mirror of https://github.com/F-Stack/f-stack.git
852 lines
23 KiB
C
852 lines
23 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2017 Cavium, Inc
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_hexdump.h>
|
|
#include <rte_cryptodev.h>
|
|
#include <rte_cryptodev_pmd.h>
|
|
#include <rte_bus_vdev.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_cpuflags.h>
|
|
|
|
#include "armv8_crypto_defs.h"
|
|
|
|
#include "rte_armv8_pmd_private.h"
|
|
|
|
static uint8_t cryptodev_driver_id;
|
|
|
|
static int cryptodev_armv8_crypto_uninit(struct rte_vdev_device *vdev);
|
|
|
|
/**
|
|
* Pointers to the supported combined mode crypto functions are stored
|
|
* in the static tables. Each combined (chained) cryptographic operation
|
|
* can be described by a set of numbers:
|
|
* - order: order of operations (cipher, auth) or (auth, cipher)
|
|
* - direction: encryption or decryption
|
|
* - calg: cipher algorithm such as AES_CBC, AES_CTR, etc.
|
|
* - aalg: authentication algorithm such as SHA1, SHA256, etc.
|
|
* - keyl: cipher key length, for example 128, 192, 256 bits
|
|
*
|
|
* In order to quickly acquire each function pointer based on those numbers,
|
|
* a hierarchy of arrays is maintained. The final level, 3D array is indexed
|
|
* by the combined mode function parameters only (cipher algorithm,
|
|
* authentication algorithm and key length).
|
|
*
|
|
* This gives 3 memory accesses to obtain a function pointer instead of
|
|
* traversing the array manually and comparing function parameters on each loop.
|
|
*
|
|
* +--+CRYPTO_FUNC
|
|
* +--+ENC|
|
|
* +--+CA|
|
|
* | +--+DEC
|
|
* ORDER|
|
|
* | +--+ENC
|
|
* +--+AC|
|
|
* +--+DEC
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* 3D array type for ARM Combined Mode crypto functions pointers.
|
|
* CRYPTO_CIPHER_MAX: max cipher ID number
|
|
* CRYPTO_AUTH_MAX: max auth ID number
|
|
* CRYPTO_CIPHER_KEYLEN_MAX: max key length ID number
|
|
*/
|
|
typedef const crypto_func_t
|
|
crypto_func_tbl_t[CRYPTO_CIPHER_MAX][CRYPTO_AUTH_MAX][CRYPTO_CIPHER_KEYLEN_MAX];
|
|
|
|
/* Evaluate to key length definition */
|
|
#define KEYL(keyl) (ARMV8_CRYPTO_CIPHER_KEYLEN_ ## keyl)
|
|
|
|
/* Local aliases for supported ciphers */
|
|
#define CIPH_AES_CBC RTE_CRYPTO_CIPHER_AES_CBC
|
|
/* Local aliases for supported hashes */
|
|
#define AUTH_SHA1_HMAC RTE_CRYPTO_AUTH_SHA1_HMAC
|
|
#define AUTH_SHA256_HMAC RTE_CRYPTO_AUTH_SHA256_HMAC
|
|
|
|
/**
|
|
* Arrays containing pointers to particular cryptographic,
|
|
* combined mode functions.
|
|
* crypto_op_ca_encrypt: cipher (encrypt), authenticate
|
|
* crypto_op_ca_decrypt: cipher (decrypt), authenticate
|
|
* crypto_op_ac_encrypt: authenticate, cipher (encrypt)
|
|
* crypto_op_ac_decrypt: authenticate, cipher (decrypt)
|
|
*/
|
|
static const crypto_func_tbl_t
|
|
crypto_op_ca_encrypt = {
|
|
/* [cipher alg][auth alg][key length] = crypto_function, */
|
|
[CIPH_AES_CBC][AUTH_SHA1_HMAC][KEYL(128)] = aes128cbc_sha1_hmac,
|
|
[CIPH_AES_CBC][AUTH_SHA256_HMAC][KEYL(128)] = aes128cbc_sha256_hmac,
|
|
};
|
|
|
|
static const crypto_func_tbl_t
|
|
crypto_op_ca_decrypt = {
|
|
NULL
|
|
};
|
|
|
|
static const crypto_func_tbl_t
|
|
crypto_op_ac_encrypt = {
|
|
NULL
|
|
};
|
|
|
|
static const crypto_func_tbl_t
|
|
crypto_op_ac_decrypt = {
|
|
/* [cipher alg][auth alg][key length] = crypto_function, */
|
|
[CIPH_AES_CBC][AUTH_SHA1_HMAC][KEYL(128)] = sha1_hmac_aes128cbc_dec,
|
|
[CIPH_AES_CBC][AUTH_SHA256_HMAC][KEYL(128)] = sha256_hmac_aes128cbc_dec,
|
|
};
|
|
|
|
/**
|
|
* Arrays containing pointers to particular cryptographic function sets,
|
|
* covering given cipher operation directions (encrypt, decrypt)
|
|
* for each order of cipher and authentication pairs.
|
|
*/
|
|
static const crypto_func_tbl_t *
|
|
crypto_cipher_auth[] = {
|
|
&crypto_op_ca_encrypt,
|
|
&crypto_op_ca_decrypt,
|
|
NULL
|
|
};
|
|
|
|
static const crypto_func_tbl_t *
|
|
crypto_auth_cipher[] = {
|
|
&crypto_op_ac_encrypt,
|
|
&crypto_op_ac_decrypt,
|
|
NULL
|
|
};
|
|
|
|
/**
|
|
* Top level array containing pointers to particular cryptographic
|
|
* function sets, covering given order of chained operations.
|
|
* crypto_cipher_auth: cipher first, authenticate after
|
|
* crypto_auth_cipher: authenticate first, cipher after
|
|
*/
|
|
static const crypto_func_tbl_t **
|
|
crypto_chain_order[] = {
|
|
crypto_cipher_auth,
|
|
crypto_auth_cipher,
|
|
NULL
|
|
};
|
|
|
|
/**
|
|
* Extract particular combined mode crypto function from the 3D array.
|
|
*/
|
|
#define CRYPTO_GET_ALGO(order, cop, calg, aalg, keyl) \
|
|
({ \
|
|
crypto_func_tbl_t *func_tbl = \
|
|
(crypto_chain_order[(order)])[(cop)]; \
|
|
\
|
|
((*func_tbl)[(calg)][(aalg)][KEYL(keyl)]); \
|
|
})
|
|
|
|
/*----------------------------------------------------------------------------*/
|
|
|
|
/**
|
|
* 2D array type for ARM key schedule functions pointers.
|
|
* CRYPTO_CIPHER_MAX: max cipher ID number
|
|
* CRYPTO_CIPHER_KEYLEN_MAX: max key length ID number
|
|
*/
|
|
typedef const crypto_key_sched_t
|
|
crypto_key_sched_tbl_t[CRYPTO_CIPHER_MAX][CRYPTO_CIPHER_KEYLEN_MAX];
|
|
|
|
static const crypto_key_sched_tbl_t
|
|
crypto_key_sched_encrypt = {
|
|
/* [cipher alg][key length] = key_expand_func, */
|
|
[CIPH_AES_CBC][KEYL(128)] = aes128_key_sched_enc,
|
|
};
|
|
|
|
static const crypto_key_sched_tbl_t
|
|
crypto_key_sched_decrypt = {
|
|
/* [cipher alg][key length] = key_expand_func, */
|
|
[CIPH_AES_CBC][KEYL(128)] = aes128_key_sched_dec,
|
|
};
|
|
|
|
/**
|
|
* Top level array containing pointers to particular key generation
|
|
* function sets, covering given operation direction.
|
|
* crypto_key_sched_encrypt: keys for encryption
|
|
* crypto_key_sched_decrypt: keys for decryption
|
|
*/
|
|
static const crypto_key_sched_tbl_t *
|
|
crypto_key_sched_dir[] = {
|
|
&crypto_key_sched_encrypt,
|
|
&crypto_key_sched_decrypt,
|
|
NULL
|
|
};
|
|
|
|
/**
|
|
* Extract particular combined mode crypto function from the 3D array.
|
|
*/
|
|
#define CRYPTO_GET_KEY_SCHED(cop, calg, keyl) \
|
|
({ \
|
|
crypto_key_sched_tbl_t *ks_tbl = crypto_key_sched_dir[(cop)]; \
|
|
\
|
|
((*ks_tbl)[(calg)][KEYL(keyl)]); \
|
|
})
|
|
|
|
/*----------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
*------------------------------------------------------------------------------
|
|
* Session Prepare
|
|
*------------------------------------------------------------------------------
|
|
*/
|
|
|
|
/** Get xform chain order */
|
|
static enum armv8_crypto_chain_order
|
|
armv8_crypto_get_chain_order(const struct rte_crypto_sym_xform *xform)
|
|
{
|
|
|
|
/*
|
|
* This driver currently covers only chained operations.
|
|
* Ignore only cipher or only authentication operations
|
|
* or chains longer than 2 xform structures.
|
|
*/
|
|
if (xform->next == NULL || xform->next->next != NULL)
|
|
return ARMV8_CRYPTO_CHAIN_NOT_SUPPORTED;
|
|
|
|
if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
|
|
if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)
|
|
return ARMV8_CRYPTO_CHAIN_AUTH_CIPHER;
|
|
}
|
|
|
|
if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
|
|
if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
|
|
return ARMV8_CRYPTO_CHAIN_CIPHER_AUTH;
|
|
}
|
|
|
|
return ARMV8_CRYPTO_CHAIN_NOT_SUPPORTED;
|
|
}
|
|
|
|
static inline void
|
|
auth_hmac_pad_prepare(struct armv8_crypto_session *sess,
|
|
const struct rte_crypto_sym_xform *xform)
|
|
{
|
|
size_t i;
|
|
|
|
/* Generate i_key_pad and o_key_pad */
|
|
memset(sess->auth.hmac.i_key_pad, 0, sizeof(sess->auth.hmac.i_key_pad));
|
|
rte_memcpy(sess->auth.hmac.i_key_pad, sess->auth.hmac.key,
|
|
xform->auth.key.length);
|
|
memset(sess->auth.hmac.o_key_pad, 0, sizeof(sess->auth.hmac.o_key_pad));
|
|
rte_memcpy(sess->auth.hmac.o_key_pad, sess->auth.hmac.key,
|
|
xform->auth.key.length);
|
|
/*
|
|
* XOR key with IPAD/OPAD values to obtain i_key_pad
|
|
* and o_key_pad.
|
|
* Byte-by-byte operation may seem to be the less efficient
|
|
* here but in fact it's the opposite.
|
|
* The result ASM code is likely operate on NEON registers
|
|
* (load auth key to Qx, load IPAD/OPAD to multiple
|
|
* elements of Qy, eor 128 bits at once).
|
|
*/
|
|
for (i = 0; i < SHA_BLOCK_MAX; i++) {
|
|
sess->auth.hmac.i_key_pad[i] ^= HMAC_IPAD_VALUE;
|
|
sess->auth.hmac.o_key_pad[i] ^= HMAC_OPAD_VALUE;
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
auth_set_prerequisites(struct armv8_crypto_session *sess,
|
|
const struct rte_crypto_sym_xform *xform)
|
|
{
|
|
uint8_t partial[64] = { 0 };
|
|
int error;
|
|
|
|
switch (xform->auth.algo) {
|
|
case RTE_CRYPTO_AUTH_SHA1_HMAC:
|
|
/*
|
|
* Generate authentication key, i_key_pad and o_key_pad.
|
|
*/
|
|
/* Zero memory under key */
|
|
memset(sess->auth.hmac.key, 0, SHA1_BLOCK_SIZE);
|
|
|
|
/*
|
|
* Now copy the given authentication key to the session
|
|
* key.
|
|
*/
|
|
rte_memcpy(sess->auth.hmac.key, xform->auth.key.data,
|
|
xform->auth.key.length);
|
|
|
|
/* Prepare HMAC padding: key|pattern */
|
|
auth_hmac_pad_prepare(sess, xform);
|
|
/*
|
|
* Calculate partial hash values for i_key_pad and o_key_pad.
|
|
* Will be used as initialization state for final HMAC.
|
|
*/
|
|
error = sha1_block_partial(NULL, sess->auth.hmac.i_key_pad,
|
|
partial, SHA1_BLOCK_SIZE);
|
|
if (error != 0)
|
|
return -1;
|
|
memcpy(sess->auth.hmac.i_key_pad, partial, SHA1_BLOCK_SIZE);
|
|
|
|
error = sha1_block_partial(NULL, sess->auth.hmac.o_key_pad,
|
|
partial, SHA1_BLOCK_SIZE);
|
|
if (error != 0)
|
|
return -1;
|
|
memcpy(sess->auth.hmac.o_key_pad, partial, SHA1_BLOCK_SIZE);
|
|
|
|
break;
|
|
case RTE_CRYPTO_AUTH_SHA256_HMAC:
|
|
/*
|
|
* Generate authentication key, i_key_pad and o_key_pad.
|
|
*/
|
|
/* Zero memory under key */
|
|
memset(sess->auth.hmac.key, 0, SHA256_BLOCK_SIZE);
|
|
|
|
/*
|
|
* Now copy the given authentication key to the session
|
|
* key.
|
|
*/
|
|
rte_memcpy(sess->auth.hmac.key, xform->auth.key.data,
|
|
xform->auth.key.length);
|
|
|
|
/* Prepare HMAC padding: key|pattern */
|
|
auth_hmac_pad_prepare(sess, xform);
|
|
/*
|
|
* Calculate partial hash values for i_key_pad and o_key_pad.
|
|
* Will be used as initialization state for final HMAC.
|
|
*/
|
|
error = sha256_block_partial(NULL, sess->auth.hmac.i_key_pad,
|
|
partial, SHA256_BLOCK_SIZE);
|
|
if (error != 0)
|
|
return -1;
|
|
memcpy(sess->auth.hmac.i_key_pad, partial, SHA256_BLOCK_SIZE);
|
|
|
|
error = sha256_block_partial(NULL, sess->auth.hmac.o_key_pad,
|
|
partial, SHA256_BLOCK_SIZE);
|
|
if (error != 0)
|
|
return -1;
|
|
memcpy(sess->auth.hmac.o_key_pad, partial, SHA256_BLOCK_SIZE);
|
|
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
cipher_set_prerequisites(struct armv8_crypto_session *sess,
|
|
const struct rte_crypto_sym_xform *xform)
|
|
{
|
|
crypto_key_sched_t cipher_key_sched;
|
|
|
|
cipher_key_sched = sess->cipher.key_sched;
|
|
if (likely(cipher_key_sched != NULL)) {
|
|
/* Set up cipher session key */
|
|
cipher_key_sched(sess->cipher.key.data, xform->cipher.key.data);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
armv8_crypto_set_session_chained_parameters(struct armv8_crypto_session *sess,
|
|
const struct rte_crypto_sym_xform *cipher_xform,
|
|
const struct rte_crypto_sym_xform *auth_xform)
|
|
{
|
|
enum armv8_crypto_chain_order order;
|
|
enum armv8_crypto_cipher_operation cop;
|
|
enum rte_crypto_cipher_algorithm calg;
|
|
enum rte_crypto_auth_algorithm aalg;
|
|
|
|
/* Validate and prepare scratch order of combined operations */
|
|
switch (sess->chain_order) {
|
|
case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
|
|
case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
|
|
order = sess->chain_order;
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
/* Select cipher direction */
|
|
sess->cipher.direction = cipher_xform->cipher.op;
|
|
/* Select cipher key */
|
|
sess->cipher.key.length = cipher_xform->cipher.key.length;
|
|
/* Set cipher direction */
|
|
cop = sess->cipher.direction;
|
|
/* Set cipher algorithm */
|
|
calg = cipher_xform->cipher.algo;
|
|
|
|
/* Select cipher algo */
|
|
switch (calg) {
|
|
/* Cover supported cipher algorithms */
|
|
case RTE_CRYPTO_CIPHER_AES_CBC:
|
|
sess->cipher.algo = calg;
|
|
/* IV len is always 16 bytes (block size) for AES CBC */
|
|
sess->cipher.iv.length = 16;
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
/* Select auth generate/verify */
|
|
sess->auth.operation = auth_xform->auth.op;
|
|
|
|
/* Select auth algo */
|
|
switch (auth_xform->auth.algo) {
|
|
/* Cover supported hash algorithms */
|
|
case RTE_CRYPTO_AUTH_SHA1_HMAC:
|
|
case RTE_CRYPTO_AUTH_SHA256_HMAC: /* Fall through */
|
|
aalg = auth_xform->auth.algo;
|
|
sess->auth.mode = ARMV8_CRYPTO_AUTH_AS_HMAC;
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* Set the digest length */
|
|
sess->auth.digest_length = auth_xform->auth.digest_length;
|
|
|
|
/* Verify supported key lengths and extract proper algorithm */
|
|
switch (cipher_xform->cipher.key.length << 3) {
|
|
case 128:
|
|
sess->crypto_func =
|
|
CRYPTO_GET_ALGO(order, cop, calg, aalg, 128);
|
|
sess->cipher.key_sched =
|
|
CRYPTO_GET_KEY_SCHED(cop, calg, 128);
|
|
break;
|
|
case 192:
|
|
case 256:
|
|
/* These key lengths are not supported yet */
|
|
default: /* Fall through */
|
|
sess->crypto_func = NULL;
|
|
sess->cipher.key_sched = NULL;
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (unlikely(sess->crypto_func == NULL)) {
|
|
/*
|
|
* If we got here that means that there must be a bug
|
|
* in the algorithms selection above. Nevertheless keep
|
|
* it here to catch bug immediately and avoid NULL pointer
|
|
* dereference in OPs processing.
|
|
*/
|
|
ARMV8_CRYPTO_LOG_ERR(
|
|
"No appropriate crypto function for given parameters");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Set up cipher session prerequisites */
|
|
if (cipher_set_prerequisites(sess, cipher_xform) != 0)
|
|
return -EINVAL;
|
|
|
|
/* Set up authentication session prerequisites */
|
|
if (auth_set_prerequisites(sess, auth_xform) != 0)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Parse crypto xform chain and set private session parameters */
|
|
int
|
|
armv8_crypto_set_session_parameters(struct armv8_crypto_session *sess,
|
|
const struct rte_crypto_sym_xform *xform)
|
|
{
|
|
const struct rte_crypto_sym_xform *cipher_xform = NULL;
|
|
const struct rte_crypto_sym_xform *auth_xform = NULL;
|
|
bool is_chained_op;
|
|
int ret;
|
|
|
|
/* Filter out spurious/broken requests */
|
|
if (xform == NULL)
|
|
return -EINVAL;
|
|
|
|
sess->chain_order = armv8_crypto_get_chain_order(xform);
|
|
switch (sess->chain_order) {
|
|
case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
|
|
cipher_xform = xform;
|
|
auth_xform = xform->next;
|
|
is_chained_op = true;
|
|
break;
|
|
case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
|
|
auth_xform = xform;
|
|
cipher_xform = xform->next;
|
|
is_chained_op = true;
|
|
break;
|
|
default:
|
|
is_chained_op = false;
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* Set IV offset */
|
|
sess->cipher.iv.offset = cipher_xform->cipher.iv.offset;
|
|
|
|
if (is_chained_op) {
|
|
ret = armv8_crypto_set_session_chained_parameters(sess,
|
|
cipher_xform, auth_xform);
|
|
if (unlikely(ret != 0)) {
|
|
ARMV8_CRYPTO_LOG_ERR(
|
|
"Invalid/unsupported chained (cipher/auth) parameters");
|
|
return ret;
|
|
}
|
|
} else {
|
|
ARMV8_CRYPTO_LOG_ERR("Invalid/unsupported operation");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Provide session for operation */
|
|
static inline struct armv8_crypto_session *
|
|
get_session(struct armv8_crypto_qp *qp, struct rte_crypto_op *op)
|
|
{
|
|
struct armv8_crypto_session *sess = NULL;
|
|
|
|
if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
|
|
/* get existing session */
|
|
if (likely(op->sym->session != NULL)) {
|
|
sess = (struct armv8_crypto_session *)
|
|
get_sym_session_private_data(
|
|
op->sym->session,
|
|
cryptodev_driver_id);
|
|
}
|
|
} else {
|
|
/* provide internal session */
|
|
void *_sess = NULL;
|
|
void *_sess_private_data = NULL;
|
|
|
|
if (rte_mempool_get(qp->sess_mp, (void **)&_sess))
|
|
return NULL;
|
|
|
|
if (rte_mempool_get(qp->sess_mp, (void **)&_sess_private_data))
|
|
return NULL;
|
|
|
|
sess = (struct armv8_crypto_session *)_sess_private_data;
|
|
|
|
if (unlikely(armv8_crypto_set_session_parameters(sess,
|
|
op->sym->xform) != 0)) {
|
|
rte_mempool_put(qp->sess_mp, _sess);
|
|
rte_mempool_put(qp->sess_mp, _sess_private_data);
|
|
sess = NULL;
|
|
}
|
|
op->sym->session = (struct rte_cryptodev_sym_session *)_sess;
|
|
set_sym_session_private_data(op->sym->session,
|
|
cryptodev_driver_id, _sess_private_data);
|
|
}
|
|
|
|
if (unlikely(sess == NULL))
|
|
op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
|
|
|
|
return sess;
|
|
}
|
|
|
|
/*
|
|
*------------------------------------------------------------------------------
|
|
* Process Operations
|
|
*------------------------------------------------------------------------------
|
|
*/
|
|
|
|
/*----------------------------------------------------------------------------*/
|
|
|
|
/** Process cipher operation */
|
|
static inline void
|
|
process_armv8_chained_op(struct armv8_crypto_qp *qp, struct rte_crypto_op *op,
|
|
struct armv8_crypto_session *sess,
|
|
struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
|
|
{
|
|
crypto_func_t crypto_func;
|
|
crypto_arg_t arg;
|
|
struct rte_mbuf *m_asrc, *m_adst;
|
|
uint8_t *csrc, *cdst;
|
|
uint8_t *adst, *asrc;
|
|
uint64_t clen, alen;
|
|
int error;
|
|
|
|
clen = op->sym->cipher.data.length;
|
|
alen = op->sym->auth.data.length;
|
|
|
|
csrc = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
|
|
op->sym->cipher.data.offset);
|
|
cdst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
|
|
op->sym->cipher.data.offset);
|
|
|
|
switch (sess->chain_order) {
|
|
case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
|
|
m_asrc = m_adst = mbuf_dst;
|
|
break;
|
|
case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
|
|
m_asrc = mbuf_src;
|
|
m_adst = mbuf_dst;
|
|
break;
|
|
default:
|
|
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
|
|
return;
|
|
}
|
|
asrc = rte_pktmbuf_mtod_offset(m_asrc, uint8_t *,
|
|
op->sym->auth.data.offset);
|
|
|
|
switch (sess->auth.mode) {
|
|
case ARMV8_CRYPTO_AUTH_AS_AUTH:
|
|
/* Nothing to do here, just verify correct option */
|
|
break;
|
|
case ARMV8_CRYPTO_AUTH_AS_HMAC:
|
|
arg.digest.hmac.key = sess->auth.hmac.key;
|
|
arg.digest.hmac.i_key_pad = sess->auth.hmac.i_key_pad;
|
|
arg.digest.hmac.o_key_pad = sess->auth.hmac.o_key_pad;
|
|
break;
|
|
default:
|
|
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
|
|
return;
|
|
}
|
|
|
|
if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_GENERATE) {
|
|
adst = op->sym->auth.digest.data;
|
|
if (adst == NULL) {
|
|
adst = rte_pktmbuf_mtod_offset(m_adst,
|
|
uint8_t *,
|
|
op->sym->auth.data.offset +
|
|
op->sym->auth.data.length);
|
|
}
|
|
} else {
|
|
adst = qp->temp_digest;
|
|
}
|
|
|
|
arg.cipher.iv = rte_crypto_op_ctod_offset(op, uint8_t *,
|
|
sess->cipher.iv.offset);
|
|
arg.cipher.key = sess->cipher.key.data;
|
|
/* Acquire combined mode function */
|
|
crypto_func = sess->crypto_func;
|
|
ARMV8_CRYPTO_ASSERT(crypto_func != NULL);
|
|
error = crypto_func(csrc, cdst, clen, asrc, adst, alen, &arg);
|
|
if (error != 0) {
|
|
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
|
|
return;
|
|
}
|
|
|
|
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
|
|
if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
|
|
if (memcmp(adst, op->sym->auth.digest.data,
|
|
sess->auth.digest_length) != 0) {
|
|
op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Process crypto operation for mbuf */
|
|
static inline int
|
|
process_op(struct armv8_crypto_qp *qp, struct rte_crypto_op *op,
|
|
struct armv8_crypto_session *sess)
|
|
{
|
|
struct rte_mbuf *msrc, *mdst;
|
|
|
|
msrc = op->sym->m_src;
|
|
mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src;
|
|
|
|
op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
|
|
|
|
switch (sess->chain_order) {
|
|
case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
|
|
case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER: /* Fall through */
|
|
process_armv8_chained_op(qp, op, sess, msrc, mdst);
|
|
break;
|
|
default:
|
|
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
|
|
break;
|
|
}
|
|
|
|
/* Free session if a session-less crypto op */
|
|
if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
|
|
memset(sess, 0, sizeof(struct armv8_crypto_session));
|
|
memset(op->sym->session, 0,
|
|
rte_cryptodev_sym_get_header_session_size());
|
|
rte_mempool_put(qp->sess_mp, sess);
|
|
rte_mempool_put(qp->sess_mp, op->sym->session);
|
|
op->sym->session = NULL;
|
|
}
|
|
|
|
if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
|
|
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
|
|
|
|
if (unlikely(op->status == RTE_CRYPTO_OP_STATUS_ERROR))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
*------------------------------------------------------------------------------
|
|
* PMD Framework
|
|
*------------------------------------------------------------------------------
|
|
*/
|
|
|
|
/** Enqueue burst */
|
|
static uint16_t
|
|
armv8_crypto_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
|
|
uint16_t nb_ops)
|
|
{
|
|
struct armv8_crypto_session *sess;
|
|
struct armv8_crypto_qp *qp = queue_pair;
|
|
int i, retval;
|
|
|
|
for (i = 0; i < nb_ops; i++) {
|
|
sess = get_session(qp, ops[i]);
|
|
if (unlikely(sess == NULL))
|
|
goto enqueue_err;
|
|
|
|
retval = process_op(qp, ops[i], sess);
|
|
if (unlikely(retval < 0))
|
|
goto enqueue_err;
|
|
}
|
|
|
|
retval = rte_ring_enqueue_burst(qp->processed_ops, (void *)ops, i,
|
|
NULL);
|
|
qp->stats.enqueued_count += retval;
|
|
|
|
return retval;
|
|
|
|
enqueue_err:
|
|
retval = rte_ring_enqueue_burst(qp->processed_ops, (void *)ops, i,
|
|
NULL);
|
|
if (ops[i] != NULL)
|
|
ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
|
|
|
|
qp->stats.enqueue_err_count++;
|
|
return retval;
|
|
}
|
|
|
|
/** Dequeue burst */
|
|
static uint16_t
|
|
armv8_crypto_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
|
|
uint16_t nb_ops)
|
|
{
|
|
struct armv8_crypto_qp *qp = queue_pair;
|
|
|
|
unsigned int nb_dequeued = 0;
|
|
|
|
nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
|
|
(void **)ops, nb_ops, NULL);
|
|
qp->stats.dequeued_count += nb_dequeued;
|
|
|
|
return nb_dequeued;
|
|
}
|
|
|
|
/** Create ARMv8 crypto device */
|
|
static int
|
|
cryptodev_armv8_crypto_create(const char *name,
|
|
struct rte_vdev_device *vdev,
|
|
struct rte_cryptodev_pmd_init_params *init_params)
|
|
{
|
|
struct rte_cryptodev *dev;
|
|
struct armv8_crypto_private *internals;
|
|
|
|
/* Check CPU for support for AES instruction set */
|
|
if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES)) {
|
|
ARMV8_CRYPTO_LOG_ERR(
|
|
"AES instructions not supported by CPU");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Check CPU for support for SHA instruction set */
|
|
if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_SHA1) ||
|
|
!rte_cpu_get_flag_enabled(RTE_CPUFLAG_SHA2)) {
|
|
ARMV8_CRYPTO_LOG_ERR(
|
|
"SHA1/SHA2 instructions not supported by CPU");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Check CPU for support for Advance SIMD instruction set */
|
|
if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON)) {
|
|
ARMV8_CRYPTO_LOG_ERR(
|
|
"Advanced SIMD instructions not supported by CPU");
|
|
return -EFAULT;
|
|
}
|
|
|
|
dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
|
|
if (dev == NULL) {
|
|
ARMV8_CRYPTO_LOG_ERR("failed to create cryptodev vdev");
|
|
goto init_error;
|
|
}
|
|
|
|
dev->driver_id = cryptodev_driver_id;
|
|
dev->dev_ops = rte_armv8_crypto_pmd_ops;
|
|
|
|
/* register rx/tx burst functions for data path */
|
|
dev->dequeue_burst = armv8_crypto_pmd_dequeue_burst;
|
|
dev->enqueue_burst = armv8_crypto_pmd_enqueue_burst;
|
|
|
|
dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
|
|
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
|
|
RTE_CRYPTODEV_FF_CPU_NEON |
|
|
RTE_CRYPTODEV_FF_CPU_ARM_CE;
|
|
|
|
/* Set vector instructions mode supported */
|
|
internals = dev->data->dev_private;
|
|
|
|
internals->max_nb_qpairs = init_params->max_nb_queue_pairs;
|
|
|
|
return 0;
|
|
|
|
init_error:
|
|
ARMV8_CRYPTO_LOG_ERR(
|
|
"driver %s: cryptodev_armv8_crypto_create failed",
|
|
init_params->name);
|
|
|
|
cryptodev_armv8_crypto_uninit(vdev);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/** Initialise ARMv8 crypto device */
|
|
static int
|
|
cryptodev_armv8_crypto_init(struct rte_vdev_device *vdev)
|
|
{
|
|
struct rte_cryptodev_pmd_init_params init_params = {
|
|
"",
|
|
sizeof(struct armv8_crypto_private),
|
|
rte_socket_id(),
|
|
RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS
|
|
};
|
|
const char *name;
|
|
const char *input_args;
|
|
|
|
name = rte_vdev_device_name(vdev);
|
|
if (name == NULL)
|
|
return -EINVAL;
|
|
input_args = rte_vdev_device_args(vdev);
|
|
rte_cryptodev_pmd_parse_input_args(&init_params, input_args);
|
|
|
|
return cryptodev_armv8_crypto_create(name, vdev, &init_params);
|
|
}
|
|
|
|
/** Uninitialise ARMv8 crypto device */
|
|
static int
|
|
cryptodev_armv8_crypto_uninit(struct rte_vdev_device *vdev)
|
|
{
|
|
struct rte_cryptodev *cryptodev;
|
|
const char *name;
|
|
|
|
name = rte_vdev_device_name(vdev);
|
|
if (name == NULL)
|
|
return -EINVAL;
|
|
|
|
RTE_LOG(INFO, PMD,
|
|
"Closing ARMv8 crypto device %s on numa socket %u\n",
|
|
name, rte_socket_id());
|
|
|
|
cryptodev = rte_cryptodev_pmd_get_named_dev(name);
|
|
if (cryptodev == NULL)
|
|
return -ENODEV;
|
|
|
|
return rte_cryptodev_pmd_destroy(cryptodev);
|
|
}
|
|
|
|
static struct rte_vdev_driver armv8_crypto_pmd_drv = {
|
|
.probe = cryptodev_armv8_crypto_init,
|
|
.remove = cryptodev_armv8_crypto_uninit
|
|
};
|
|
|
|
static struct cryptodev_driver armv8_crypto_drv;
|
|
|
|
RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_ARMV8_PMD, armv8_crypto_pmd_drv);
|
|
RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_ARMV8_PMD, cryptodev_armv8_pmd);
|
|
RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_ARMV8_PMD,
|
|
"max_nb_queue_pairs=<int> "
|
|
"socket_id=<int>");
|
|
RTE_PMD_REGISTER_CRYPTO_DRIVER(armv8_crypto_drv, armv8_crypto_pmd_drv.driver,
|
|
cryptodev_driver_id);
|