym_op->m_src;
/* TODO we are using the first FLE entry to store Mbuf and session ctxt.
* Currently we donot know which FLE has the mbuf stored.
* So while retreiving we can go back 1 FLE from the FD -ADDR
* to get the MBUF Addr from the previous FLE.
* We can have a better approach to use the inline Mbuf
*/
retval = rte_mempool_get(priv->fle_pool, (void **)(&fle));
if (retval) {
DPAA2_SEC_ERR("GCM: Memory alloc failed for SGE");
return -1;
}
memset(fle, 0, FLE_POOL_BUF_SIZE);
DPAA2_SET_FLE_ADDR(fle, (size_t)op);
DPAA2_FLE_SAVE_CTXT(fle, (ptrdiff_t)priv);
fle = fle + 1;
sge = fle + 2;
if (likely(bpid < MAX_BPID)) {
DPAA2_SET_FD_BPID(fd, bpid);
DPAA2_SET_FLE_BPID(fle, bpid);
DPAA2_SET_FLE_BPID(fle + 1, bpid);
DPAA2_SET_FLE_BPID(sge, bpid);
DPAA2_SET_FLE_BPID(sge + 1, bpid);
DPAA2_SET_FLE_BPID(sge + 2, bpid);
DPAA2_SET_FLE_BPID(sge + 3, bpid);
} else {
DPAA2_SET_FD_IVP(fd);
DPAA2_SET_FLE_IVP(fle);
DPAA2_SET_FLE_IVP((fle + 1));
DPAA2_SET_FLE_IVP(sge);
DPAA2_SET_FLE_IVP((sge + 1));
DPAA2_SET_FLE_IVP((sge + 2));
DPAA2_SET_FLE_IVP((sge + 3));
}
/* Save the shared descriptor */
flc = &priv->flc_desc[0].flc;
/* Configure FD as a FRAME LIST */
DPAA2_SET_FD_ADDR(fd, DPAA2_VADDR_TO_IOVA(fle));
DPAA2_SET_FD_COMPOUND_FMT(fd);
DPAA2_SET_FD_FLC(fd, DPAA2_VADDR_TO_IOVA(flc));
DPAA2_SEC_DP_DEBUG("GCM: auth_off: 0x%x/length %d, digest-len=%d\n"
"iv-len=%d data_off: 0x%x\n",
sym_op->aead.data.offset,
sym_op->aead.data.length,
sess->digest_length,
sess->iv.length,
sym_op->m_src->data_off);
/* Configure Output FLE with Scatter/Gather Entry */
DPAA2_SET_FLE_ADDR(fle, DPAA2_VADDR_TO_IOVA(sge));
if (auth_only_len)
DPAA2_SET_FLE_INTERNAL_JD(fle, auth_only_len);
fle->length = (sess->dir == DIR_ENC) ?
(sym_op->aead.data.length + icv_len + auth_only_len) :
sym_op->aead.data.length + auth_only_len;
DPAA2_SET_FLE_SG_EXT(fle);
/* Configure Output SGE for Encap/Decap */
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(dst));
DPAA2_SET_FLE_OFFSET(sge, dst->data_off +
RTE_ALIGN_CEIL(auth_only_len, 16) - auth_only_len);
sge->length = sym_op->aead.data.length + auth_only_len;
if (sess->dir == DIR_ENC) {
sge++;
DPAA2_SET_FLE_ADDR(sge,
DPAA2_VADDR_TO_IOVA(sym_op->aead.digest.data));
sge->length = sess->digest_length;
DPAA2_SET_FD_LEN(fd, (sym_op->aead.data.length +
sess->iv.length + auth_only_len));
}
DPAA2_SET_FLE_FIN(sge);
sge++;
fle++;
/* Configure Input FLE with Scatter/Gather Entry */
DPAA2_SET_FLE_ADDR(fle, DPAA2_VADDR_TO_IOVA(sge));
DPAA2_SET_FLE_SG_EXT(fle);
DPAA2_SET_FLE_FIN(fle);
fle->length = (sess->dir == DIR_ENC) ?
(sym_op->aead.data.length + sess->iv.length + auth_only_len) :
(sym_op->aead.data.length + sess->iv.length + auth_only_len +
sess->digest_length);
/* Configure Input SGE for Encap/Decap */
DPAA2_SET_FLE_ADDR(sge, DPAA2_VADDR_TO_IOVA(IV_ptr));
sge->length = sess->iv.length;
sge++;
if (auth_only_len) {
DPAA2_SET_FLE_ADDR(sge,
DPAA2_VADDR_TO_IOVA(sym_op->aead.aad.data));
sge->length = auth_only_len;
DPAA2_SET_FLE_BPID(sge, bpid);
sge++;
}
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(sym_op->m_src));
DPAA2_SET_FLE_OFFSET(sge, sym_op->aead.data.offset +
sym_op->m_src->data_off);
sge->length = sym_op->aead.data.length;
if (sess->dir == DIR_DEC) {
sge++;
old_icv = (uint8_t *)(sge + 1);
memcpy(old_icv, sym_op->aead.digest.data,
sess->digest_length);
DPAA2_SET_FLE_ADDR(sge, DPAA2_VADDR_TO_IOVA(old_icv));
sge->length = sess->digest_length;
DPAA2_SET_FD_LEN(fd, (sym_op->aead.data.length +
sess->digest_length +
sess->iv.length +
auth_only_len));
}
DPAA2_SET_FLE_FIN(sge);
if (auth_only_len) {
DPAA2_SET_FLE_INTERNAL_JD(fle, auth_only_len);
DPAA2_SET_FD_INTERNAL_JD(fd, auth_only_len);
}
return 0;
}
static inline int
build_authenc_sg_fd(dpaa2_sec_session *sess,
struct rte_crypto_op *op,
struct qbman_fd *fd, __rte_unused uint16_t bpid)
{
struct rte_crypto_sym_op *sym_op = op->sym;
struct ctxt_priv *priv = sess->ctxt;
struct qbman_fle *fle, *sge, *ip_fle, *op_fle;
struct sec_flow_context *flc;
uint32_t auth_only_len = sym_op->auth.data.length -
sym_op->cipher.data.length;
int icv_len = sess->digest_length;
uint8_t *old_icv;
struct rte_mbuf *mbuf;
uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
sess->iv.offset);
PMD_INIT_FUNC_TRACE();
if (sym_op->m_dst)
mbuf = sym_op->m_dst;
else
mbuf = sym_op->m_src;
/* first FLE entry used to store mbuf and session ctxt */
fle = (struct qbman_fle *)rte_malloc(NULL, FLE_SG_MEM_SIZE,
RTE_CACHE_LINE_SIZE);
if (unlikely(!fle)) {
DPAA2_SEC_ERR("AUTHENC SG: Memory alloc failed for SGE");
return -1;
}
memset(fle, 0, FLE_SG_MEM_SIZE);
DPAA2_SET_FLE_ADDR(fle, (size_t)op);
DPAA2_FLE_SAVE_CTXT(fle, (ptrdiff_t)priv);
op_fle = fle + 1;
ip_fle = fle + 2;
sge = fle + 3;
/* Save the shared descriptor */
flc = &priv->flc_desc[0].flc;
/* Configure FD as a FRAME LIST */
DPAA2_SET_FD_ADDR(fd, DPAA2_VADDR_TO_IOVA(op_fle));
DPAA2_SET_FD_COMPOUND_FMT(fd);
DPAA2_SET_FD_FLC(fd, DPAA2_VADDR_TO_IOVA(flc));
DPAA2_SEC_DP_DEBUG(
"AUTHENC SG: auth_off: 0x%x/length %d, digest-len=%d\n"
"cipher_off: 0x%x/length %d, iv-len=%d data_off: 0x%x\n",
sym_op->auth.data.offset,
sym_op->auth.data.length,
sess->digest_length,
sym_op->cipher.data.offset,
sym_op->cipher.data.length,
sess->iv.length,
sym_op->m_src->data_off);
/* Configure Output FLE with Scatter/Gather Entry */
DPAA2_SET_FLE_SG_EXT(op_fle);
DPAA2_SET_FLE_ADDR(op_fle, DPAA2_VADDR_TO_IOVA(sge));
if (auth_only_len)
DPAA2_SET_FLE_INTERNAL_JD(op_fle, auth_only_len);
op_fle->length = (sess->dir == DIR_ENC) ?
(sym_op->cipher.data.length + icv_len) :
sym_op->cipher.data.length;
/* Configure Output SGE for Encap/Decap */
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(mbuf));
DPAA2_SET_FLE_OFFSET(sge, mbuf->data_off + sym_op->auth.data.offset);
sge->length = mbuf->data_len - sym_op->auth.data.offset;
mbuf = mbuf->next;
/* o/p segs */
while (mbuf) {
sge++;
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(mbuf));
DPAA2_SET_FLE_OFFSET(sge, mbuf->data_off);
sge->length = mbuf->data_len;
mbuf = mbuf->next;
}
sge->length -= icv_len;
if (sess->dir == DIR_ENC) {
sge++;
DPAA2_SET_FLE_ADDR(sge,
DPAA2_VADDR_TO_IOVA(sym_op->auth.digest.data));
sge->length = icv_len;
}
DPAA2_SET_FLE_FIN(sge);
sge++;
mbuf = sym_op->m_src;
/* Configure Input FLE with Scatter/Gather Entry */
DPAA2_SET_FLE_ADDR(ip_fle, DPAA2_VADDR_TO_IOVA(sge));
DPAA2_SET_FLE_SG_EXT(ip_fle);
DPAA2_SET_FLE_FIN(ip_fle);
ip_fle->length = (sess->dir == DIR_ENC) ?
(sym_op->auth.data.length + sess->iv.length) :
(sym_op->auth.data.length + sess->iv.length +
icv_len);
/* Configure Input SGE for Encap/Decap */
DPAA2_SET_FLE_ADDR(sge, DPAA2_VADDR_TO_IOVA(iv_ptr));
sge->length = sess->iv.length;
sge++;
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(mbuf));
DPAA2_SET_FLE_OFFSET(sge, sym_op->auth.data.offset +
mbuf->data_off);
sge->length = mbuf->data_len - sym_op->auth.data.offset;
mbuf = mbuf->next;
/* i/p segs */
while (mbuf) {
sge++;
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(mbuf));
DPAA2_SET_FLE_OFFSET(sge, mbuf->data_off);
sge->length = mbuf->data_len;
mbuf = mbuf->next;
}
sge->length -= icv_len;
if (sess->dir == DIR_DEC) {
sge++;
old_icv = (uint8_t *)(sge + 1);
memcpy(old_icv, sym_op->auth.digest.data,
icv_len);
DPAA2_SET_FLE_ADDR(sge, DPAA2_VADDR_TO_IOVA(old_icv));
sge->length = icv_len;
}
DPAA2_SET_FLE_FIN(sge);
if (auth_only_len) {
DPAA2_SET_FLE_INTERNAL_JD(ip_fle, auth_only_len);
DPAA2_SET_FD_INTERNAL_JD(fd, auth_only_len);
}
DPAA2_SET_FD_LEN(fd, ip_fle->length);
return 0;
}
static inline int
build_authenc_fd(dpaa2_sec_session *sess,
struct rte_crypto_op *op,
struct qbman_fd *fd, uint16_t bpid)
{
struct rte_crypto_sym_op *sym_op = op->sym;
struct ctxt_priv *priv = sess->ctxt;
struct qbman_fle *fle, *sge;
struct sec_flow_context *flc;
uint32_t auth_only_len = sym_op->auth.data.length -
sym_op->cipher.data.length;
int icv_len = sess->digest_length, retval;
uint8_t *old_icv;
uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
sess->iv.offset);
struct rte_mbuf *dst;
PMD_INIT_FUNC_TRACE();
if (sym_op->m_dst)
dst = sym_op->m_dst;
else
dst = sym_op->m_src;
/* we are using the first FLE entry to store Mbuf.
* Currently we donot know which FLE has the mbuf stored.
* So while retreiving we can go back 1 FLE from the FD -ADDR
* to get the MBUF Addr from the previous FLE.
* We can have a better approach to use the inline Mbuf
*/
retval = rte_mempool_get(priv->fle_pool, (void **)(&fle));
if (retval) {
DPAA2_SEC_ERR("Memory alloc failed for SGE");
return -1;
}
memset(fle, 0, FLE_POOL_BUF_SIZE);
DPAA2_SET_FLE_ADDR(fle, (size_t)op);
DPAA2_FLE_SAVE_CTXT(fle, (ptrdiff_t)priv);
fle = fle + 1;
sge = fle + 2;
if (likely(bpid < MAX_BPID)) {
DPAA2_SET_FD_BPID(fd, bpid);
DPAA2_SET_FLE_BPID(fle, bpid);
DPAA2_SET_FLE_BPID(fle + 1, bpid);
DPAA2_SET_FLE_BPID(sge, bpid);
DPAA2_SET_FLE_BPID(sge + 1, bpid);
DPAA2_SET_FLE_BPID(sge + 2, bpid);
DPAA2_SET_FLE_BPID(sge + 3, bpid);
} else {
DPAA2_SET_FD_IVP(fd);
DPAA2_SET_FLE_IVP(fle);
DPAA2_SET_FLE_IVP((fle + 1));
DPAA2_SET_FLE_IVP(sge);
DPAA2_SET_FLE_IVP((sge + 1));
DPAA2_SET_FLE_IVP((sge + 2));
DPAA2_SET_FLE_IVP((sge + 3));
}
/* Save the shared descriptor */
flc = &priv->flc_desc[0].flc;
/* Configure FD as a FRAME LIST */
DPAA2_SET_FD_ADDR(fd, DPAA2_VADDR_TO_IOVA(fle));
DPAA2_SET_FD_COMPOUND_FMT(fd);
DPAA2_SET_FD_FLC(fd, DPAA2_VADDR_TO_IOVA(flc));
DPAA2_SEC_DP_DEBUG(
"AUTHENC: auth_off: 0x%x/length %d, digest-len=%d\n"
"cipher_off: 0x%x/length %d, iv-len=%d data_off: 0x%x\n",
sym_op->auth.data.offset,
sym_op->auth.data.length,
sess->digest_length,
sym_op->cipher.data.offset,
sym_op->cipher.data.length,
sess->iv.length,
sym_op->m_src->data_off);
/* Configure Output FLE with Scatter/Gather Entry */
DPAA2_SET_FLE_ADDR(fle, DPAA2_VADDR_TO_IOVA(sge));
if (auth_only_len)
DPAA2_SET_FLE_INTERNAL_JD(fle, auth_only_len);
fle->length = (sess->dir == DIR_ENC) ?
(sym_op->cipher.data.length + icv_len) :
sym_op->cipher.data.length;
DPAA2_SET_FLE_SG_EXT(fle);
/* Configure Output SGE for Encap/Decap */
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(dst));
DPAA2_SET_FLE_OFFSET(sge, sym_op->cipher.data.offset +
dst->data_off);
sge->length = sym_op->cipher.data.length;
if (sess->dir == DIR_ENC) {
sge++;
DPAA2_SET_FLE_ADDR(sge,
DPAA2_VADDR_TO_IOVA(sym_op->auth.digest.data));
sge->length = sess->digest_length;
DPAA2_SET_FD_LEN(fd, (sym_op->auth.data.length +
sess->iv.length));
}
DPAA2_SET_FLE_FIN(sge);
sge++;
fle++;
/* Configure Input FLE with Scatter/Gather Entry */
DPAA2_SET_FLE_ADDR(fle, DPAA2_VADDR_TO_IOVA(sge));
DPAA2_SET_FLE_SG_EXT(fle);
DPAA2_SET_FLE_FIN(fle);
fle->length = (sess->dir == DIR_ENC) ?
(sym_op->auth.data.length + sess->iv.length) :
(sym_op->auth.data.length + sess->iv.length +
sess->digest_length);
/* Configure Input SGE for Encap/Decap */
DPAA2_SET_FLE_ADDR(sge, DPAA2_VADDR_TO_IOVA(iv_ptr));
sge->length = sess->iv.length;
sge++;
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(sym_op->m_src));
DPAA2_SET_FLE_OFFSET(sge, sym_op->auth.data.offset +
sym_op->m_src->data_off);
sge->length = sym_op->auth.data.length;
if (sess->dir == DIR_DEC) {
sge++;
old_icv = (uint8_t *)(sge + 1);
memcpy(old_icv, sym_op->auth.digest.data,
sess->digest_length);
DPAA2_SET_FLE_ADDR(sge, DPAA2_VADDR_TO_IOVA(old_icv));
sge->length = sess->digest_length;
DPAA2_SET_FD_LEN(fd, (sym_op->auth.data.length +
sess->digest_length +
sess->iv.length));
}
DPAA2_SET_FLE_FIN(sge);
if (auth_only_len) {
DPAA2_SET_FLE_INTERNAL_JD(fle, auth_only_len);
DPAA2_SET_FD_INTERNAL_JD(fd, auth_only_len);
}
return 0;
}
static inline int build_auth_sg_fd(
dpaa2_sec_session *sess,
struct rte_crypto_op *op,
struct qbman_fd *fd,
__rte_unused uint16_t bpid)
{
struct rte_crypto_sym_op *sym_op = op->sym;
struct qbman_fle *fle, *sge, *ip_fle, *op_fle;
struct sec_flow_context *flc;
struct ctxt_priv *priv = sess->ctxt;
uint8_t *old_digest;
struct rte_mbuf *mbuf;
PMD_INIT_FUNC_TRACE();
mbuf = sym_op->m_src;
fle = (struct qbman_fle *)rte_malloc(NULL, FLE_SG_MEM_SIZE,
RTE_CACHE_LINE_SIZE);
if (unlikely(!fle)) {
DPAA2_SEC_ERR("AUTH SG: Memory alloc failed for SGE");
return -1;
}
memset(fle, 0, FLE_SG_MEM_SIZE);
/* first FLE entry used to store mbuf and session ctxt */
DPAA2_SET_FLE_ADDR(fle, (size_t)op);
DPAA2_FLE_SAVE_CTXT(fle, (ptrdiff_t)priv);
op_fle = fle + 1;
ip_fle = fle + 2;
sge = fle + 3;
flc = &priv->flc_desc[DESC_INITFINAL].flc;
/* sg FD */
DPAA2_SET_FD_FLC(fd, DPAA2_VADDR_TO_IOVA(flc));
DPAA2_SET_FD_ADDR(fd, DPAA2_VADDR_TO_IOVA(op_fle));
DPAA2_SET_FD_COMPOUND_FMT(fd);
/* o/p fle */
DPAA2_SET_FLE_ADDR(op_fle,
DPAA2_VADDR_TO_IOVA(sym_op->auth.digest.data));
op_fle->length = sess->digest_length;
/* i/p fle */
DPAA2_SET_FLE_SG_EXT(ip_fle);
DPAA2_SET_FLE_ADDR(ip_fle, DPAA2_VADDR_TO_IOVA(sge));
/* i/p 1st seg */
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(mbuf));
DPAA2_SET_FLE_OFFSET(sge, sym_op->auth.data.offset + mbuf->data_off);
sge->length = mbuf->data_len - sym_op->auth.data.offset;
/* i/p segs */
mbuf = mbuf->next;
while (mbuf) {
sge++;
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(mbuf));
DPAA2_SET_FLE_OFFSET(sge, mbuf->data_off);
sge->length = mbuf->data_len;
mbuf = mbuf->next;
}
if (sess->dir == DIR_ENC) {
/* Digest calculation case */
sge->length -= sess->digest_length;
ip_fle->length = sym_op->auth.data.length;
} else {
/* Digest verification case */
sge++;
old_digest = (uint8_t *)(sge + 1);
rte_memcpy(old_digest, sym_op->auth.digest.data,
sess->digest_length);
DPAA2_SET_FLE_ADDR(sge, DPAA2_VADDR_TO_IOVA(old_digest));
sge->length = sess->digest_length;
ip_fle->length = sym_op->auth.data.length +
sess->digest_length;
}
DPAA2_SET_FLE_FIN(sge);
DPAA2_SET_FLE_FIN(ip_fle);
DPAA2_SET_FD_LEN(fd, ip_fle->length);
return 0;
}
static inline int
build_auth_fd(dpaa2_sec_session *sess, struct rte_crypto_op *op,
struct qbman_fd *fd, uint16_t bpid)
{
struct rte_crypto_sym_op *sym_op = op->sym;
struct qbman_fle *fle, *sge;
struct sec_flow_context *flc;
struct ctxt_priv *priv = sess->ctxt;
uint8_t *old_digest;
int retval;
PMD_INIT_FUNC_TRACE();
retval = rte_mempool_get(priv->fle_pool, (void **)(&fle));
if (retval) {
DPAA2_SEC_ERR("AUTH Memory alloc failed for SGE");
return -1;
}
memset(fle, 0, FLE_POOL_BUF_SIZE);
/* TODO we are using the first FLE entry to store Mbuf.
* Currently we donot know which FLE has the mbuf stored.
* So while retreiving we can go back 1 FLE from the FD -ADDR
* to get the MBUF Addr from the previous FLE.
* We can have a better approach to use the inline Mbuf
*/
DPAA2_SET_FLE_ADDR(fle, (size_t)op);
DPAA2_FLE_SAVE_CTXT(fle, (ptrdiff_t)priv);
fle = fle + 1;
if (likely(bpid < MAX_BPID)) {
DPAA2_SET_FD_BPID(fd, bpid);
DPAA2_SET_FLE_BPID(fle, bpid);
DPAA2_SET_FLE_BPID(fle + 1, bpid);
} else {
DPAA2_SET_FD_IVP(fd);
DPAA2_SET_FLE_IVP(fle);
DPAA2_SET_FLE_IVP((fle + 1));
}
flc = &priv->flc_desc[DESC_INITFINAL].flc;
DPAA2_SET_FD_FLC(fd, DPAA2_VADDR_TO_IOVA(flc));
DPAA2_SET_FLE_ADDR(fle, DPAA2_VADDR_TO_IOVA(sym_op->auth.digest.data));
fle->length = sess->digest_length;
DPAA2_SET_FD_ADDR(fd, DPAA2_VADDR_TO_IOVA(fle));
DPAA2_SET_FD_COMPOUND_FMT(fd);
fle++;
if (sess->dir == DIR_ENC) {
DPAA2_SET_FLE_ADDR(fle,
DPAA2_MBUF_VADDR_TO_IOVA(sym_op->m_src));
DPAA2_SET_FLE_OFFSET(fle, sym_op->auth.data.offset +
sym_op->m_src->data_off);
DPAA2_SET_FD_LEN(fd, sym_op->auth.data.length);
fle->length = sym_op->auth.data.length;
} else {
sge = fle + 2;
DPAA2_SET_FLE_SG_EXT(fle);
DPAA2_SET_FLE_ADDR(fle, DPAA2_VADDR_TO_IOVA(sge));
if (likely(bpid < MAX_BPID)) {
DPAA2_SET_FLE_BPID(sge, bpid);
DPAA2_SET_FLE_BPID(sge + 1, bpid);
} else {
DPAA2_SET_FLE_IVP(sge);
DPAA2_SET_FLE_IVP((sge + 1));
}
DPAA2_SET_FLE_ADDR(sge,
DPAA2_MBUF_VADDR_TO_IOVA(sym_op->m_src));
DPAA2_SET_FLE_OFFSET(sge, sym_op->auth.data.offset +
sym_op->m_src->data_off);
DPAA2_SET_FD_LEN(fd, sym_op->auth.data.length +
sess->digest_length);
sge->length = sym_op->auth.data.length;
sge++;
old_digest = (uint8_t *)(sge + 1);
rte_memcpy(old_digest, sym_op->auth.digest.data,
sess->digest_length);
DPAA2_SET_FLE_ADDR(sge, DPAA2_VADDR_TO_IOVA(old_digest));
sge->length = sess->digest_length;
fle->length = sym_op->auth.data.length +
sess->digest_length;
DPAA2_SET_FLE_FIN(sge);
}
DPAA2_SET_FLE_FIN(fle);
return 0;
}
static int
build_cipher_sg_fd(dpaa2_sec_session *sess, struct rte_crypto_op *op,
struct qbman_fd *fd, __rte_unused uint16_t bpid)
{
struct rte_crypto_sym_op *sym_op = op->sym;
struct qbman_fle *ip_fle, *op_fle, *sge, *fle;
struct sec_flow_context *flc;
struct ctxt_priv *priv = sess->ctxt;
struct rte_mbuf *mbuf;
uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
sess->iv.offset);
PMD_INIT_FUNC_TRACE();
if (sym_op->m_dst)
mbuf = sym_op->m_dst;
else
mbuf = sym_op->m_src;
fle = (struct qbman_fle *)rte_malloc(NULL, FLE_SG_MEM_SIZE,
RTE_CACHE_LINE_SIZE);
if (!fle) {
DPAA2_SEC_ERR("CIPHER SG: Memory alloc failed for SGE");
return -1;
}
memset(fle, 0, FLE_SG_MEM_SIZE);
/* first FLE entry used to store mbuf and session ctxt */
DPAA2_SET_FLE_ADDR(fle, (size_t)op);
DPAA2_FLE_SAVE_CTXT(fle, (ptrdiff_t)priv);
op_fle = fle + 1;
ip_fle = fle + 2;
sge = fle + 3;
flc = &priv->flc_desc[0].flc;
DPAA2_SEC_DP_DEBUG(
"CIPHER SG: cipher_off: 0x%x/length %d, ivlen=%d"
" data_off: 0x%x\n",
sym_op->cipher.data.offset,
sym_op->cipher.data.length,
sess->iv.length,
sym_op->m_src->data_off);
/* o/p fle */
DPAA2_SET_FLE_ADDR(op_fle, DPAA2_VADDR_TO_IOVA(sge));
op_fle->length = sym_op->cipher.data.length;
DPAA2_SET_FLE_SG_EXT(op_fle);
/* o/p 1st seg */
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(mbuf));
DPAA2_SET_FLE_OFFSET(sge, sym_op->cipher.data.offset + mbuf->data_off);
sge->length = mbuf->data_len - sym_op->cipher.data.offset;
mbuf = mbuf->next;
/* o/p segs */
while (mbuf) {
sge++;
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(mbuf));
DPAA2_SET_FLE_OFFSET(sge, mbuf->data_off);
sge->length = mbuf->data_len;
mbuf = mbuf->next;
}
DPAA2_SET_FLE_FIN(sge);
DPAA2_SEC_DP_DEBUG(
"CIPHER SG: 1 - flc = %p, fle = %p FLEaddr = %x-%x, len %d\n",
flc, fle, fle->addr_hi, fle->addr_lo,
fle->length);
/* i/p fle */
mbuf = sym_op->m_src;
sge++;
DPAA2_SET_FLE_ADDR(ip_fle, DPAA2_VADDR_TO_IOVA(sge));
ip_fle->length = sess->iv.length + sym_op->cipher.data.length;
DPAA2_SET_FLE_SG_EXT(ip_fle);
/* i/p IV */
DPAA2_SET_FLE_ADDR(sge, DPAA2_VADDR_TO_IOVA(iv_ptr));
DPAA2_SET_FLE_OFFSET(sge, 0);
sge->length = sess->iv.length;
sge++;
/* i/p 1st seg */
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(mbuf));
DPAA2_SET_FLE_OFFSET(sge, sym_op->cipher.data.offset +
mbuf->data_off);
sge->length = mbuf->data_len - sym_op->cipher.data.offset;
mbuf = mbuf->next;
/* i/p segs */
while (mbuf) {
sge++;
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(mbuf));
DPAA2_SET_FLE_OFFSET(sge, mbuf->data_off);
sge->length = mbuf->data_len;
mbuf = mbuf->next;
}
DPAA2_SET_FLE_FIN(sge);
DPAA2_SET_FLE_FIN(ip_fle);
/* sg fd */
DPAA2_SET_FD_ADDR(fd, DPAA2_VADDR_TO_IOVA(op_fle));
DPAA2_SET_FD_LEN(fd, ip_fle->length);
DPAA2_SET_FD_COMPOUND_FMT(fd);
DPAA2_SET_FD_FLC(fd, DPAA2_VADDR_TO_IOVA(flc));
DPAA2_SEC_DP_DEBUG(
"CIPHER SG: fdaddr =%" PRIx64 " bpid =%d meta =%d"
" off =%d, len =%d\n",
DPAA2_GET_FD_ADDR(fd),
DPAA2_GET_FD_BPID(fd),
rte_dpaa2_bpid_info[bpid].meta_data_size,
DPAA2_GET_FD_OFFSET(fd),
DPAA2_GET_FD_LEN(fd));
return 0;
}
static int
build_cipher_fd(dpaa2_sec_session *sess, struct rte_crypto_op *op,
struct qbman_fd *fd, uint16_t bpid)
{
struct rte_crypto_sym_op *sym_op = op->sym;
struct qbman_fle *fle, *sge;
int retval;
struct sec_flow_context *flc;
struct ctxt_priv *priv = sess->ctxt;
uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
sess->iv.offset);
struct rte_mbuf *dst;
PMD_INIT_FUNC_TRACE();
if (sym_op->m_dst)
dst = sym_op->m_dst;
else
dst = sym_op->m_src;
retval = rte_mempool_get(priv->fle_pool, (void **)(&fle));
if (retval) {
DPAA2_SEC_ERR("CIPHER: Memory alloc failed for SGE");
return -1;
}
memset(fle, 0, FLE_POOL_BUF_SIZE);
/* TODO we are using the first FLE entry to store Mbuf.
* Currently we donot know which FLE has the mbuf stored.
* So while retreiving we can go back 1 FLE from the FD -ADDR
* to get the MBUF Addr from the previous FLE.
* We can have a better approach to use the inline Mbuf
*/
DPAA2_SET_FLE_ADDR(fle, (size_t)op);
DPAA2_FLE_SAVE_CTXT(fle, (ptrdiff_t)priv);
fle = fle + 1;
sge = fle + 2;
if (likely(bpid < MAX_BPID)) {
DPAA2_SET_FD_BPID(fd, bpid);
DPAA2_SET_FLE_BPID(fle, bpid);
DPAA2_SET_FLE_BPID(fle + 1, bpid);
DPAA2_SET_FLE_BPID(sge, bpid);
DPAA2_SET_FLE_BPID(sge + 1, bpid);
} else {
DPAA2_SET_FD_IVP(fd);
DPAA2_SET_FLE_IVP(fle);
DPAA2_SET_FLE_IVP((fle + 1));
DPAA2_SET_FLE_IVP(sge);
DPAA2_SET_FLE_IVP((sge + 1));
}
flc = &priv->flc_desc[0].flc;
DPAA2_SET_FD_ADDR(fd, DPAA2_VADDR_TO_IOVA(fle));
DPAA2_SET_FD_LEN(fd, sym_op->cipher.data.length +
sess->iv.length);
DPAA2_SET_FD_COMPOUND_FMT(fd);
DPAA2_SET_FD_FLC(fd, DPAA2_VADDR_TO_IOVA(flc));
DPAA2_SEC_DP_DEBUG(
"CIPHER: cipher_off: 0x%x/length %d, ivlen=%d,"
" data_off: 0x%x\n",
sym_op->cipher.data.offset,
sym_op->cipher.data.length,
sess->iv.length,
sym_op->m_src->data_off);
DPAA2_SET_FLE_ADDR(fle, DPAA2_MBUF_VADDR_TO_IOVA(dst));
DPAA2_SET_FLE_OFFSET(fle, sym_op->cipher.data.offset +
dst->data_off);
fle->length = sym_op->cipher.data.length + sess->iv.length;
DPAA2_SEC_DP_DEBUG(
"CIPHER: 1 - flc = %p, fle = %p FLEaddr = %x-%x, length %d\n",
flc, fle, fle->addr_hi, fle->addr_lo,
fle->length);
fle++;
DPAA2_SET_FLE_ADDR(fle, DPAA2_VADDR_TO_IOVA(sge));
fle->length = sym_op->cipher.data.length + sess->iv.length;
DPAA2_SET_FLE_SG_EXT(fle);
DPAA2_SET_FLE_ADDR(sge, DPAA2_VADDR_TO_IOVA(iv_ptr));
sge->length = sess->iv.length;
sge++;
DPAA2_SET_FLE_ADDR(sge, DPAA2_MBUF_VADDR_TO_IOVA(sym_op->m_src));
DPAA2_SET_FLE_OFFSET(sge, sym_op->cipher.data.offset +
sym_op->m_src->data_off);
sge->length = sym_op->cipher.data.length;
DPAA2_SET_FLE_FIN(sge);
DPAA2_SET_FLE_FIN(fle);
DPAA2_SEC_DP_DEBUG(
"CIPHER: fdaddr =%" PRIx64 " bpid =%d meta =%d"
" off =%d, len =%d\n",
DPAA2_GET_FD_ADDR(fd),
DPAA2_GET_FD_BPID(fd),
rte_dpaa2_bpid_info[bpid].meta_data_size,
DPAA2_GET_FD_OFFSET(fd),
DPAA2_GET_FD_LEN(fd));
return 0;
}
static inline int
build_sec_fd(struct rte_crypto_op *op,
struct qbman_fd *fd, uint16_t bpid)
{
int ret = -1;
dpaa2_sec_session *sess;
PMD_INIT_FUNC_TRACE();
if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
sess = (dpaa2_sec_session *)get_sym_session_private_data(
op->sym->session, cryptodev_driver_id);
else if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION)
sess = (dpaa2_sec_session *)get_sec_session_private_data(
op->sym->sec_session);
else
return -1;
/* Segmented buffer */
if (unlikely(!rte_pktmbuf_is_contiguous(op->sym->m_src))) {
switch (sess->ctxt_type) {
case DPAA2_SEC_CIPHER:
ret = build_cipher_sg_fd(sess, op, fd, bpid);
break;
case DPAA2_SEC_AUTH:
ret = build_auth_sg_fd(sess, op, fd, bpid);
break;
case DPAA2_SEC_AEAD:
ret = build_authenc_gcm_sg_fd(sess, op, fd, bpid);
break;
case DPAA2_SEC_CIPHER_HASH:
ret = build_authenc_sg_fd(sess, op, fd, bpid);
break;
case DPAA2_SEC_HASH_CIPHER:
default:
DPAA2_SEC_ERR("error: Unsupported session");
}
} else {
switch (sess->ctxt_type) {
case DPAA2_SEC_CIPHER:
ret = build_cipher_fd(sess, op, fd, bpid);
break;
case DPAA2_SEC_AUTH:
ret = build_auth_fd(sess, op, fd, bpid);
break;
case DPAA2_SEC_AEAD:
ret = build_authenc_gcm_fd(sess, op, fd, bpid);
break;
case DPAA2_SEC_CIPHER_HASH:
ret = build_authenc_fd(sess, op, fd, bpid);
break;
case DPAA2_SEC_IPSEC:
ret = build_proto_fd(sess, op, fd, bpid);
break;
case DPAA2_SEC_PDCP:
ret = build_proto_compound_fd(sess, op, fd, bpid);
break;
case DPAA2_SEC_HASH_CIPHER:
default:
DPAA2_SEC_ERR("error: Unsupported session");
}
}
return ret;
}
static uint16_t
dpaa2_sec_enqueue_burst(void *qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
/* Function to transmit the frames to given device and VQ*/
uint32_t loop;
int32_t ret;
struct qbman_fd fd_arr[MAX_TX_RING_SLOTS];
uint32_t frames_to_send;
struct qbman_eq_desc eqdesc;
struct dpaa2_sec_qp *dpaa2_qp = (struct dpaa2_sec_qp *)qp;
struct qbman_swp *swp;
uint16_t num_tx = 0;
uint32_t flags[MAX_TX_RING_SLOTS] = {0};
/*todo - need to support multiple buffer pools */
uint16_t bpid;
struct rte_mempool *mb_pool;
if (unlikely(nb_ops == 0))
return 0;
if (ops[0]->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
DPAA2_SEC_ERR("sessionless crypto op not supported");
return 0;
}
/*Prepare enqueue descriptor*/
qbman_eq_desc_clear(&eqdesc);
qbman_eq_desc_set_no_orp(&eqdesc, DPAA2_EQ_RESP_ERR_FQ);
qbman_eq_desc_set_response(&eqdesc, 0, 0);
qbman_eq_desc_set_fq(&eqdesc, dpaa2_qp->tx_vq.fqid);
if (!DPAA2_PER_LCORE_DPIO) {
ret = dpaa2_affine_qbman_swp();
if (ret) {
DPAA2_SEC_ERR("Failure in affining portal");
return 0;
}
}
swp = DPAA2_PER_LCORE_PORTAL;
while (nb_ops) {
frames_to_send = (nb_ops > dpaa2_eqcr_size) ?
dpaa2_eqcr_size : nb_ops;
for (loop = 0; loop < frames_to_send; loop++) {
if ((*ops)->sym->m_src->seqn) {
uint8_t dqrr_index = (*ops)->sym->m_src->seqn - 1;
flags[loop] = QBMAN_ENQUEUE_FLAG_DCA | dqrr_index;
DPAA2_PER_LCORE_DQRR_SIZE--;
DPAA2_PER_LCORE_DQRR_HELD &= ~(1 << dqrr_index);
(*ops)->sym->m_src->seqn = DPAA2_INVALID_MBUF_SEQN;
}
/*Clear the unused FD fields before sending*/
memset(&fd_arr[loop], 0, sizeof(struct qbman_fd));
mb_pool = (*ops)->sym->m_src->pool;
bpid = mempool_to_bpid(mb_pool);
ret = build_sec_fd(*ops, &fd_arr[loop], bpid);
if (ret) {
DPAA2_SEC_ERR("error: Improper packet contents"
" for crypto operation");
goto skip_tx;
}
ops++;
}
loop = 0;
while (loop < frames_to_send) {
loop += qbman_swp_enqueue_multiple(swp, &eqdesc,
&fd_arr[loop],
&flags[loop],
frames_to_send - loop);
}
num_tx += frames_to_send;
nb_ops -= frames_to_send;
}
skip_tx:
dpaa2_qp->tx_vq.tx_pkts += num_tx;
dpaa2_qp->tx_vq.err_pkts += nb_ops;
return num_tx;
}
static inline struct rte_crypto_op *
sec_simple_fd_to_mbuf(const struct qbman_fd *fd, __rte_unused uint8_t id)
{
struct rte_crypto_op *op;
uint16_t len = DPAA2_GET_FD_LEN(fd);
uint16_t diff = 0;
dpaa2_sec_session *sess_priv;
struct rte_mbuf *mbuf = DPAA2_INLINE_MBUF_FROM_BUF(
DPAA2_IOVA_TO_VADDR(DPAA2_GET_FD_ADDR(fd)),
rte_dpaa2_bpid_info[DPAA2_GET_FD_BPID(fd)].meta_data_size);
diff = len - mbuf->pkt_len;
mbuf->pkt_len += diff;
mbuf->data_len += diff;
op = (struct rte_crypto_op *)(size_t)mbuf->buf_iova;
mbuf->buf_iova = op->sym->aead.digest.phys_addr;
op->sym->aead.digest.phys_addr = 0L;
sess_priv = (dpaa2_sec_session *)get_sec_session_private_data(
op->sym->sec_session);
if (sess_priv->dir == DIR_ENC)
mbuf->data_off += SEC_FLC_DHR_OUTBOUND;
else
mbuf->data_off += SEC_FLC_DHR_INBOUND;
return op;
}
static inline struct rte_crypto_op *
sec_fd_to_mbuf(const struct qbman_fd *fd, uint8_t driver_id)
{
struct qbman_fle *fle;
struct rte_crypto_op *op;
struct ctxt_priv *priv;
struct rte_mbuf *dst, *src;
if (DPAA2_FD_GET_FORMAT(fd) == qbman_fd_single)
return sec_simple_fd_to_mbuf(fd, driver_id);
fle = (struct qbman_fle *)DPAA2_IOVA_TO_VADDR(DPAA2_GET_FD_ADDR(fd));
DPAA2_SEC_DP_DEBUG("FLE addr = %x - %x, offset = %x\n",
fle->addr_hi, fle->addr_lo, fle->fin_bpid_offset);
/* we are using the first FLE entry to store Mbuf.
* Currently we donot know which FLE has the mbuf stored.
* So while retreiving we can go back 1 FLE from the FD -ADDR
* to get the MBUF Addr from the previous FLE.
* We can have a better approach to use the inline Mbuf
*/
if (unlikely(DPAA2_GET_FD_IVP(fd))) {
/* TODO complete it. */
DPAA2_SEC_ERR("error: non inline buffer");
return NULL;
}
op = (struct rte_crypto_op *)DPAA2_GET_FLE_ADDR((fle - 1));
/* Prefeth op */
src = op->sym->m_src;
rte_prefetch0(src);
if (op->sym->m_dst) {
dst = op->sym->m_dst;
rte_prefetch0(dst);
} else
dst = src;
if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) {
dpaa2_sec_session *sess = (dpaa2_sec_session *)
get_sec_session_private_data(op->sym->sec_session);
if (sess->ctxt_type == DPAA2_SEC_IPSEC) {
uint16_t len = DPAA2_GET_FD_LEN(fd);
dst->pkt_len = len;
dst->data_len = len;
}
}
DPAA2_SEC_DP_DEBUG("mbuf %p BMAN buf addr %p,"
" fdaddr =%" PRIx64 " bpid =%d meta =%d off =%d, len =%d\n",
(void *)dst,
dst->buf_addr,
DPAA2_GET_FD_ADDR(fd),
DPAA2_GET_FD_BPID(fd),
rte_dpaa2_bpid_info[DPAA2_GET_FD_BPID(fd)].meta_data_size,
DPAA2_GET_FD_OFFSET(fd),
DPAA2_GET_FD_LEN(fd));
/* free the fle memory */
if (likely(rte_pktmbuf_is_contiguous(src))) {
priv = (struct ctxt_priv *)(size_t)DPAA2_GET_FLE_CTXT(fle - 1);
rte_mempool_put(priv->fle_pool, (void *)(fle-1));
} else
rte_free((void *)(fle-1));
return op;
}
static uint16_t
dpaa2_sec_dequeue_burst(void *qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
/* Function is responsible to receive frames for a given device and VQ*/
struct dpaa2_sec_qp *dpaa2_qp = (struct dpaa2_sec_qp *)qp;
struct rte_cryptodev *dev =
(struct rte_cryptodev *)(dpaa2_qp->rx_vq.dev);
struct qbman_result *dq_storage;
uint32_t fqid = dpaa2_qp->rx_vq.fqid;
int ret, num_rx = 0;
uint8_t is_last = 0, status;
struct qbman_swp *swp;
const struct qbman_fd *fd;
struct qbman_pull_desc pulldesc;
if (!DPAA2_PER_LCORE_DPIO) {
ret = dpaa2_affine_qbman_swp();
if (ret) {
DPAA2_SEC_ERR("Failure in affining portal");
return 0;
}
}
swp = DPAA2_PER_LCORE_PORTAL;
dq_storage = dpaa2_qp->rx_vq.q_storage->dq_storage[0];
qbman_pull_desc_clear(&pulldesc);
qbman_pull_desc_set_numframes(&pulldesc,
(nb_ops > dpaa2_dqrr_size) ?
dpaa2_dqrr_size : nb_ops);
qbman_pull_desc_set_fq(&pulldesc, fqid);
qbman_pull_desc_set_storage(&pulldesc, dq_storage,
(dma_addr_t)DPAA2_VADDR_TO_IOVA(dq_storage),
1);
/*Issue a volatile dequeue command. */
while (1) {
if (qbman_swp_pull(swp, &pulldesc)) {
DPAA2_SEC_WARN(
"SEC VDQ command is not issued : QBMAN busy");
/* Portal was busy, try again */
continue;
}
break;
};
/* Receive the packets till Last Dequeue entry is found with
* respect to the above issues PULL command.
*/
while (!is_last) {
/* Check if the previous issued command is completed.
* Also seems like the SWP is shared between the Ethernet Driver
* and the SEC driver.
*/
while (!qbman_check_command_complete(dq_storage))
;
/* Loop until the dq_storage is updated with
* new token by QBMAN
*/
while (!qbman_check_new_result(dq_storage))
;
/* Check whether Last Pull command is Expired and
* setting Condition for Loop termination
*/
if (qbman_result_DQ_is_pull_complete(dq_storage)) {
is_last = 1;
/* Check for valid frame. */
status = (uint8_t)qbman_result_DQ_flags(dq_storage);
if (unlikely(
(status & QBMAN_DQ_STAT_VALIDFRAME) == 0)) {
DPAA2_SEC_DP_DEBUG("No frame is delivered\n");
continue;
}
}
fd = qbman_result_DQ_fd(dq_storage);
ops[num_rx] = sec_fd_to_mbuf(fd, dev->driver_id);
if (unlikely(fd->simple.frc)) {
/* TODO Parse SEC errors */
DPAA2_SEC_ERR("SEC returned Error - %x",
fd->simple.frc);
ops[num_rx]->status = RTE_CRYPTO_OP_STATUS_ERROR;
} else {
ops[num_rx]->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
}
num_rx++;
dq_storage++;
} /* End of Packet Rx loop */
dpaa2_qp->rx_vq.rx_pkts += num_rx;
DPAA2_SEC_DP_DEBUG("SEC Received %d Packets\n", num_rx);
/*Return the total number of packets received to DPAA2 app*/
return num_rx;
}
/** Release queue pair */
static int
dpaa2_sec_queue_pair_release(struct rte_cryptodev *dev, uint16_t queue_pair_id)
{
struct dpaa2_sec_qp *qp =
(struct dpaa2_sec_qp *)dev->data->queue_pairs[queue_pair_id];
PMD_INIT_FUNC_TRACE();
if (qp->rx_vq.q_storage) {
dpaa2_free_dq_storage(qp->rx_vq.q_storage);
rte_free(qp->rx_vq.q_storage);
}
rte_free(qp);
dev->data->queue_pairs[queue_pair_id] = NULL;
return 0;
}
/** Setup a queue pair */
static int
dpaa2_sec_queue_pair_setup(struct rte_cryptodev *dev, uint16_t qp_id,
__rte_unused const struct rte_cryptodev_qp_conf *qp_conf,
__rte_unused int socket_id,
__rte_unused struct rte_mempool *session_pool)
{
struct dpaa2_sec_dev_private *priv = dev->data->dev_private;
struct dpaa2_sec_qp *qp;
struct fsl_mc_io *dpseci = (struct fsl_mc_io *)priv->hw;
struct dpseci_rx_queue_cfg cfg;
int32_t retcode;
PMD_INIT_FUNC_TRACE();
/* If qp is already in use free ring memory and qp metadata. */
if (dev->data->queue_pairs[qp_id] != NULL) {
DPAA2_SEC_INFO("QP already setup");
return 0;
}
DPAA2_SEC_DEBUG("dev =%p, queue =%d, conf =%p",
dev, qp_id, qp_conf);
memset(&cfg, 0, sizeof(struct dpseci_rx_queue_cfg));
qp = rte_malloc(NULL, sizeof(struct dpaa2_sec_qp),
RTE_CACHE_LINE_SIZE);
if (!qp) {
DPAA2_SEC_ERR("malloc failed for rx/tx queues");
return -1;
}
qp->rx_vq.dev = dev;
qp->tx_vq.dev = dev;
qp->rx_vq.q_storage = rte_malloc("sec dq storage",
sizeof(struct queue_storage_info_t),
RTE_CACHE_LINE_SIZE);
if (!qp->rx_vq.q_storage) {
DPAA2_SEC_ERR("malloc failed for q_storage");
return -1;
}
memset(qp->rx_vq.q_storage, 0, sizeof(struct queue_storage_info_t));
if (dpaa2_alloc_dq_storage(qp->rx_vq.q_storage)) {
DPAA2_SEC_ERR("Unable to allocate dequeue storage");
return -1;
}
dev->data->queue_pairs[qp_id] = qp;
cfg.options = cfg.options | DPSECI_QUEUE_OPT_USER_CTX;
cfg.user_ctx = (size_t)(&qp->rx_vq);
retcode = dpseci_set_rx_queue(dpseci, CMD_PRI_LOW, priv->token,
qp_id, &cfg);
return retcode;
}
/** Return the number of allocated queue pairs */
static uint32_t
dpaa2_sec_queue_pair_count(struct rte_cryptodev *dev)
{
PMD_INIT_FUNC_TRACE();
return dev->data->nb_queue_pairs;
}
/** Returns the size of the aesni gcm session structure */
static unsigned int
dpaa2_sec_sym_session_get_size(struct rte_cryptodev *dev __rte_unused)
{
PMD_INIT_FUNC_TRACE();
return sizeof(dpaa2_sec_session);
}
static int
dpaa2_sec_cipher_init(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform,
dpaa2_sec_session *session)
{
struct dpaa2_sec_dev_private *dev_priv = dev->data->dev_private;
struct alginfo cipherdata;
int bufsize, i;
struct ctxt_priv *priv;
struct sec_flow_context *flc;
PMD_INIT_FUNC_TRACE();
/* For SEC CIPHER only one descriptor is required. */
priv = (struct ctxt_priv *)rte_zmalloc(NULL,
sizeof(struct ctxt_priv) + sizeof(struct sec_flc_desc),
RTE_CACHE_LINE_SIZE);
if (priv == NULL) {
DPAA2_SEC_ERR("No Memory for priv CTXT");
return -1;
}
priv->fle_pool = dev_priv->fle_pool;
flc = &priv->flc_desc[0].flc;
session->cipher_key.data = rte_zmalloc(NULL, xform->cipher.key.length,
RTE_CACHE_LINE_SIZE);
if (session->cipher_key.data == NULL) {
DPAA2_SEC_ERR("No Memory for cipher key");
rte_free(priv);
return -1;
}
session->cipher_key.length = xform->cipher.key.length;
memcpy(session->cipher_key.data, xform->cipher.key.data,
xform->cipher.key.length);
cipherdata.key = (size_t)session->cipher_key.data;
cipherdata.keylen = session->cipher_key.length;
cipherdata.key_enc_flags = 0;
cipherdata.key_type = RTA_DATA_IMM;
/* Set IV parameters */
session->iv.offset = xform->cipher.iv.offset;
session->iv.length = xform->cipher.iv.length;
switch (xform->cipher.algo) {
case RTE_CRYPTO_CIPHER_AES_CBC:
cipherdata.algtype = OP_ALG_ALGSEL_AES;
cipherdata.algmode = OP_ALG_AAI_CBC;
session->cipher_alg = RTE_CRYPTO_CIPHER_AES_CBC;
break;
case RTE_CRYPTO_CIPHER_3DES_CBC:
cipherdata.algtype = OP_ALG_ALGSEL_3DES;
cipherdata.algmode = OP_ALG_AAI_CBC;
session->cipher_alg = RTE_CRYPTO_CIPHER_3DES_CBC;
break;
case RTE_CRYPTO_CIPHER_AES_CTR:
cipherdata.algtype = OP_ALG_ALGSEL_AES;
cipherdata.algmode = OP_ALG_AAI_CTR;
session->cipher_alg = RTE_CRYPTO_CIPHER_AES_CTR;
break;
case RTE_CRYPTO_CIPHER_3DES_CTR:
case RTE_CRYPTO_CIPHER_AES_ECB:
case RTE_CRYPTO_CIPHER_3DES_ECB:
case RTE_CRYPTO_CIPHER_AES_XTS:
case RTE_CRYPTO_CIPHER_AES_F8:
case RTE_CRYPTO_CIPHER_ARC4:
case RTE_CRYPTO_CIPHER_KASUMI_F8:
case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
case RTE_CRYPTO_CIPHER_ZUC_EEA3:
case RTE_CRYPTO_CIPHER_NULL:
DPAA2_SEC_ERR("Crypto: Unsupported Cipher alg %u",
xform->cipher.algo);
goto error_out;
default:
DPAA2_SEC_ERR("Crypto: Undefined Cipher specified %u",
xform->cipher.algo);
goto error_out;
}
session->dir = (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
DIR_ENC : DIR_DEC;
bufsize = cnstr_shdsc_blkcipher(priv->flc_desc[0].desc, 1, 0,
&cipherdata, NULL, session->iv.length,
session->dir);
if (bufsize < 0) {
DPAA2_SEC_ERR("Crypto: Descriptor build failed");
goto error_out;
}
flc->dhr = 0;
flc->bpv0 = 0x1;
flc->mode_bits = 0x8000;
flc->word1_sdl = (uint8_t)bufsize;
flc->word2_rflc_31_0 = lower_32_bits(
(size_t)&(((struct dpaa2_sec_qp *)
dev->data->queue_pairs[0])->rx_vq));
flc->word3_rflc_63_32 = upper_32_bits(
(size_t)&(((struct dpaa2_sec_qp *)
dev->data->queue_pairs[0])->rx_vq));
session->ctxt = priv;
for (i = 0; i < bufsize; i++)
DPAA2_SEC_DEBUG("DESC[%d]:0x%x", i, priv->flc_desc[0].desc[i]);
return 0;
error_out:
rte_free(session->cipher_key.data);
rte_free(priv);
return -1;
}
static int
dpaa2_sec_auth_init(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform,
dpaa2_sec_session *session)
{
struct dpaa2_sec_dev_private *dev_priv = dev->data->dev_private;
struct alginfo authdata;
int bufsize, i;
struct ctxt_priv *priv;
struct sec_flow_context *flc;
PMD_INIT_FUNC_TRACE();
/* For SEC AUTH three descriptors are required for various stages */
priv = (struct ctxt_priv *)rte_zmalloc(NULL,
sizeof(struct ctxt_priv) + 3 *
sizeof(struct sec_flc_desc),
RTE_CACHE_LINE_SIZE);
if (priv == NULL) {
DPAA2_SEC_ERR("No Memory for priv CTXT");
return -1;
}
priv->fle_pool = dev_priv->fle_pool;
flc = &priv->flc_desc[DESC_INITFINAL].flc;
session->auth_key.data = rte_zmalloc(NULL, xform->auth.key.length,
RTE_CACHE_LINE_SIZE);
if (session->auth_key.data == NULL) {
DPAA2_SEC_ERR("Unable to allocate memory for auth key");
rte_free(priv);
return -1;
}
session->auth_key.length = xform->auth.key.length;
memcpy(session->auth_key.data, xform->auth.key.data,
xform->auth.key.length);
authdata.key = (size_t)session->auth_key.data;
authdata.keylen = session->auth_key.length;
authdata.key_enc_flags = 0;
authdata.key_type = RTA_DATA_IMM;
session->digest_length = xform->auth.digest_length;
switch (xform->auth.algo) {
case RTE_CRYPTO_AUTH_SHA1_HMAC:
authdata.algtype = OP_ALG_ALGSEL_SHA1;
authdata.algmode = OP_ALG_AAI_HMAC;
session->auth_alg = RTE_CRYPTO_AUTH_SHA1_HMAC;
break;
case RTE_CRYPTO_AUTH_MD5_HMAC:
authdata.algtype = OP_ALG_ALGSEL_MD5;
authdata.algmode = OP_ALG_AAI_HMAC;
session->auth_alg = RTE_CRYPTO_AUTH_MD5_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA256_HMAC:
authdata.algtype = OP_ALG_ALGSEL_SHA256;
authdata.algmode = OP_ALG_AAI_HMAC;
session->auth_alg = RTE_CRYPTO_AUTH_SHA256_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA384_HMAC:
authdata.algtype = OP_ALG_ALGSEL_SHA384;
authdata.algmode = OP_ALG_AAI_HMAC;
session->auth_alg = RTE_CRYPTO_AUTH_SHA384_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA512_HMAC:
authdata.algtype = OP_ALG_ALGSEL_SHA512;
authdata.algmode = OP_ALG_AAI_HMAC;
session->auth_alg = RTE_CRYPTO_AUTH_SHA512_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA224_HMAC:
authdata.algtype = OP_ALG_ALGSEL_SHA224;
authdata.algmode = OP_ALG_AAI_HMAC;
session->auth_alg = RTE_CRYPTO_AUTH_SHA224_HMAC;
break;
case RTE_CRYPTO_AUTH_AES_XCBC_MAC:
case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
case RTE_CRYPTO_AUTH_NULL:
case RTE_CRYPTO_AUTH_SHA1:
case RTE_CRYPTO_AUTH_SHA256:
case RTE_CRYPTO_AUTH_SHA512:
case RTE_CRYPTO_AUTH_SHA224:
case RTE_CRYPTO_AUTH_SHA384:
case RTE_CRYPTO_AUTH_MD5:
case RTE_CRYPTO_AUTH_AES_GMAC:
case RTE_CRYPTO_AUTH_KASUMI_F9:
case RTE_CRYPTO_AUTH_AES_CMAC:
case RTE_CRYPTO_AUTH_AES_CBC_MAC:
case RTE_CRYPTO_AUTH_ZUC_EIA3:
DPAA2_SEC_ERR("Crypto: Unsupported auth alg %un",
xform->auth.algo);
goto error_out;
default:
DPAA2_SEC_ERR("Crypto: Undefined Auth specified %u",
xform->auth.algo);
goto error_out;
}
session->dir = (xform->auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) ?
DIR_ENC : DIR_DEC;
bufsize = cnstr_shdsc_hmac(priv->flc_desc[DESC_INITFINAL].desc,
1, 0, &authdata, !session->dir,
session->digest_length);
if (bufsize < 0) {
DPAA2_SEC_ERR("Crypto: Invalid buffer length");
goto error_out;
}
flc->word1_sdl = (uint8_t)bufsize;
flc->word2_rflc_31_0 = lower_32_bits(
(size_t)&(((struct dpaa2_sec_qp *)
dev->data->queue_pairs[0])->rx_vq));
flc->word3_rflc_63_32 = upper_32_bits(
(size_t)&(((struct dpaa2_sec_qp *)
dev->data->queue_pairs[0])->rx_vq));
session->ctxt = priv;
for (i = 0; i < bufsize; i++)
DPAA2_SEC_DEBUG("DESC[%d]:0x%x",
i, priv->flc_desc[DESC_INITFINAL].desc[i]);
return 0;
error_out:
rte_free(session->auth_key.data);
rte_free(priv);
return -1;
}
static int
dpaa2_sec_aead_init(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform,
dpaa2_sec_session *session)
{
struct dpaa2_sec_aead_ctxt *ctxt = &session->ext_params.aead_ctxt;
struct dpaa2_sec_dev_private *dev_priv = dev->data->dev_private;
struct alginfo aeaddata;
int bufsize, i;
struct ctxt_priv *priv;
struct sec_flow_context *flc;
struct rte_crypto_aead_xform *aead_xform = &xform->aead;
int err;
PMD_INIT_FUNC_TRACE();
/* Set IV parameters */
session->iv.offset = aead_xform->iv.offset;
session->iv.length = aead_xform->iv.length;
session->ctxt_type = DPAA2_SEC_AEAD;
/* For SEC AEAD only one descriptor is required */
priv = (struct ctxt_priv *)rte_zmalloc(NULL,
sizeof(struct ctxt_priv) + sizeof(struct sec_flc_desc),
RTE_CACHE_LINE_SIZE);
if (priv == NULL) {
DPAA2_SEC_ERR("No Memory for priv CTXT");
return -1;
}
priv->fle_pool = dev_priv->fle_pool;
flc = &priv->flc_desc[0].flc;
session->aead_key.data = rte_zmalloc(NULL, aead_xform->key.length,
RTE_CACHE_LINE_SIZE);
if (session->aead_key.data == NULL && aead_xform->key.length > 0) {
DPAA2_SEC_ERR("No Memory for aead key");
rte_free(priv);
return -1;
}
memcpy(session->aead_key.data, aead_xform->key.data,
aead_xform->key.length);
session->digest_length = aead_xform->digest_length;
session->aead_key.length = aead_xform->key.length;
ctxt->auth_only_len = aead_xform->aad_length;
aeaddata.key = (size_t)session->aead_key.data;
aeaddata.keylen = session->aead_key.length;
aeaddata.key_enc_flags = 0;
aeaddata.key_type = RTA_DATA_IMM;
switch (aead_xform->algo) {
case RTE_CRYPTO_AEAD_AES_GCM:
aeaddata.algtype = OP_ALG_ALGSEL_AES;
aeaddata.algmode = OP_ALG_AAI_GCM;
session->aead_alg = RTE_CRYPTO_AEAD_AES_GCM;
break;
case RTE_CRYPTO_AEAD_AES_CCM:
DPAA2_SEC_ERR("Crypto: Unsupported AEAD alg %u",
aead_xform->algo);
goto error_out;
default:
DPAA2_SEC_ERR("Crypto: Undefined AEAD specified %u",
aead_xform->algo);
goto error_out;
}
session->dir = (aead_xform->op == RTE_CRYPTO_AEAD_OP_ENCRYPT) ?
DIR_ENC : DIR_DEC;
priv->flc_desc[0].desc[0] = aeaddata.keylen;
err = rta_inline_query(IPSEC_AUTH_VAR_AES_DEC_BASE_DESC_LEN,
MIN_JOB_DESC_SIZE,
(unsigned int *)priv->flc_desc[0].desc,
&priv->flc_desc[0].desc[1], 1);
if (err < 0) {
DPAA2_SEC_ERR("Crypto: Incorrect key lengths");
goto error_out;
}
if (priv->flc_desc[0].desc[1] & 1) {
aeaddata.key_type = RTA_DATA_IMM;
} else {
aeaddata.key = DPAA2_VADDR_TO_IOVA(aeaddata.key);
aeaddata.key_type = RTA_DATA_PTR;
}
priv->flc_desc[0].desc[0] = 0;
priv->flc_desc[0].desc[1] = 0;
if (session->dir == DIR_ENC)
bufsize = cnstr_shdsc_gcm_encap(
priv->flc_desc[0].desc, 1, 0,
&aeaddata, session->iv.length,
session->digest_length);
else
bufsize = cnstr_shdsc_gcm_decap(
priv->flc_desc[0].desc, 1, 0,
&aeaddata, session->iv.length,
session->digest_length);
if (bufsize < 0) {
DPAA2_SEC_ERR("Crypto: Invalid buffer length");
goto error_out;
}
flc->word1_sdl = (uint8_t)bufsize;
flc->word2_rflc_31_0 = lower_32_bits(
(size_t)&(((struct dpaa2_sec_qp *)
dev->data->queue_pairs[0])->rx_vq));
flc->word3_rflc_63_32 = upper_32_bits(
(size_t)&(((struct dpaa2_sec_qp *)
dev->data->queue_pairs[0])->rx_vq));
session->ctxt = priv;
for (i = 0; i < bufsize; i++)
DPAA2_SEC_DEBUG("DESC[%d]:0x%x\n",
i, priv->flc_desc[0].desc[i]);
return 0;
error_out:
rte_free(session->aead_key.data);
rte_free(priv);
return -1;
}
static int
dpaa2_sec_aead_chain_init(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform,
dpaa2_sec_session *session)
{
struct dpaa2_sec_aead_ctxt *ctxt = &session->ext_params.aead_ctxt;
struct dpaa2_sec_dev_private *dev_priv = dev->data->dev_private;
struct alginfo authdata, cipherdata;
int bufsize, i;
struct ctxt_priv *priv;
struct sec_flow_context *flc;
struct rte_crypto_cipher_xform *cipher_xform;
struct rte_crypto_auth_xform *auth_xform;
int err;
PMD_INIT_FUNC_TRACE();
if (session->ext_params.aead_ctxt.auth_cipher_text) {
cipher_xform = &xform->cipher;
auth_xform = &xform->next->auth;
session->ctxt_type =
(cipher_xform->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
DPAA2_SEC_CIPHER_HASH : DPAA2_SEC_HASH_CIPHER;
} else {
cipher_xform = &xform->next->cipher;
auth_xform = &xform->auth;
session->ctxt_type =
(cipher_xform->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
DPAA2_SEC_HASH_CIPHER : DPAA2_SEC_CIPHER_HASH;
}
/* Set IV parameters */
session->iv.offset = cipher_xform->iv.offset;
session->iv.length = cipher_xform->iv.length;
/* For SEC AEAD only one descriptor is required */
priv = (struct ctxt_priv *)rte_zmalloc(NULL,
sizeof(struct ctxt_priv) + sizeof(struct sec_flc_desc),
RTE_CACHE_LINE_SIZE);
if (priv == NULL) {
DPAA2_SEC_ERR("No Memory for priv CTXT");
return -1;
}
priv->fle_pool = dev_priv->fle_pool;
flc = &priv->flc_desc[0].flc;
session->cipher_key.data = rte_zmalloc(NULL, cipher_xform->key.length,
RTE_CACHE_LINE_SIZE);
if (session->cipher_key.data == NULL && cipher_xform->key.length > 0) {
DPAA2_SEC_ERR("No Memory for cipher key");
rte_free(priv);
return -1;
}
session->cipher_key.length = cipher_xform->key.length;
session->auth_key.data = rte_zmalloc(NULL, auth_xform->key.length,
RTE_CACHE_LINE_SIZE);
if (session->auth_key.data == NULL && auth_xform->key.length > 0) {
DPAA2_SEC_ERR("No Memory for auth key");
rte_free(session->cipher_key.data);
rte_free(priv);
return -1;
}
session->auth_key.length = auth_xform->key.length;
memcpy(session->cipher_key.data, cipher_xform->key.data,
cipher_xform->key.length);
memcpy(session->auth_key.data, auth_xform->key.data,
auth_xform->key.length);
authdata.key = (size_t)session->auth_key.data;
authdata.keylen = session->auth_key.length;
authdata.key_enc_flags = 0;
authdata.key_type = RTA_DATA_IMM;
session->digest_length = auth_xform->digest_length;
switch (auth_xform->algo) {
case RTE_CRYPTO_AUTH_SHA1_HMAC:
authdata.algtype = OP_ALG_ALGSEL_SHA1;
authdata.algmode = OP_ALG_AAI_HMAC;
session->auth_alg = RTE_CRYPTO_AUTH_SHA1_HMAC;
break;
case RTE_CRYPTO_AUTH_MD5_HMAC:
authdata.algtype = OP_ALG_ALGSEL_MD5;
authdata.algmode = OP_ALG_AAI_HMAC;
session->auth_alg = RTE_CRYPTO_AUTH_MD5_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA224_HMAC:
authdata.algtype = OP_ALG_ALGSEL_SHA224;
authdata.algmode = OP_ALG_AAI_HMAC;
session->auth_alg = RTE_CRYPTO_AUTH_SHA224_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA256_HMAC:
authdata.algtype = OP_ALG_ALGSEL_SHA256;
authdata.algmode = OP_ALG_AAI_HMAC;
session->auth_alg = RTE_CRYPTO_AUTH_SHA256_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA384_HMAC:
authdata.algtype = OP_ALG_ALGSEL_SHA384;
authdata.algmode = OP_ALG_AAI_HMAC;
session->auth_alg = RTE_CRYPTO_AUTH_SHA384_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA512_HMAC:
authdata.algtype = OP_ALG_ALGSEL_SHA512;
authdata.algmode = OP_ALG_AAI_HMAC;
session->auth_alg = RTE_CRYPTO_AUTH_SHA512_HMAC;
break;
case RTE_CRYPTO_AUTH_AES_XCBC_MAC:
case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
case RTE_CRYPTO_AUTH_NULL:
case RTE_CRYPTO_AUTH_SHA1:
case RTE_CRYPTO_AUTH_SHA256:
case RTE_CRYPTO_AUTH_SHA512:
case RTE_CRYPTO_AUTH_SHA224:
case RTE_CRYPTO_AUTH_SHA384:
case RTE_CRYPTO_AUTH_MD5:
case RTE_CRYPTO_AUTH_AES_GMAC:
case RTE_CRYPTO_AUTH_KASUMI_F9:
case RTE_CRYPTO_AUTH_AES_CMAC:
case RTE_CRYPTO_AUTH_AES_CBC_MAC:
case RTE_CRYPTO_AUTH_ZUC_EIA3:
DPAA2_SEC_ERR("Crypto: Unsupported auth alg %u",
auth_xform->algo);
goto error_out;
default:
DPAA2_SEC_ERR("Crypto: Undefined Auth specified %u",
auth_xform->algo);
goto error_out;
}
cipherdata.key = (size_t)session->cipher_key.data;
cipherdata.keylen = session->cipher_key.length;
cipherdata.key_enc_flags = 0;
cipherdata.key_type = RTA_DATA_IMM;
switch (cipher_xform->algo) {
case RTE_CRYPTO_CIPHER_AES_CBC:
cipherdata.algtype = OP_ALG_ALGSEL_AES;
cipherdata.algmode = OP_ALG_AAI_CBC;
session->cipher_alg = RTE_CRYPTO_CIPHER_AES_CBC;
break;
case RTE_CRYPTO_CIPHER_3DES_CBC:
cipherdata.algtype = OP_ALG_ALGSEL_3DES;
cipherdata.algmode = OP_ALG_AAI_CBC;
session->cipher_alg = RTE_CRYPTO_CIPHER_3DES_CBC;
break;
case RTE_CRYPTO_CIPHER_AES_CTR:
cipherdata.algtype = OP_ALG_ALGSEL_AES;
cipherdata.algmode = OP_ALG_AAI_CTR;
session->cipher_alg = RTE_CRYPTO_CIPHER_AES_CTR;
break;
case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
case RTE_CRYPTO_CIPHER_NULL:
case RTE_CRYPTO_CIPHER_3DES_ECB:
case RTE_CRYPTO_CIPHER_AES_ECB:
case RTE_CRYPTO_CIPHER_KASUMI_F8:
DPAA2_SEC_ERR("Crypto: Unsupported Cipher alg %u",
cipher_xform->algo);
goto error_out;
default:
DPAA2_SEC_ERR("Crypto: Undefined Cipher specified %u",
cipher_xform->algo);
goto error_out;
}
session->dir = (cipher_xform->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
DIR_ENC : DIR_DEC;
priv->flc_desc[0].desc[0] = cipherdata.keylen;
priv->flc_desc[0].desc[1] = authdata.keylen;
err = rta_inline_query(IPSEC_AUTH_VAR_AES_DEC_BASE_DESC_LEN,
MIN_JOB_DESC_SIZE,
(unsigned int *)priv->flc_desc[0].desc,
&priv->flc_desc[0].desc[2], 2);
if (err < 0) {
DPAA2_SEC_ERR("Crypto: Incorrect key lengths");
goto error_out;
}
if (priv->flc_desc[0].desc[2] & 1) {
cipherdata.key_type = RTA_DATA_IMM;
} else {
cipherdata.key = DPAA2_VADDR_TO_IOVA(cipherdata.key);
cipherdata.key_type = RTA_DATA_PTR;
}
if (priv->flc_desc[0].desc[2] & (1 << 1)) {
authdata.key_type = RTA_DATA_IMM;
} else {
authdata.key = DPAA2_VADDR_TO_IOVA(authdata.key);
authdata.key_type = RTA_DATA_PTR;
}
priv->flc_desc[0].desc[0] = 0;
priv->flc_desc[0].desc[1] = 0;
priv->flc_desc[0].desc[2] = 0;
if (session->ctxt_type == DPAA2_SEC_CIPHER_HASH) {
bufsize = cnstr_shdsc_authenc(priv->flc_desc[0].desc, 1,
0, &cipherdata, &authdata,
session->iv.length,
ctxt->auth_only_len,
session->digest_length,
session->dir);
if (bufsize < 0) {
DPAA2_SEC_ERR("Crypto: Invalid buffer length");
goto error_out;
}
} else {
DPAA2_SEC_ERR("Hash before cipher not supported");
goto error_out;
}
flc->word1_sdl = (uint8_t)bufsize;
flc->word2_rflc_31_0 = lower_32_bits(
(size_t)&(((struct dpaa2_sec_qp *)
dev->data->queue_pairs[0])->rx_vq));
flc->word3_rflc_63_32 = upper_32_bits(
(size_t)&(((struct dpaa2_sec_qp *)
dev->data->queue_pairs[0])->rx_vq));
session->ctxt = priv;
for (i = 0; i < bufsize; i++)
DPAA2_SEC_DEBUG("DESC[%d]:0x%x",
i, priv->flc_desc[0].desc[i]);
return 0;
error_out:
rte_free(session->cipher_key.data);
rte_free(session->auth_key.data);
rte_free(priv);
return -1;
}
static int
dpaa2_sec_set_session_parameters(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform, void *sess)
{
dpaa2_sec_session *session = sess;
PMD_INIT_FUNC_TRACE();
if (unlikely(sess == NULL)) {
DPAA2_SEC_ERR("Invalid session struct");
return -1;
}
memset(session, 0, sizeof(dpaa2_sec_session));
/* Default IV length = 0 */
session->iv.length = 0;
/* Cipher Only */
if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER && xform->next == NULL) {
session->ctxt_type = DPAA2_SEC_CIPHER;
dpaa2_sec_cipher_init(dev, xform, session);
/* Authentication Only */
} else if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
xform->next == NULL) {
session->ctxt_type = DPAA2_SEC_AUTH;
dpaa2_sec_auth_init(dev, xform, session);
/* Cipher then Authenticate */
} else if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
session->ext_params.aead_ctxt.auth_cipher_text = true;
dpaa2_sec_aead_chain_init(dev, xform, session);
/* Authenticate then Cipher */
} else if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
session->ext_params.aead_ctxt.auth_cipher_text = false;
dpaa2_sec_aead_chain_init(dev, xform, session);
/* AEAD operation for AES-GCM kind of Algorithms */
} else if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD &&
xform->next == NULL) {
dpaa2_sec_aead_init(dev, xform, session);
} else {
DPAA2_SEC_ERR("Invalid crypto type");
return -EINVAL;
}
return 0;
}
static int
dpaa2_sec_ipsec_aead_init(struct rte_crypto_aead_xform *aead_xform,
dpaa2_sec_session *session,
struct alginfo *aeaddata)
{
PMD_INIT_FUNC_TRACE();
session->aead_key.data = rte_zmalloc(NULL, aead_xform->key.length,
RTE_CACHE_LINE_SIZE);
if (session->aead_key.data == NULL && aead_xform->key.length > 0) {
DPAA2_SEC_ERR("No Memory for aead key");
return -1;
}
memcpy(session->aead_key.data, aead_xform->key.data,
aead_xform->key.length);
session->digest_length = aead_xform->digest_length;
session->aead_key.length = aead_xform->key.length;
aeaddata->key = (size_t)session->aead_key.data;
aeaddata->keylen = session->aead_key.length;
aeaddata->key_enc_flags = 0;
aeaddata->key_type = RTA_DATA_IMM;
switch (aead_xform->algo) {
case RTE_CRYPTO_AEAD_AES_GCM:
aeaddata->algtype = OP_ALG_ALGSEL_AES;
aeaddata->algmode = OP_ALG_AAI_GCM;
session->aead_alg = RTE_CRYPTO_AEAD_AES_GCM;
break;
case RTE_CRYPTO_AEAD_AES_CCM:
aeaddata->algtype = OP_ALG_ALGSEL_AES;
aeaddata->algmode = OP_ALG_AAI_CCM;
session->aead_alg = RTE_CRYPTO_AEAD_AES_CCM;
break;
default:
DPAA2_SEC_ERR("Crypto: Undefined AEAD specified %u",
aead_xform->algo);
return -1;
}
session->dir = (aead_xform->op == RTE_CRYPTO_AEAD_OP_ENCRYPT) ?
DIR_ENC : DIR_DEC;
return 0;
}
static int
dpaa2_sec_ipsec_proto_init(struct rte_crypto_cipher_xform *cipher_xform,
struct rte_crypto_auth_xform *auth_xform,
dpaa2_sec_session *session,
struct alginfo *cipherdata,
struct alginfo *authdata)
{
if (cipher_xform) {
session->cipher_key.data = rte_zmalloc(NULL,
cipher_xform->key.length,
RTE_CACHE_LINE_SIZE);
if (session->cipher_key.data == NULL &&
cipher_xform->key.length > 0) {
DPAA2_SEC_ERR("No Memory for cipher key");
return -ENOMEM;
}
session->cipher_key.length = cipher_xform->key.length;
memcpy(session->cipher_key.data, cipher_xform->key.data,
cipher_xform->key.length);
session->cipher_alg = cipher_xform->algo;
} else {
session->cipher_key.data = NULL;
session->cipher_key.length = 0;
session->cipher_alg = RTE_CRYPTO_CIPHER_NULL;
}
if (auth_xform) {
session->auth_key.data = rte_zmalloc(NULL,
auth_xform->key.length,
RTE_CACHE_LINE_SIZE);
if (session->auth_key.data == NULL &&
auth_xform->key.length > 0) {
DPAA2_SEC_ERR("No Memory for auth key");
return -ENOMEM;
}
session->auth_key.length = auth_xform->key.length;
memcpy(session->auth_key.data, auth_xform->key.data,
auth_xform->key.length);
session->auth_alg = auth_xform->algo;
} else {
session->auth_key.data = NULL;
session->auth_key.length = 0;
session->auth_alg = RTE_CRYPTO_AUTH_NULL;
}
authdata->key = (size_t)session->auth_key.data;
authdata->keylen = session->auth_key.length;
authdata->key_enc_flags = 0;
authdata->key_type = RTA_DATA_IMM;
switch (session->auth_alg) {
case RTE_CRYPTO_AUTH_SHA1_HMAC:
authdata->algtype = OP_PCL_IPSEC_HMAC_SHA1_96;
authdata->algmode = OP_ALG_AAI_HMAC;
break;
case RTE_CRYPTO_AUTH_MD5_HMAC:
authdata->algtype = OP_PCL_IPSEC_HMAC_MD5_96;
authdata->algmode = OP_ALG_AAI_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA256_HMAC:
authdata->algtype = OP_PCL_IPSEC_HMAC_SHA2_256_128;
authdata->algmode = OP_ALG_AAI_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA384_HMAC:
authdata->algtype = OP_PCL_IPSEC_HMAC_SHA2_384_192;
authdata->algmode = OP_ALG_AAI_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA512_HMAC:
authdata->algtype = OP_PCL_IPSEC_HMAC_SHA2_512_256;
authdata->algmode = OP_ALG_AAI_HMAC;
break;
case RTE_CRYPTO_AUTH_AES_CMAC:
authdata->algtype = OP_PCL_IPSEC_AES_CMAC_96;
break;
case RTE_CRYPTO_AUTH_NULL:
authdata->algtype = OP_PCL_IPSEC_HMAC_NULL;
break;
case RTE_CRYPTO_AUTH_SHA224_HMAC:
case RTE_CRYPTO_AUTH_AES_XCBC_MAC:
case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
case RTE_CRYPTO_AUTH_SHA1:
case RTE_CRYPTO_AUTH_SHA256:
case RTE_CRYPTO_AUTH_SHA512:
case RTE_CRYPTO_AUTH_SHA224:
case RTE_CRYPTO_AUTH_SHA384:
case RTE_CRYPTO_AUTH_MD5:
case RTE_CRYPTO_AUTH_AES_GMAC:
case RTE_CRYPTO_AUTH_KASUMI_F9:
case RTE_CRYPTO_AUTH_AES_CBC_MAC:
case RTE_CRYPTO_AUTH_ZUC_EIA3:
DPAA2_SEC_ERR("Crypto: Unsupported auth alg %u",
session->auth_alg);
return -1;
default:
DPAA2_SEC_ERR("Crypto: Undefined Auth specified %u",
session->auth_alg);
return -1;
}
cipherdata->key = (size_t)session->cipher_key.data;
cipherdata->keylen = session->cipher_key.length;
cipherdata->key_enc_flags = 0;
cipherdata->key_type = RTA_DATA_IMM;
switch (session->cipher_alg) {
case RTE_CRYPTO_CIPHER_AES_CBC:
cipherdata->algtype = OP_PCL_IPSEC_AES_CBC;
cipherdata->algmode = OP_ALG_AAI_CBC;
break;
case RTE_CRYPTO_CIPHER_3DES_CBC:
cipherdata->algtype = OP_PCL_IPSEC_3DES;
cipherdata->algmode = OP_ALG_AAI_CBC;
break;
case RTE_CRYPTO_CIPHER_AES_CTR:
cipherdata->algtype = OP_PCL_IPSEC_AES_CTR;
cipherdata->algmode = OP_ALG_AAI_CTR;
break;
case RTE_CRYPTO_CIPHER_NULL:
cipherdata->algtype = OP_PCL_IPSEC_NULL;
break;
case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
case RTE_CRYPTO_CIPHER_3DES_ECB:
case RTE_CRYPTO_CIPHER_AES_ECB:
case RTE_CRYPTO_CIPHER_KASUMI_F8:
DPAA2_SEC_ERR("Crypto: Unsupported Cipher alg %u",
session->cipher_alg);
return -1;
default:
DPAA2_SEC_ERR("Crypto: Undefined Cipher specified %u",
session->cipher_alg);
return -1;
}
return 0;
}
#ifdef RTE_LIBRTE_SECURITY_TEST
static uint8_t aes_cbc_iv[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f };
#endif
static int
dpaa2_sec_set_ipsec_session(struct rte_cryptodev *dev,
struct rte_security_session_conf *conf,
void *sess)
{
struct rte_security_ipsec_xform *ipsec_xform = &conf->ipsec;
struct rte_crypto_cipher_xform *cipher_xform = NULL;
struct rte_crypto_auth_xform *auth_xform = NULL;
struct rte_crypto_aead_xform *aead_xform = NULL;
dpaa2_sec_session *session = (dpaa2_sec_session *)sess;
struct ctxt_priv *priv;
struct ipsec_encap_pdb encap_pdb;
struct ipsec_decap_pdb decap_pdb;
struct alginfo authdata, cipherdata;
int bufsize;
struct sec_flow_context *flc;
struct dpaa2_sec_dev_private *dev_priv = dev->data->dev_private;
int ret = -1;
PMD_INIT_FUNC_TRACE();
priv = (struct ctxt_priv *)rte_zmalloc(NULL,
sizeof(struct ctxt_priv) +
sizeof(struct sec_flc_desc),
RTE_CACHE_LINE_SIZE);
if (priv == NULL) {
DPAA2_SEC_ERR("No memory for priv CTXT");
return -ENOMEM;
}
priv->fle_pool = dev_priv->fle_pool;
flc = &priv->flc_desc[0].flc;
memset(session, 0, sizeof(dpaa2_sec_session));
if (conf->crypto_xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
cipher_xform = &conf->crypto_xform->cipher;
if (conf->crypto_xform->next)
auth_xform = &conf->crypto_xform->next->auth;
ret = dpaa2_sec_ipsec_proto_init(cipher_xform, auth_xform,
session, &cipherdata, &authdata);
} else if (conf->crypto_xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
auth_xform = &conf->crypto_xform->auth;
if (conf->crypto_xform->next)
cipher_xform = &conf->crypto_xform->next->cipher;
ret = dpaa2_sec_ipsec_proto_init(cipher_xform, auth_xform,
session, &cipherdata, &authdata);
} else if (conf->crypto_xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
aead_xform = &conf->crypto_xform->aead;
ret = dpaa2_sec_ipsec_aead_init(aead_xform,
session, &cipherdata);
} else {
DPAA2_SEC_ERR("XFORM not specified");
ret = -EINVAL;
goto out;
}
if (ret) {
DPAA2_SEC_ERR("Failed to process xform");
goto out;
}
session->ctxt_type = DPAA2_SEC_IPSEC;
if (ipsec_xform->direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
struct ip ip4_hdr;
flc->dhr = SEC_FLC_DHR_OUTBOUND;
ip4_hdr.ip_v = IPVERSION;
ip4_hdr.ip_hl = 5;
ip4_hdr.ip_len = rte_cpu_to_be_16(sizeof(ip4_hdr));
ip4_hdr.ip_tos = ipsec_xform->tunnel.ipv4.dscp;
ip4_hdr.ip_id = 0;
ip4_hdr.ip_off = 0;
ip4_hdr.ip_ttl = ipsec_xform->tunnel.ipv4.ttl;
ip4_hdr.ip_p = IPPROTO_ESP;
ip4_hdr.ip_sum = 0;
ip4_hdr.ip_src = ipsec_xform->tunnel.ipv4.src_ip;
ip4_hdr.ip_dst = ipsec_xform->tunnel.ipv4.dst_ip;
ip4_hdr.ip_sum = calc_chksum((uint16_t *)(void *)&ip4_hdr,
sizeof(struct ip));
/* For Sec Proto only one descriptor is required. */
memset(&encap_pdb, 0, sizeof(struct ipsec_encap_pdb));
encap_pdb.options = (IPVERSION << PDBNH_ESP_ENCAP_SHIFT) |
PDBOPTS_ESP_OIHI_PDB_INL |
PDBOPTS_ESP_IVSRC |
PDBHMO_ESP_ENCAP_DTTL |
PDBHMO_ESP_SNR;
encap_pdb.spi = ipsec_xform->spi;
encap_pdb.ip_hdr_len = sizeof(struct ip);
session->dir = DIR_ENC;
bufsize = cnstr_shdsc_ipsec_new_encap(priv->flc_desc[0].desc,
1, 0, SHR_SERIAL, &encap_pdb,
(uint8_t *)&ip4_hdr,
&cipherdata, &authdata);
} else if (ipsec_xform->direction ==
RTE_SECURITY_IPSEC_SA_DIR_INGRESS) {
flc->dhr = SEC_FLC_DHR_INBOUND;
memset(&decap_pdb, 0, sizeof(struct ipsec_decap_pdb));
decap_pdb.options = sizeof(struct ip) << 16;
session->dir = DIR_DEC;
bufsize = cnstr_shdsc_ipsec_new_decap(priv->flc_desc[0].desc,
1, 0, SHR_SERIAL,
&decap_pdb, &cipherdata, &authdata);
} else
goto out;
if (bufsize < 0) {
DPAA2_SEC_ERR("Crypto: Invalid buffer length");
goto out;
}
flc->word1_sdl = (uint8_t)bufsize;
/* Enable the stashing control bit */
DPAA2_SET_FLC_RSC(flc);
flc->word2_rflc_31_0 = lower_32_bits(
(size_t)&(((struct dpaa2_sec_qp *)
dev->data->queue_pairs[0])->rx_vq) | 0x14);
flc->word3_rflc_63_32 = upper_32_bits(
(size_t)&(((struct dpaa2_sec_qp *)
dev->data->queue_pairs[0])->rx_vq));
/* Set EWS bit i.e. enable write-safe */
DPAA2_SET_FLC_EWS(flc);
/* Set BS = 1 i.e reuse input buffers as output buffers */
DPAA2_SET_FLC_REUSE_BS(flc);
/* Set FF = 10; reuse input buffers if they provide sufficient space */
DPAA2_SET_FLC_REUSE_FF(flc);
session->ctxt = priv;
return 0;
out:
rte_free(session->auth_key.data);
rte_free(session->cipher_key.data);
rte_free(priv);
return ret;
}
static int
dpaa2_sec_set_pdcp_session(struct rte_cryptodev *dev,
struct rte_security_session_conf *conf,
void *sess)
{
struct rte_security_pdcp_xform *pdcp_xform = &conf->pdcp;
struct rte_crypto_sym_xform *xform = conf->crypto_xform;
struct rte_crypto_auth_xform *auth_xform = NULL;
struct rte_crypto_cipher_xform *cipher_xform;
dpaa2_sec_session *session = (dpaa2_sec_session *)sess;
struct ctxt_priv *priv;
struct dpaa2_sec_dev_private *dev_priv = dev->data->dev_private;
struct alginfo authdata, cipherdata;
int bufsize = -1;
struct sec_flow_context *flc;
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
int swap = true;
#else
int swap = false;
#endif
PMD_INIT_FUNC_TRACE();
memset(session, 0, sizeof(dpaa2_sec_session));
priv = (struct ctxt_priv *)rte_zmalloc(NULL,
sizeof(struct ctxt_priv) +
sizeof(struct sec_flc_desc),
RTE_CACHE_LINE_SIZE);
if (priv == NULL) {
DPAA2_SEC_ERR("No memory for priv CTXT");
return -ENOMEM;
}
priv->fle_pool = dev_priv->fle_pool;
flc = &priv->flc_desc[0].flc;
/* find xfrm types */
if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER && xform->next == NULL) {
cipher_xform = &xform->cipher;
} else if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
session->ext_params.aead_ctxt.auth_cipher_text = true;
cipher_xform = &xform->cipher;
auth_xform = &xform->next->auth;
} else if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
session->ext_params.aead_ctxt.auth_cipher_text = false;
cipher_xform = &xform->next->cipher;
auth_xform = &xform->auth;
} else {
DPAA2_SEC_ERR("Invalid crypto type");
return -EINVAL;
}
session->ctxt_type = DPAA2_SEC_PDCP;
if (cipher_xform) {
session->cipher_key.data = rte_zmalloc(NULL,
cipher_xform->key.length,
RTE_CACHE_LINE_SIZE);
if (session->cipher_key.data == NULL &&
cipher_xform->key.length > 0) {
DPAA2_SEC_ERR("No Memory for cipher key");
rte_free(priv);
return -ENOMEM;
}
session->cipher_key.length = cipher_xform->key.length;
memcpy(session->cipher_key.data, cipher_xform->key.data,
cipher_xform->key.length);
session->dir =
(cipher_xform->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
DIR_ENC : DIR_DEC;
session->cipher_alg = cipher_xform->algo;
} else {
session->cipher_key.data = NULL;
session->cipher_key.length = 0;
session->cipher_alg = RTE_CRYPTO_CIPHER_NULL;
session->dir = DIR_ENC;
}
session->pdcp.domain = pdcp_xform->domain;
session->pdcp.bearer = pdcp_xform->bearer;
session->pdcp.pkt_dir = pdcp_xform->pkt_dir;
session->pdcp.sn_size = pdcp_xform->sn_size;
#ifdef ENABLE_HFN_OVERRIDE
session->pdcp.hfn_ovd = pdcp_xform->hfn_ovd;
#endif
session->pdcp.hfn = pdcp_xform->hfn;
session->pdcp.hfn_threshold = pdcp_xform->hfn_threshold;
cipherdata.key = (size_t)session->cipher_key.data;
cipherdata.keylen = session->cipher_key.length;
cipherdata.key_enc_flags = 0;
cipherdata.key_type = RTA_DATA_IMM;
switch (session->cipher_alg) {
case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
cipherdata.algtype = PDCP_CIPHER_TYPE_SNOW;
break;
case RTE_CRYPTO_CIPHER_ZUC_EEA3:
cipherdata.algtype = PDCP_CIPHER_TYPE_ZUC;
break;
case RTE_CRYPTO_CIPHER_AES_CTR:
cipherdata.algtype = PDCP_CIPHER_TYPE_AES;
break;
case RTE_CRYPTO_CIPHER_NULL:
cipherdata.algtype = PDCP_CIPHER_TYPE_NULL;
break;
default:
DPAA2_SEC_ERR("Crypto: Undefined Cipher specified %u",
session->cipher_alg);
goto out;
}
/* Auth is only applicable for control mode operation. */
if (pdcp_xform->domain == RTE_SECURITY_PDCP_MODE_CONTROL) {
if (pdcp_xform->sn_size != RTE_SECURITY_PDCP_SN_SIZE_5) {
DPAA2_SEC_ERR(
"PDCP Seq Num size should be 5 bits for cmode");
goto out;
}
if (auth_xform) {
session->auth_key.data = rte_zmalloc(NULL,
auth_xform->key.length,
RTE_CACHE_LINE_SIZE);
if (session->auth_key.data == NULL &&
auth_xform->key.length > 0) {
DPAA2_SEC_ERR("No Memory for auth key");
rte_free(session->cipher_key.data);
rte_free(priv);
return -ENOMEM;
}
session->auth_key.length = auth_xform->key.length;
memcpy(session->auth_key.data, auth_xform->key.data,
auth_xform->key.length);
session->auth_alg = auth_xform->algo;
} else {
session->auth_key.data = NULL;
session->auth_key.length = 0;
session->auth_alg = RTE_CRYPTO_AUTH_NULL;
}
authdata.key = (size_t)session->auth_key.data;
authdata.keylen = session->auth_key.length;
authdata.key_enc_flags = 0;
authdata.key_type = RTA_DATA_IMM;
switch (session->auth_alg) {
case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
authdata.algtype = PDCP_AUTH_TYPE_SNOW;
break;
case RTE_CRYPTO_AUTH_ZUC_EIA3:
authdata.algtype = PDCP_AUTH_TYPE_ZUC;
break;
case RTE_CRYPTO_AUTH_AES_CMAC:
authdata.algtype = PDCP_AUTH_TYPE_AES;
break;
case RTE_CRYPTO_AUTH_NULL:
authdata.algtype = PDCP_AUTH_TYPE_NULL;
break;
default:
DPAA2_SEC_ERR("Crypto: Unsupported auth alg %u",
session->auth_alg);
goto out;
}
if (session->dir == DIR_ENC)
bufsize = cnstr_shdsc_pdcp_c_plane_encap(
priv->flc_desc[0].desc, 1, swap,
pdcp_xform->hfn,
pdcp_xform->bearer,
pdcp_xform->pkt_dir,
pdcp_xform->hfn_threshold,
&cipherdata, &authdata,
0);
else if (session->dir == DIR_DEC)
bufsize = cnstr_shdsc_pdcp_c_plane_decap(
priv->flc_desc[0].desc, 1, swap,
pdcp_xform->hfn,
pdcp_xform->bearer,
pdcp_xform->pkt_dir,
pdcp_xform->hfn_threshold,
&cipherdata, &authdata,
0);
} else {
if (session->dir == DIR_ENC)
bufsize = cnstr_shdsc_pdcp_u_plane_encap(
priv->flc_desc[0].desc, 1, swap,
(enum pdcp_sn_size)pdcp_xform->sn_size,
pdcp_xform->hfn,
pdcp_xform->bearer,
pdcp_xform->pkt_dir,
pdcp_xform->hfn_threshold,
&cipherdata, 0);
else if (session->dir == DIR_DEC)
bufsize = cnstr_shdsc_pdcp_u_plane_decap(
priv->flc_desc[0].desc, 1, swap,
(enum pdcp_sn_size)pdcp_xform->sn_size,
pdcp_xform->hfn,
pdcp_xform->bearer,
pdcp_xform->pkt_dir,
pdcp_xform->hfn_threshold,
&cipherdata, 0);
}
if (bufsize < 0) {
DPAA2_SEC_ERR("Crypto: Invalid buffer length");
goto out;
}
/* Enable the stashing control bit */
DPAA2_SET_FLC_RSC(flc);
flc->word2_rflc_31_0 = lower_32_bits(
(size_t)&(((struct dpaa2_sec_qp *)
dev->data->queue_pairs[0])->rx_vq) | 0x14);
flc->word3_rflc_63_32 = upper_32_bits(
(size_t)&(((struct dpaa2_sec_qp *)
dev->data->queue_pairs[0])->rx_vq));
flc->word1_sdl = (uint8_t)bufsize;
/* Set EWS bit i.e. enable write-safe */
DPAA2_SET_FLC_EWS(flc);
/* Set BS = 1 i.e reuse input buffers as output buffers */
DPAA2_SET_FLC_REUSE_BS(flc);
/* Set FF = 10; reuse input buffers if they provide sufficient space */
DPAA2_SET_FLC_REUSE_FF(flc);
session->ctxt = priv;
return 0;
out:
rte_free(session->auth_key.data);
rte_free(session->cipher_key.data);
rte_free(priv);
return -1;
}
static int
dpaa2_sec_security_session_create(void *dev,
struct rte_security_session_conf *conf,
struct rte_security_session *sess,
struct rte_mempool *mempool)
{
void *sess_private_data;
struct rte_cryptodev *cdev = (struct rte_cryptodev *)dev;
int ret;
if (rte_mempool_get(mempool, &sess_private_data)) {
DPAA2_SEC_ERR("Couldn't get object from session mempool");
return -ENOMEM;
}
switch (conf->protocol) {
case RTE_SECURITY_PROTOCOL_IPSEC:
ret = dpaa2_sec_set_ipsec_session(cdev, conf,
sess_private_data);
break;
case RTE_SECURITY_PROTOCOL_MACSEC:
return -ENOTSUP;
case RTE_SECURITY_PROTOCOL_PDCP:
ret = dpaa2_sec_set_pdcp_session(cdev, conf,
sess_private_data);
break;
default:
return -EINVAL;
}
if (ret != 0) {
DPAA2_SEC_ERR("Failed to configure session parameters");
/* Return session to mempool */
rte_mempool_put(mempool, sess_private_data);
return ret;
}
set_sec_session_private_data(sess, sess_private_data);
return ret;
}
/** Clear the memory of session so it doesn't leave key material behind */
static int
dpaa2_sec_security_session_destroy(void *dev __rte_unused,
struct rte_security_session *sess)
{
PMD_INIT_FUNC_TRACE();
void *sess_priv = get_sec_session_private_data(sess);
dpaa2_sec_session *s = (dpaa2_sec_session *)sess_priv;
if (sess_priv) {
struct rte_mempool *sess_mp = rte_mempool_from_obj(sess_priv);
rte_free(s->ctxt);
rte_free(s->cipher_key.data);
rte_free(s->auth_key.data);
memset(s, 0, sizeof(dpaa2_sec_session));
set_sec_session_private_data(sess, NULL);
rte_mempool_put(sess_mp, sess_priv);
}
return 0;
}
static int
dpaa2_sec_sym_session_configure(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform,
struct rte_cryptodev_sym_session *sess,
struct rte_mempool *mempool)
{
void *sess_private_data;
int ret;
if (rte_mempool_get(mempool, &sess_private_data)) {
DPAA2_SEC_ERR("Couldn't get object from session mempool");
return -ENOMEM;
}
ret = dpaa2_sec_set_session_parameters(dev, xform, sess_private_data);
if (ret != 0) {
DPAA2_SEC_ERR("Failed to configure session parameters");
/* Return session to mempool */
rte_mempool_put(mempool, sess_private_data);
return ret;
}
set_sym_session_private_data(sess, dev->driver_id,
sess_private_data);
return 0;
}
/** Clear the memory of session so it doesn't leave key material behind */
static void
dpaa2_sec_sym_session_clear(struct rte_cryptodev *dev,
struct rte_cryptodev_sym_session *sess)
{
PMD_INIT_FUNC_TRACE();
uint8_t index = dev->driver_id;
void *sess_priv = get_sym_session_private_data(sess, index);
dpaa2_sec_session *s = (dpaa2_sec_session *)sess_priv;
if (sess_priv) {
rte_free(s->ctxt);
rte_free(s->cipher_key.data);
rte_free(s->auth_key.data);
memset(s, 0, sizeof(dpaa2_sec_session));
struct rte_mempool *sess_mp = rte_mempool_from_obj(sess_priv);
set_sym_session_private_data(sess, index, NULL);
rte_mempool_put(sess_mp, sess_priv);
}
}
static int
dpaa2_sec_dev_configure(struct rte_cryptodev *dev __rte_unused,
struct rte_cryptodev_config *config __rte_unused)
{
PMD_INIT_FUNC_TRACE();
return 0;
}
static int
dpaa2_sec_dev_start(struct rte_cryptodev *dev)
{
struct dpaa2_sec_dev_private *priv = dev->data->dev_private;
struct fsl_mc_io *dpseci = (struct fsl_mc_io *)priv->hw;
struct dpseci_attr attr;
struct dpaa2_queue *dpaa2_q;
struct dpaa2_sec_qp **qp = (struct dpaa2_sec_qp **)
dev->data->queue_pairs;
struct dpseci_rx_queue_attr rx_attr;
struct dpseci_tx_queue_attr tx_attr;
int ret, i;
PMD_INIT_FUNC_TRACE();
memset(&attr, 0, sizeof(struct dpseci_attr));
ret = dpseci_enable(dpseci, CMD_PRI_LOW, priv->token);
if (ret) {
DPAA2_SEC_ERR("DPSECI with HW_ID = %d ENABLE FAILED",
priv->hw_id);
goto get_attr_failure;
}
ret = dpseci_get_attributes(dpseci, CMD_PRI_LOW, priv->token, &attr);
if (ret) {
DPAA2_SEC_ERR("DPSEC ATTRIBUTE READ FAILED, disabling DPSEC");
goto get_attr_failure;
}
for (i = 0; i < attr.num_rx_queues && qp[i]; i++) {
dpaa2_q = &qp[i]->rx_vq;
dpseci_get_rx_queue(dpseci, CMD_PRI_LOW, priv->token, i,
&rx_attr);
dpaa2_q->fqid = rx_attr.fqid;
DPAA2_SEC_DEBUG("rx_fqid: %d", dpaa2_q->fqid);
}
for (i = 0; i < attr.num_tx_queues && qp[i]; i++) {
dpaa2_q = &qp[i]->tx_vq;
dpseci_get_tx_queue(dpseci, CMD_PRI_LOW, priv->token, i,
&tx_attr);
dpaa2_q->fqid = tx_attr.fqid;
DPAA2_SEC_DEBUG("tx_fqid: %d", dpaa2_q->fqid);
}
return 0;
get_attr_failure:
dpseci_disable(dpseci, CMD_PRI_LOW, priv->token);
return -1;
}
static void
dpaa2_sec_dev_stop(struct rte_cryptodev *dev)
{
struct dpaa2_sec_dev_private *priv = dev->data->dev_private;
struct fsl_mc_io *dpseci = (struct fsl_mc_io *)priv->hw;
int ret;
PMD_INIT_FUNC_TRACE();
ret = dpseci_disable(dpseci, CMD_PRI_LOW, priv->token);
if (ret) {
DPAA2_SEC_ERR("Failure in disabling dpseci %d device",
priv->hw_id);
return;
}
ret = dpseci_reset(dpseci, CMD_PRI_LOW, priv->token);
if (ret < 0) {
DPAA2_SEC_ERR("SEC Device cannot be reset:Error = %0x", ret);
return;
}
}
static int
dpaa2_sec_dev_close(struct rte_cryptodev *dev)
{
struct dpaa2_sec_dev_private *priv = dev->data->dev_private;
struct fsl_mc_io *dpseci = (struct fsl_mc_io *)priv->hw;
int ret;
PMD_INIT_FUNC_TRACE();
/* Function is reverse of dpaa2_sec_dev_init.
* It does the following:
* 1. Detach a DPSECI from attached resources i.e. buffer pools, dpbp_id
* 2. Close the DPSECI device
* 3. Free the allocated resources.
*/
/*Close the device at underlying layer*/
ret = dpseci_close(dpseci, CMD_PRI_LOW, priv->token);
if (ret) {
DPAA2_SEC_ERR("Failure closing dpseci device: err(%d)", ret);
return -1;
}
/*Free the allocated memory for ethernet private data and dpseci*/
priv->hw = NULL;
rte_free(dpseci);
return 0;
}
static void
dpaa2_sec_dev_infos_get(struct rte_cryptodev *dev,
struct rte_cryptodev_info *info)
{
struct dpaa2_sec_dev_private *internals = dev->data->dev_private;
PMD_INIT_FUNC_TRACE();
if (info != NULL) {
info->max_nb_queue_pairs = internals->max_nb_queue_pairs;
info->feature_flags = dev->feature_flags;
info->capabilities = dpaa2_sec_capabilities;
/* No limit of number of sessions */
info->sym.max_nb_sessions = 0;
info->driver_id = cryptodev_driver_id;
}
}
static
void dpaa2_sec_stats_get(struct rte_cryptodev *dev,
struct rte_cryptodev_stats *stats)
{
struct dpaa2_sec_dev_private *priv = dev->data->dev_private;
struct fsl_mc_io *dpseci = (struct fsl_mc_io *)priv->hw;
struct dpseci_sec_counters counters = {0};
struct dpaa2_sec_qp **qp = (struct dpaa2_sec_qp **)
dev->data->queue_pairs;
int ret, i;
PMD_INIT_FUNC_TRACE();
if (stats == NULL) {
DPAA2_SEC_ERR("Invalid stats ptr NULL");
return;
}
for (i = 0; i < dev->data->nb_queue_pairs; i++) {
if (qp[i] == NULL) {
DPAA2_SEC_DEBUG("Uninitialised queue pair");
continue;
}
stats->enqueued_count += qp[i]->tx_vq.tx_pkts;
stats->dequeued_count += qp[i]->rx_vq.rx_pkts;
stats->enqueue_err_count += qp[i]->tx_vq.err_pkts;
stats->dequeue_err_count += qp[i]->rx_vq.err_pkts;
}
ret = dpseci_get_sec_counters(dpseci, CMD_PRI_LOW, priv->token,
&counters);
if (ret) {
DPAA2_SEC_ERR("SEC counters failed");
} else {
DPAA2_SEC_INFO("dpseci hardware stats:"
"\n\tNum of Requests Dequeued = %" PRIu64
"\n\tNum of Outbound Encrypt Requests = %" PRIu64
"\n\tNum of Inbound Decrypt Requests = %" PRIu64
"\n\tNum of Outbound Bytes Encrypted = %" PRIu64
"\n\tNum of Outbound Bytes Protected = %" PRIu64
"\n\tNum of Inbound Bytes Decrypted = %" PRIu64
"\n\tNum of Inbound Bytes Validated = %" PRIu64,
counters.dequeued_requests,
counters.ob_enc_requests,
counters.ib_dec_requests,
counters.ob_enc_bytes,
counters.ob_prot_bytes,
counters.ib_dec_bytes,
counters.ib_valid_bytes);
}
}
static
void dpaa2_sec_stats_reset(struct rte_cryptodev *dev)
{
int i;
struct dpaa2_sec_qp **qp = (struct dpaa2_sec_qp **)
(dev->data->queue_pairs);
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_queue_pairs; i++) {
if (qp[i] == NULL) {
DPAA2_SEC_DEBUG("Uninitialised queue pair");
continue;
}
qp[i]->tx_vq.rx_pkts = 0;
qp[i]->tx_vq.tx_pkts = 0;
qp[i]->tx_vq.err_pkts = 0;
qp[i]->rx_vq.rx_pkts = 0;
qp[i]->rx_vq.tx_pkts = 0;
qp[i]->rx_vq.err_pkts = 0;
}
}
static void __attribute__((hot))
dpaa2_sec_process_parallel_event(struct qbman_swp *swp,
const struct qbman_fd *fd,
const struct qbman_result *dq,
struct dpaa2_queue *rxq,
struct rte_event *ev)
{
/* Prefetching mbuf */
rte_prefetch0((void *)(size_t)(DPAA2_GET_FD_ADDR(fd)-
rte_dpaa2_bpid_info[DPAA2_GET_FD_BPID(fd)].meta_data_size));
/* Prefetching ipsec crypto_op stored in priv data of mbuf */
rte_prefetch0((void *)(size_t)(DPAA2_GET_FD_ADDR(fd)-64));
ev->flow_id = rxq->ev.flow_id;
ev->sub_event_type = rxq->ev.sub_event_type;
ev->event_type = RTE_EVENT_TYPE_CRYPTODEV;
ev->op = RTE_EVENT_OP_NEW;
ev->sched_type = rxq->ev.sched_type;
ev->queue_id = rxq->ev.queue_id;
ev->priority = rxq->ev.priority;
ev->event_ptr = sec_fd_to_mbuf(fd, ((struct rte_cryptodev *)
(rxq->dev))->driver_id);
qbman_swp_dqrr_consume(swp, dq);
}
static void
dpaa2_sec_process_atomic_event(struct qbman_swp *swp __attribute__((unused)),
const struct qbman_fd *fd,
const struct qbman_result *dq,
struct dpaa2_queue *rxq,
struct rte_event *ev)
{
uint8_t dqrr_index;
struct rte_crypto_op *crypto_op = (struct rte_crypto_op *)ev->event_ptr;
/* Prefetching mbuf */
rte_prefetch0((void *)(size_t)(DPAA2_GET_FD_ADDR(fd)-
rte_dpaa2_bpid_info[DPAA2_GET_FD_BPID(fd)].meta_data_size));
/* Prefetching ipsec crypto_op stored in priv data of mbuf */
rte_prefetch0((void *)(size_t)(DPAA2_GET_FD_ADDR(fd)-64));
ev->flow_id = rxq->ev.flow_id;
ev->sub_event_type = rxq->ev.sub_event_type;
ev->event_type = RTE_EVENT_TYPE_CRYPTODEV;
ev->op = RTE_EVENT_OP_NEW;
ev->sched_type = rxq->ev.sched_type;
ev->queue_id = rxq->ev.queue_id;
ev->priority = rxq->ev.priority;
ev->event_ptr = sec_fd_to_mbuf(fd, ((struct rte_cryptodev *)
(rxq->dev))->driver_id);
dqrr_index = qbman_get_dqrr_idx(dq);
crypto_op->sym->m_src->seqn = dqrr_index + 1;
DPAA2_PER_LCORE_DQRR_SIZE++;
DPAA2_PER_LCORE_DQRR_HELD |= 1 << dqrr_index;
DPAA2_PER_LCORE_DQRR_MBUF(dqrr_index) = crypto_op->sym->m_src;
}
int
dpaa2_sec_eventq_attach(const struct rte_cryptodev *dev,
int qp_id,
uint16_t dpcon_id,
const struct rte_event *event)
{
struct dpaa2_sec_dev_private *priv = dev->data->dev_private;
struct fsl_mc_io *dpseci = (struct fsl_mc_io *)priv->hw;
struct dpaa2_sec_qp *qp = dev->data->queue_pairs[qp_id];
struct dpseci_rx_queue_cfg cfg;
int ret;
if (event->sched_type == RTE_SCHED_TYPE_PARALLEL)
qp->rx_vq.cb = dpaa2_sec_process_parallel_event;
else if (event->sched_type == RTE_SCHED_TYPE_ATOMIC)
qp->rx_vq.cb = dpaa2_sec_process_atomic_event;
else
return -EINVAL;
memset(&cfg, 0, sizeof(struct dpseci_rx_queue_cfg));
cfg.options = DPSECI_QUEUE_OPT_DEST;
cfg.dest_cfg.dest_type = DPSECI_DEST_DPCON;
cfg.dest_cfg.dest_id = dpcon_id;
cfg.dest_cfg.priority = event->priority;
cfg.options |= DPSECI_QUEUE_OPT_USER_CTX;
cfg.user_ctx = (size_t)(qp);
if (event->sched_type == RTE_SCHED_TYPE_ATOMIC) {
cfg.options |= DPSECI_QUEUE_OPT_ORDER_PRESERVATION;
cfg.order_preservation_en = 1;
}
ret = dpseci_set_rx_queue(dpseci, CMD_PRI_LOW, priv->token,
qp_id, &cfg);
if (ret) {
RTE_LOG(ERR, PMD, "Error in dpseci_set_queue: ret: %d\n", ret);
return ret;
}
memcpy(&qp->rx_vq.ev, event, sizeof(struct rte_event));
return 0;
}
int
dpaa2_sec_eventq_detach(const struct rte_cryptodev *dev,
int qp_id)
{
struct dpaa2_sec_dev_private *priv = dev->data->dev_private;
struct fsl_mc_io *dpseci = (struct fsl_mc_io *)priv->hw;
struct dpseci_rx_queue_cfg cfg;
int ret;
memset(&cfg, 0, sizeof(struct dpseci_rx_queue_cfg));
cfg.options = DPSECI_QUEUE_OPT_DEST;
cfg.dest_cfg.dest_type = DPSECI_DEST_NONE;
ret = dpseci_set_rx_queue(dpseci, CMD_PRI_LOW, priv->token,
qp_id, &cfg);
if (ret)
RTE_LOG(ERR, PMD, "Error in dpseci_set_queue: ret: %d\n", ret);
return ret;
}
static struct rte_cryptodev_ops crypto_ops = {
.dev_configure = dpaa2_sec_dev_configure,
.dev_start = dpaa2_sec_dev_start,
.dev_stop = dpaa2_sec_dev_stop,
.dev_close = dpaa2_sec_dev_close,
.dev_infos_get = dpaa2_sec_dev_infos_get,
.stats_get = dpaa2_sec_stats_get,
.stats_reset = dpaa2_sec_stats_reset,
.queue_pair_setup = dpaa2_sec_queue_pair_setup,
.queue_pair_release = dpaa2_sec_queue_pair_release,
.queue_pair_count = dpaa2_sec_queue_pair_count,
.sym_session_get_size = dpaa2_sec_sym_session_get_size,
.sym_session_configure = dpaa2_sec_sym_session_configure,
.sym_session_clear = dpaa2_sec_sym_session_clear,
};
static const struct rte_security_capability *
dpaa2_sec_capabilities_get(void *device __rte_unused)
{
return dpaa2_sec_security_cap;
}
static const struct rte_security_ops dpaa2_sec_security_ops = {
.session_create = dpaa2_sec_security_session_create,
.session_update = NULL,
.session_stats_get = NULL,
.session_destroy = dpaa2_sec_security_session_destroy,
.set_pkt_metadata = NULL,
.capabilities_get = dpaa2_sec_capabilities_get
};
static int
dpaa2_sec_uninit(const struct rte_cryptodev *dev)
{
struct dpaa2_sec_dev_private *internals = dev->data->dev_private;
rte_free(dev->security_ctx);
rte_mempool_free(internals->fle_pool);
DPAA2_SEC_INFO("Closing DPAA2_SEC device %s on numa socket %u",
dev->data->name, rte_socket_id());
return 0;
}
static int
dpaa2_sec_dev_init(struct rte_cryptodev *cryptodev)
{
struct dpaa2_sec_dev_private *internals;
struct rte_device *dev = cryptodev->device;
struct rte_dpaa2_device *dpaa2_dev;
struct rte_security_ctx *security_instance;
struct fsl_mc_io *dpseci;
uint16_t token;
struct dpseci_attr attr;
int retcode, hw_id;
char str[20];
PMD_INIT_FUNC_TRACE();
dpaa2_dev = container_of(dev, struct rte_dpaa2_device, device);
if (dpaa2_dev == NULL) {
DPAA2_SEC_ERR("DPAA2 SEC device not found");
return -1;
}
hw_id = dpaa2_dev->object_id;
cryptodev->driver_id = cryptodev_driver_id;
cryptodev->dev_ops = &crypto_ops;
cryptodev->enqueue_burst = dpaa2_sec_enqueue_burst;
cryptodev->dequeue_burst = dpaa2_sec_dequeue_burst;
cryptodev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
RTE_CRYPTODEV_FF_HW_ACCELERATED |
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
RTE_CRYPTODEV_FF_SECURITY |
RTE_CRYPTODEV_FF_IN_PLACE_SGL |
RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT |
RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT;
internals = cryptodev->data->dev_private;
/*
* For secondary processes, we don't initialise any further as primary
* has already done this work. Only check we don't need a different
* RX function
*/
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
DPAA2_SEC_DEBUG("Device already init by primary process");
return 0;
}
/* Initialize security_ctx only for primary process*/
security_instance = rte_malloc("rte_security_instances_ops",
sizeof(struct rte_security_ctx), 0);
if (security_instance == NULL)
return -ENOMEM;
security_instance->device = (void *)cryptodev;
security_instance->ops = &dpaa2_sec_security_ops;
security_instance->sess_cnt = 0;
cryptodev->security_ctx = security_instance;
/*Open the rte device via MC and save the handle for further use*/
dpseci = (struct fsl_mc_io *)rte_calloc(NULL, 1,
sizeof(struct fsl_mc_io), 0);
if (!dpseci) {
DPAA2_SEC_ERR(
"Error in allocating the memory for dpsec object");
return -1;
}
dpseci->regs = rte_mcp_ptr_list[0];
retcode = dpseci_open(dpseci, CMD_PRI_LOW, hw_id, &token);
if (retcode != 0) {
DPAA2_SEC_ERR("Cannot open the dpsec device: Error = %x",
retcode);
goto init_error;
}
retcode = dpseci_get_attributes(dpseci, CMD_PRI_LOW, token, &attr);
if (retcode != 0) {
DPAA2_SEC_ERR(
"Cannot get dpsec device attributed: Error = %x",
retcode);
goto init_error;
}
snprintf(cryptodev->data->name, sizeof(cryptodev->data->name),
"dpsec-%u", hw_id);
internals->max_nb_queue_pairs = attr.num_tx_queues;
cryptodev->data->nb_queue_pairs = internals->max_nb_queue_pairs;
internals->hw = dpseci;
internals->token = token;
snprintf(str, sizeof(str), "fle_pool_%d", cryptodev->data->dev_id);
internals->fle_pool = rte_mempool_create((const char *)str,
FLE_POOL_NUM_BUFS,
FLE_POOL_BUF_SIZE,
FLE_POOL_CACHE_SIZE, 0,
NULL, NULL, NULL, NULL,
SOCKET_ID_ANY, 0);
if (!internals->fle_pool) {
DPAA2_SEC_ERR("Mempool (%s) creation failed", str);
goto init_error;
}
DPAA2_SEC_INFO("driver %s: created", cryptodev->data->name);
return 0;
init_error:
DPAA2_SEC_ERR("driver %s: create failed", cryptodev->data->name);
/* dpaa2_sec_uninit(crypto_dev_name); */
return -EFAULT;
}
static int
cryptodev_dpaa2_sec_probe(struct rte_dpaa2_driver *dpaa2_drv __rte_unused,
struct rte_dpaa2_device *dpaa2_dev)
{
struct rte_cryptodev *cryptodev;
char cryptodev_name[RTE_CRYPTODEV_NAME_MAX_LEN];
int retval;
snprintf(cryptodev_name, sizeof(cryptodev_name), "dpsec-%d",
dpaa2_dev->object_id);
cryptodev = rte_cryptodev_pmd_allocate(cryptodev_name, rte_socket_id());
if (cryptodev == NULL)
return -ENOMEM;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
cryptodev->data->dev_private = rte_zmalloc_socket(
"cryptodev private structure",
sizeof(struct dpaa2_sec_dev_private),
RTE_CACHE_LINE_SIZE,
rte_socket_id());
if (cryptodev->data->dev_private == NULL)
rte_panic("Cannot allocate memzone for private "
"device data");
}
dpaa2_dev->cryptodev = cryptodev;
cryptodev->device = &dpaa2_dev->device;
/* init user callbacks */
TAILQ_INIT(&(cryptodev->link_intr_cbs));
/* Invoke PMD device initialization function */
retval = dpaa2_sec_dev_init(cryptodev);
if (retval == 0)
return 0;
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
rte_free(cryptodev->data->dev_private);
cryptodev->attached = RTE_CRYPTODEV_DETACHED;
return -ENXIO;
}
static int
cryptodev_dpaa2_sec_remove(struct rte_dpaa2_device *dpaa2_dev)
{
struct rte_cryptodev *cryptodev;
int ret;
cryptodev = dpaa2_dev->cryptodev;
if (cryptodev == NULL)
return -ENODEV;
ret = dpaa2_sec_uninit(cryptodev);
if (ret)
return ret;
return rte_cryptodev_pmd_destroy(cryptodev);
}
static struct rte_dpaa2_driver rte_dpaa2_sec_driver = {
.drv_flags = RTE_DPAA2_DRV_IOVA_AS_VA,
.drv_type = DPAA2_CRYPTO,
.driver = {
.name = "DPAA2 SEC PMD"
},
.probe = cryptodev_dpaa2_sec_probe,
.remove = cryptodev_dpaa2_sec_remove,
};
static struct cryptodev_driver dpaa2_sec_crypto_drv;
RTE_PMD_REGISTER_DPAA2(CRYPTODEV_NAME_DPAA2_SEC_PMD, rte_dpaa2_sec_driver);
RTE_PMD_REGISTER_CRYPTO_DRIVER(dpaa2_sec_crypto_drv,
rte_dpaa2_sec_driver.driver, cryptodev_driver_id);
RTE_INIT(dpaa2_sec_init_log)
{
/* Bus level logs */
dpaa2_logtype_sec = rte_log_register("pmd.crypto.dpaa2");
if (dpaa2_logtype_sec >= 0)
rte_log_set_level(dpaa2_logtype_sec, RTE_LOG_NOTICE);
}